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Abstract

Kluvánek extended the Whittaker-Kotel’nikov-Shannon theorem to the abstract harmonic analysis
setting over a LCA group G. In this context, the classical condition for f ∈ L2(R) to be band limited is

replaced by f̂ having its support essentially contained in a transversal set of a compact quotient group.
This condition was later shown to be necessary in general. Moreover, the classical interpolation formula
is also equivalent to a Plancherel like isometric formula involving the L2(G) norm of f and the norm of
the sequence of its samples over a subgroup H. Here, recalling some Laws of Large Numbers, we will
prove an equivalent result for the support of the spectral measure µX of a Gaussian stationary random
process X, indexed over a LCA group G. The conditions are formulated in terms of an almost sure
isometric formula involving the sample variances of X, and its samples over a subgroup H respectively.
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1 Introduction

A key result in Harmonic Analysis and Signal Processing over Rd is the so called Whittaker-Kotel’nikov-
Shannon (WKS) sampling theorem which gives conditions to reconstruct (interpolate) a band limited L2(Rd)
function from its discrete samples taken at a uniform and appropriate rate. The WKS theorem was extended
to L2(G), with G a Locally Compact Abelian (LCA) group, by Kluvánek [15]. In addition to its elegance,
Kluvánek’s result provides an example of a unified theory which gives a positive answer to several similar
problems of uniform sampling that may seem different at first glance. In practice, if f represents a signal
then its samples are obtained evaluating f over a subgroup H ⊂ G. Usually the case of interest is when H
is countable. Kluvánek proved that a sufficient condition for the validity of a general interpolating formula,
for f ∈ L2(G), is that the support of f̂ being essentially contained in a transversal set of Ĝ/H⊥. Where Ĝ
is the dual group of G and H⊥ the annihilator of H. Furthermore, in this case, an analogue of Plancherel’s
isometric formula holds for f and the sequence of its sampled values over H. For more details see Section
2.2.3. Converse results were presented in [2, 3].
Here, with the aid of certain Laws of Large Numbers (LLNs in short) for stationary random processes, we
will replace the L2(G) norm by appropriate estimators of the variances of a stationary Gaussian random
processes and its samples respectively. With this device we will prove that a similar almost sure isometric
formula, in this case an analogue of Bohr’s formula, is equivalent for a such a random process to have the
support of the discrete part of its spectral measure contained in a transversal subset. Some of the ideas
presented here, partially follow the techniques introduced in [6]. In that case, with the aid of some well
known results form Ergodic Theory, it was proved that the equivalent and apparently unrelated notions



of AP-Gabor frames (see e.g. [4] and references therein) and L2(R)-Gabor frames can be characterized in
terms of an isometric formula involving the sample variance of a Gaussian stationary random process and
the sample variance of its countable frame coefficients. The present work is tries to analyse further and
bring more light to the relation between almost periodic functions, ergodic theorems and sampling. This is
of certain importance in the sampling theory of finite-power signals, see e.g. [5].

Paper Organization.

The paper is organized as follows: Section 2 gathers most of the auxiliary results and previously known
results, needed for our developments. Some of these results are originally spread separately in the literature.
In order to make this work self-contained, some are presented as slight modifications of the original ones and
a sketch of proof may be also given for a few of them. Most of the original results of this work are presented
in Section 3. Theorems 6 and 7 relate conditions on the support of the spectral measure of the sampled
random process X with an appropriate isometric formula. Finally, in Theorem 8 stability conditions are
given.

