Please use this identifier to cite or link to this item: https://repositorio.uca.edu.ar/handle/123456789/9007
Título : A 4D feature-tracking algorithm : a multidimensional view of cyclone systems
Autor : Lakkis, Susan Gabriela 
Canziani, Pablo 
Rocamora, Leandro 
Caferri, Agustin 
Yuchechen, Adrián 
Hodges, Kevin 
O'Neill, Alan 
Palabras clave : PROGRAMACION DINAMICAALGORITMOSCLIMATOLOGIACICLONESMETEREOLOGIA
Fecha de publicación : 2018
Editorial : John Wiley & Sons
Cita : Lakkis, S G. Canziani, P. Rocamora, L. Caferri, A. Yuchechen, A. Hodges, K. O'Neill, A. A 4D feature-tracking algorithm : A multidimensional view of cyclone systems [en línea]. Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. 2018, 145 (719). doy: 10.1002/qj.3436. Diponible en: https://repositorio.uca.edu.ar/handle/123456789/9007
Resumen : Abstrac: An objective four-dimensional (4D) algorithm developed to track extratropical relative vorticity anomaly 3D structure over time is introduced and validated. The STACKER algorithm, structured with the TRACKER single-level tracking algorithm as source of the single-level raw tracks, objectively combines tracks from various levels to determine the 3D structure of the cyclone (or anticyclone) events throughout their life cycle. STACKER works progressively, beginning with two initial levels and then adding additional levels to the stack in a bottom-up and/or top-down approach. This allows an iterative stacking approach, adding one level at a time, resulting in an optimized 4D determination of relative vorticity anomaly events. A two-stage validation process is carried out with the ECMWF reanalysis ERA-Interim dataset for the 2015 austral winter. First the overall tracking capability during an austral winter, taking into account a set of climate indicators and their impacts on Southern Hemisphere circulation, was compared to previous climatologies, in order to verify the density and distribution of the cyclone events detected by STACKER. Results show the cyclone density distribution is in very good agreement with previous climatologies, after taking into account potential differences due to climate variability and different tracking methodologies. The second stage focuses on three different long-lived events over the Southern Hemisphere during the winter of 2015, spanning seven different pressure levels. Both GOES satellite imagery, infrared and water vapour channels, and ERA-Interim cloud cover products are used in order to validate the tracks obtained as well as the algorithm’s capability and reliability. The observed 3D cyclone structures and their time evolution are consistent with current understanding of cyclone system development. Thus, the two-stage validation confirms that the algorithm is suitable to track multilevel events, and can follow and analyse their 3D life cycle and develop full 3D climatologies and climate variability studies.
URI : https://repositorio.uca.edu.ar/handle/123456789/9007
ISSN : 1477-870X
Disciplina: INGENIERIA AMBIENTAL
DOI: 10.1002/qj.3436
Derechos: Acceso abierto. 2 años de embargo
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat Existent users please Login
4d-feature-tracking-algorithm.pdf11,87 MBAdobe PDF???org.dspace.app.webui.jsptag.ItemTag.embargo???    Request a copy
Show full item record

Page view(s)

57
checked on Jan 28, 2020

Download(s)

16
checked on Jan 28, 2020

Google ScholarTM

Check


Altmetric


This item is licensed under a Creative Commons License Creative Commons