Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uca.edu.ar/handle/123456789/20837| Título: | Laws of Large Numbers, Spectral Translates and Sampling over LCA Groups | Autor: | Medina, Juan Miguel | Palabras clave: | MATEMATICA; MUESTREO; ANALISIS ARMÓNICO ABSTRACTO | Fecha de publicación: | 2022 | Editorial: | Universidad de Buenos Aires | Resumen: | Kluv´anek extended the Whittaker-Kotel’nikov-Shannon theorem to the abstract harmonic analysis setting over a LCA group G. In this context, the classical condition for f ∈ L 2 (R) to be band limited is replaced by fb having its support essentially contained in a transversal set of a compact quotient group. This condition was later shown to be necessary in general. Moreover, the classical interpolation formula is also equivalent to a Plancherel like isometric formula involving the L 2 (G) norm of f and the norm of the sequence of its samples over a subgroup H. Here, recalling some Laws of Large Numbers, we will prove an equivalent result for the support of the spectral measure µX of a Gaussian stationary random process X, indexed over a LCA group G. The conditions are formulated in terms of an almost sure isometric formula involving the sample variances of X, and its samples over a subgroup H respectively. | URI: | https://repositorio.uca.edu.ar/handle/123456789/20837 | Derechos: | Atribución-NoComercial-CompartirIgual 4.0 Internacional | Fuente: | Workshop in Harmonic Analysis, Sampling Theory, Machine Learning, and Data Science. 2022 |
| Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| laws-large-numbers.pdf | 500,63 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una Licencia Creative Commons