2 Preliminaries

2.1 Some generalities.

If (G,+) is a group, given A ⊆ G and B ⊆ G then we define the sum subset A+B = {x+y : x, y ∈ G}, and
the subset of differences A − B respectively. This must not be confused with the set theoretical difference
A \B = A∩Bc. The symmetric difference is denoted by A∆B. Let U be a topological Hausdorff space and
B(U) the Borel σ-algebra of U . By M(U) we will denote the class of all complex-valued regular measures
with finite total variation. In the case that µ is a (real) signed measure associated the variation measure is
given by |µ| = µ+ + µ−. Where the pair µ+, µ− is given by the Hahn-Jordan decomposition of µ and the
total variation norm is given by ∥µ∥M(U) = |µ|(U). So that M(U) is a normed linear space with ∥ . ∥M(U).
Let W be a set and S any σ-algebra of W . If ϕ : U −→ W is a S-measurable map between U and W
(i.e. a map such that ϕ−1(S) ⊆ B(U)), we denote by ϕ−1µ the induced measure by ϕ, for µ ∈ M(U).
Following [20], a support of µ ∈ M(U) is any C ∈ B(U) such that |µ|(Cc) = 0. Alternatively, we may say
that µ is concentrated on C, see e.g. p.266 of [30]. Note that this differs from the definition of support of
a measure of p.124 of [13]. A measure µ is discrete if it is concentrated on a countable set; µ is continuous
if µ(E) = 0 for every countable set E. Every µ ∈ M(U) has a unique decomposition µ = µc + µd where
µc is continuous and µd is discrete. By Md(U) we will denote the subset of discrete measures and by δx
the unit mass measure concentrated on x ∈ U . The symbol 1S stands for the indicator function of the set
S. The respective Lebesgue spaces of square integrable (equivalence classes) functions will be denoted by
L2(U,B(U), µ) or L2(U, µ) for short, if the underlying σ-algebra is clear from the context.

2.2 Fourier Transform and Function Spaces.

A LCA group G is a Hausdorff space with a locally compact topology which is an abelian group, provided
that its group operation ‘+′ (here written in additive form) is continuous. Denote by Ĝ the dual group of G

and by ⟨γ, x⟩ the value of γ ∈ Ĝ at x ∈ G. If H ⊂ G is a closed subgroup of G its annihilator is defined by

H⊥ = {γ ∈ Ĝ : ⟨x, γ⟩ = 1 ,∀x ∈ H} .

Let mG denote a fixed Haar measure on G, i.e. the unique, up to multiplicative positive constant, invariant
measure with respect to the group operation ‘+’. For the case of the Haar measure mG, the respective
Lebesgue spaces of functions, for p ∈ [1,∞], are denoted by Lp(G). Recall that in the case p = 2, the inner
product is given by ⟨f, g⟩ =

∫
G
f(x)g(x)dmG(x). This notation should not be confused with the duality

relation between G and Ĝ although it will be clear form the context. If f ∈ L1(G), its Fourier Transform at
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γ ∈ Ĝ is defined by

Ff(γ) = f̂(γ) =

∫
G

f(t)⟨γ, t⟩dmG(t) .

We will denote A(Ĝ) := F(L1(G)) = {f̂ : f ∈ L1(G)}. On the other hand, the Haar measure mĜ

over (Ĝ,B(Ĝ)) can be adjusted so that the inverse Fourier transform for f̂ ∈ L1(Ĝ) at x ∈ G is given by:

f(x) =
∫̂
G

f̂(γ)⟨γ, t⟩dmĜ(γ) . We need the following proposition. This is a variant of Theorem 1.6.4, p. 27,

of [30], or alternatively this also a consequence of A(Ĝ) being a standard function algebra (Definition 2.1.1
of [27]):

Proposition 1 If E is a nonempty open set of Ĝ and γ0 ∈ E, there exist a non-negative function f̂ ∈ A(Ĝ),

f̂(γ0) ̸= 0 such that f̂(γ) = 0 for all γ outside E.

If µ ∈ M(Ĝ), we define its inverse Fourier Transform by:

∨
µ(t) =

∫
Ĝ

⟨γ, t⟩dµ(γ) .

In fact, if µ is defined by dµ = fdmĜ for some f ∈ L1(Ĝ) then both definitions coincide. If µ ∈ M(Ĝ) it is
uniquely determined by its Fourier transform and Bochner’s theorem states that a continuous function on G
is positive-definite if and only if is the Fourier transform of a non-negative measure µ ∈ M(G). Obviously the

roles of G of Ĝ can be exchanged. However the present form seems to be more adequate for the presentation
of subsequent results related to the theory of random processes.
A classical example of LCA group is G = Rd with its usual addition operation +, and its dual Ĝ = Rd. In
this case ⟨γ, x⟩ = eiγ·x with dmG(x) =

dx
(2π)d

and dmĜ(γ) = dγ, where dt and dγ denote the usual Lebesgue

measure of Rd. Another usual example is the torus G = T = R/2πZ and its dual Ĝ = Z. In this case,
⟨γ, x⟩ = eiγ·x with dmG(x) =

dx
2π and mĜ the counting measure. With these basic definitions in hand, the

most relevant results for these classical cases, such as Plancherel’s formula, can be extended with no difficulty
to the general abstract setting of an LCA group G [13]. We shall need another class of functions [30]:

Definition 1 The space AP (G) is the uniform norm closure, in CB(G), of the space of trigonometric

polynomials p(t) =
∑
γ
C(γ)⟨γ, t⟩ with γ ∈ Ĝ and C(γ) ∈ C.

Here CB(G) is the linear space of continuous and bounded functions over G. Also note that in Definition
1, with the abbreviated notation p(t) =

∑
γ
C(γ)⟨γ, t⟩ and by a trigonometric polynomial we mean a finite

linear combination of the form p(t) =
n∑

i=1

C(γi)⟨γi, t⟩ with γi ∈ Ĝ. In the forthcoming this will be clear from

the context.

2.2.1 The Invariant Mean over G.

In this section we deal with the problem of defining a unique invariant mean over AP (G) by an appropriate
averaging process. A nice self-contained exposition of this topic is given in the article [23]. Here, the aim
is to always keep the level of generality in proportion to our needs of showing a relation between LLNs and
Sampling Theory. Recall that the Haar measure is unique up to scaling, so let us choose one such measure
mG to introduce the concepts of this section.

Definition 2 A sequence K = {Kn : n ∈ N} of non void, compact subsets of G is called a Følner sequence
if the following conditions are satisfied:

(i) 0 < mG(Kn), n ∈ N, (ii)
mG((x+Kn)∆Kn)

mG(Kn)
−→

n−→∞
0 for all x ∈ G. (1)
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Moreover, we shall assume that G contains a Følner sequence satisfying the additional Shulman condition
[19]. There exists C > 0 such that for all n:

mG

(⋃
k<n

(Kn −Kk)

)
≤ CmG(Kn) . (2)

Følner sequences allows us to define a mean for f ∈ AP (G) as:

MK
G (f) = lim

n−→∞

1

mG(Kn)

∫
Kn

f(t)dmG(t) . (3)

If G is an LCA group, it follows that the value of MK
G (f) is independent of the choice of the Følner sequence

so, if f ∈ AP (G) , we can write MG(f). In fact there exists a unique invariant mean over AP (G) . See
e.g. Theorem 18.10, p.252 of [13] or Section 4.5. of [23]. On the other hand, the additional condition of
equation (2) may be crucial for the validity of the Pointwise Ergodic Theorem (in Section 2.3.7). For general
topological groups, see e.g. [19] or p. 212 [24] and references therein for alternative conditions. So, in the
forthcoming we will assume that G contains a Følner sequence verifying condition (2). This is not a great
restriction. It is known that every σ-compact LCA group G admits a Følner sequence verifying condition
(2). This is a consequence of Proposition 1.4 of [19].

2.2.2 Besicovitch Almost Periodic Functions.

The following inner product is well defined over AP (G):

(f, g)AP (G) = lim
n−→∞

1

mG(Kn)

∫
Kn

f(t)g(t)dmG(t) = MG(fg) . (4)

The norm induced by this inner product makes AP (G) a non-complete inner-product space and, if for
example G = R, a non-separable space. For K = {Kn : n ∈ N} a Følner sequence, we introduce the Hilbert
space B2(G,K) of Besicovitch almost periodic functions containing AP (G). Let f ∈ L2

loc(G) we can define
the semi-norm:

∥f∥b, 2,K =

lim sup
n−→∞

1

mG(Kn)

∫
Kn

|f(t)|2dmG(t)

 1
2

.

A function f ∈ L2
loc(G) is called Besicovitch almost periodic, with respect to K if for every ε > 0 there exists

g ∈ AP (G) such that ∥f − g∥b, 2,K < ε. It is possible to turn B2(G,K) into a Hilbert space. First one can

define an equivalence relation on B2(G,K) in the following way: f ≡ g if and only if ∥f − g∥b, 2,K = 0. The

norm of [f ] ∈ B2(G,K)/ ≡ is given by ∥[f ]∥B2(G,K) := ∥f∥b,2,K. In particular if f ∈ L2
loc(G) is such that

∥f∥b, 2,K = 0 then f ≡ 0. Finally, one can prove that B2(G,K)/ ≡ is complete (see e.g. p.39 of [18]). With

some abuse, if there is no confusion, we will write f instead of [f ] the equivalence class of f and B2(G,K) for
B2(G,K)/ ≡. Moreover, it can be proved that the inner product ( . , . )B2(G,K) in B2(G,K) coincides with

equation (4) for any f, g ∈ B2(G,K). We recall that {⟨γ, t⟩ : γ ∈ Ĝ} forms a complete orthonormal basis of
B2(G,K) and that the following analogue of Plancherel identity holds:

∥ f ∥B2(G,K) = ∥C(f) ∥L2(Ĝ,dc) , (5)

where C(f)(γ) = (f, ⟨γ, . ⟩)B2(G,K) = lim
n−→∞

1
mG(Kn)

∫
Kn

f(t)⟨γ, t⟩dmG(t) denotes the Fourier-Bohr coefficient

of f at γ ∈ Ĝ (or Fourier-Bohr transform in some literature) and c denotes the counting measure. Obviously,

C(f)(γ) = 0 for all γ ∈ Ĝ except for a finite or countable subset of them. We summarize some remarkable
facts about are B2(G,K) :
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1. (Riesz-Fischer property) Let C : Ĝ −→ C and let K be a Følner sequence. Then there exists a
unique f ∈ B2(G,K) (as an equivalence class) such that C(γ) = (f, ⟨γ, . ⟩)B2(G,K) if and only if
∥C ∥L2(Ĝ,dc) < ∞. In this case f =

∑
γ∈Ĝ

C(γ)⟨γ, . ⟩, where the convergence is in the B2(G,K)-norm.

2. It follows that despite the spaces B2(G,K) may be different for distinct choices of K, all of them are
isometrically isomorphic.

3. Let f ∈ AP (G), τ ∈ G and let Tτf = f( . + τ) ∈ AP (G) be the translation of f by τ . Then
∥ f ∥B2(G,K) = ∥Tτf ∥B2(G,K) and hence Tτ extends uniquely to an isometry on B2(G,K) (For more

details see p. 39 of [18]). Here, with some abuse we will shall also denote this extension by Tτ .
Moreover, one can define the deterministic auto-correlation of f ∈ B2(G,K) at τ ∈ G by:

ρf (τ) := ( f , Tτf )B2(G,K) . (6)

If f ∈ B2(G,K) then ρf ∈ AP (G) (see e.g. Lemma 2.1. of [17]). In fact, from (5) one can deduce that

ρf (τ) =
∑
γ∈Ĝ

|C(γ)|2⟨τ, γ⟩ ,

and therefore ρf is the Fourier transform of the discrete measure ν =
∑
γ∈A

|C(γ)|2δγ .

For more details about these facts, see [23] or [13] for more general results. For the case G = Rd another
interesting introductory article is [21].
Finally, if H ⊂ G is a closed subgroup carrying a Haar measure mH and containing a Følner sequence,
a similar argument leads to existence of a Følner sequence K′ = {K ′

n : n ∈ N} for H which verifies (2).
Subsequently, one can define the mean MK′

H over H.

2.2.3 Paley-Wiener Spaces and Sampling in L2(G).

Let G be an LCA group. Analogously to the Rd case, for a measurable S ⊂ Ĝ such that mĜ(S) < ∞, one

can define the Paley-Wiener spaces of S-band limited functions as: PWS = {f ∈ L2(G) : supp(f̂) ⊆ S} . In
the context of sampling, the following definition is useful:

Definition 3 [7] Let G be a LCA group. A discrete subgroup H ⊆ G for which G/H is compact is called a
lattice.

Note that G/H being compact is equivalent to H⊥ being discrete. In some literature, e.g. [8], the condition
of H being countable is included in the definition of a lattice. Now, we can introduce Kluvanek’s Sampling
Theorem. Given a lattice H, we shall use Kluvanek’s original normalization procedure for the Haar mea-
sures mG and mĜ: First, noting that Ĝ/H⊥ is compact, one fixes mĜ/H⊥ so that mĜ/H⊥(Ĝ/H⊥) = 1.

Furthermore, let be mH⊥({λ}) = 1 for all λ ∈ H⊥ and mH({h}) = 1 for all h ∈ H. Once, mĜ/H⊥ and mH⊥

are fixed, one can take mĜ so that Weil’s formula holds, i.e. for every non-negative measurable f on Ĝ:∫
Ĝ

f(γ)dmĜ =

∫
Ĝ/H⊥

∫
H⊥

f(γ + λ)dmH⊥dmĜ/H⊥ .

Finally, mG is taken so that the Fourier inversion formula holds. Under the assumption that H is a lattice,
Kluvanek’s fundamental result for error free reconstruction of a PWS-function from its samples in H is:

Theorem 1 Let H be a lattice and let S be a Borel measurable subset of Ĝ such that:

S ∩ S + λ = ∅ for all λ ∈ H⊥ \ {0} , ∪
λ∈H⊥

S + λ = Ĝ ; (7)
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and let f ∈ PWS. Then f is equal a.e. to a continuous function and if f is itself continuous then:

f(t) =
∑
h∈H

f(h)kS(t− h) , (8)

where the convergence is uniform on t ∈ G and in the L2(G)-norm, and kS = F−11S. Moreover,

∥f∥2L2(G) =

∫
G

|f |2dmG =

∫
H

|f |2dmH = ∥f |H∥2L2(H) . (9)

The translate condition S ∩ S + λ = ∅ of Theorem 1 can be weakened to mĜ(S ∩ S + λ) = 0. Every subset
S which verifies (7) it is said to be a transversal subset. Note that a transversal may not be a compact set.

The classical example is the WSK Theorem, with G = Ĝ = R, H = t0Z, H⊥ = 2π
to
Z and T = [−π/t0, πt0).

Equations (7) are anti-aliasing conditions. Moreover, in [1] for G = R, it is proved that this last condition
is also necessary for the validity of a perfect reconstruction formula as (8). Furthermore, it can be proved
that condition (9) is equivalent to (8) [1, 2]. So these results can be stated departing from equation (9).
In Theorem 9 of [3] an stability condition is given in terms of an open subset of L2(G)

⋂
C(G) for which

formula (8) holds.
Note that if f ∈ L2(G)

⋂
B2(G,K) then f ≡ 0 (as an element of B2(G,K)). So in general, the tools developed

for the L2(G) setting are not directly applicable to B2(G,K). This fact justify, in part, the present work.
Note also that the original statements for L2(G) generally hold a.e. with respect to mG (or mĜ) the Haar
measure associated to the separable space L2(G). In contrast the non separable B2(G,K) space, in some
way, is associated to the counting measure. As a consequence, in the present case, the results are true for
all the members of a certain subset and not only a.e..

2.3 Probability and Random Processes.

Let (Ω,A,P) be a probability space and X a random variable defined on it. If φ is any Borel measurable
real or complex function, we denote E(φ(X)) the expectation of φ(X). The following brief description of
the Theory of stationary random processes follows closely [25, 29]. Let X = {X(t), t ∈ G} ⊂ L2(Ω,A,P)
be a real or complex, mean square continuous wide sense stationary (w.s.s. for short) random process, i.e.
X verifies the following three conditions, for all t, s ∈ G:

(i) E(X(t)) = 0, (ii) E(X(t)X(s)) = RX(t− s) , (iii) RX(t) is a continuous function of t ∈ G. (10)

For simplicity and with no loss of generality we imposed that X has a mean equal to zero. A stronger notion
is (strict) stationarity. i.e. if the shifted families XT = {X(t+T ), t ∈ G} have the same finite distributions
as X for all T ∈ G. A strictly stationary process is w.s.s. but the converse is not always true. If X is real
and Gaussian both notions are equivalent. In the complex case some additional care may be necessary, see
Section 2.3.2.

2.3.1 Harmonic Analysis of Stationary Random Processes.

If X is a w.s.s. random process it is known by Bochner’s Theorem that there exists a non-negative Borel
measure measure µX ∈ M(Ĝ), the spectral measure, such that

RX(t) =
∨
µX(t) =

∫
Ĝ

⟨t, γ⟩dµX(γ) .

Conversely, if µX is a finite Borel measure, there exists X a w.s.s random process with µX as its spectral
measure. Morover, X can be defined as a Gaussian process and in the complex case it can be chosen such
the next condition (13) holds, see e.g. p.147 of [29].
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Defining the Hilbert space of random variables

H(X) = span X ⊂ L2(Ω,F ,P),

then the mean square estimation theory for stationary sequences is mainly based on Kolmogorov’s isomor-
phism:

I : L2(Ĝ,B(Ĝ), µX) −→ H(X) (11)

given by the stochastic integral :

I(f) =

∫
Ĝ

f(γ)dΦX(γ) ,

where ΦX is the (orthogonal) random measure associated toX. In fact, if A is a Borel subset then µX and ΦX

are related by the following formulas: E|I(1A)|2 = E|ΦX(A)|2 = µX(A) and E
∣∣∫

Ĝ
fdΦX

∣∣2 =
∫
Ĝ
|f |2dµX .

Moreover X has the following spectral representation:

X(t) = I(⟨t, . ⟩) =
∫
Ĝ

⟨t, γ⟩dΦX(γ) . (12)

A detailed description of these representations can be found in [26]. The complex Gaussian case deserves a
brief discussion:

2.3.2 Gaussian Complex Processes.

In general, if X is w.s.s. complex random process, we assume that X(t) = X1(t) + iX2(t) for all t ∈ G.
Where Xi, i = 1, 2 are two stationary (cross)correlated real w.s.s. stationary random processes. If X is
Gaussian and complex we shall impose, in addition to (10), the condition:

E(X(t)X(s)) = 0 for all t, s ∈ G. (13)

Gaussian complex random processes or vectors verifying condition (13) are said to be circular. This require-
ment is usual in signal theory and moreover it makes X retain most of the usual properties of real Gaussian
processes [29]:

• If two random variables belonging to the closed linear span of X are uncorrelated then they are
independent.

• X is completely determined by RX and its mean, in our case E(X(t)) = 0 for all t.

• Condition (13) is preserved by all linear operations on X. For more details see Lemma 10 in the
Appendix.

• If X is w.s.s. random process then X is a stationary processes.

Throughout this work, to avoid repetitions, if X is a complex Gaussian and stationary random process, we
shall assume that (13) holds. For a single complex Gaussian random variable Z with its mean equal to zero,
this condition is equivalent to E(Z2) = 0.

2.3.3 An example of random measure.

An example of a Gaussian random measure is the following. Given µ ∈ M(Ĝ), choose any orthonormal

basis of L2(Ĝ, µ), {φn : n ∈ N} and {C(n) : n ∈ N} a sequence of independent random variables such

that C(n) ∼ N (0, 1). Then define for any A ∈ B(Ĝ): Φ(A) =
∑
n
C(n)⟨φn,1A⟩L2(Ĝ,µ). In particular, when

µ = mĜ, Φ is the so called Wiener measure.
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Following [29], linear time invariant filtering operations on X are defined, for any t ∈ G, by:

Y (t) =

∫
Ĝ

f(γ)⟨t, γ⟩dΦX(λ) , f ∈ L2(Ĝ, µX), (14)

so the resulting stationary process Y = {Y (t)}t∈G can be thought as the output of a linear system with a
frequency response given by f (i.e. filter) and a random input X. In this case, the covariance of Y is given
by:

RY (t− u) = E(Y (t)Y (u)) =

∫
Ĝ

|f(γ)|2⟨t, γ⟩dµX(γ) . (15)

Finally, the spectral measure µX can be decomposed into a continuous and purely discrete part µX c and µX d

and there exists measurable and disjoint subsets C,D such that µX c(A) = µX(A∩C) and µX d(A) = µX(A∩
D). From this we can give an orthogonal decomposition of X, X(t) =

∫
C
⟨t, γ⟩dΦX(γ) +

∫
D
⟨t, γ⟩dΦX(γ) =

Xc(t) +Xd(t) a.s.. In the Gaussian case Xc and Xd are independent. In the complex case, see Lemma 10
in the Appendix for a justification. This corresponds to the case when one replaces f = 1C , or f = 1D,
in (14). For short, Xc and Xd will be called the continuous and discrete parts of X respectively. If µX is

discrete then it is concentrated over a (countable) subset DX of Ĝ and moreover (12) takes the form of a
random series:

X(t) = I(⟨t, . ⟩) =
∑

γ∈DX

⟨t, γ⟩ΦX({γ}) . (16)

In this case, we shall say that the process X has discrete spectrum, and in contrast if µX = µX c we will say
that X has continuous spectrum. In addition, if X is Gaussian and real (or complex verifying (13)), then
the terms of the series (16) are independent random variables, in the complex case this is a consequence of
e.g. Lemma 10 in the Appendix. A random process, for fixed ω ∈ Ω may not be a measurable function
of t ∈ G. To avoid pathological cases, condition (iii) gives a sufficient condition for the existence of a
measurable process and equivalent to X. More generally, under rather mild conditions, if X is represented
by a stochastic integral in practice it can be regarded as a measurable process, i.e. X : Ω × G −→ C is

a measurable function with respect to the complete product σ-algebra
∼
σ(B(G) ⊗ F). This is the case of

stationary processes. In fact, we have the following result which is an adaptation of one presented in [11]
(For more details see the Appendix):

Lemma 1 Let Φ be an orthogonal random measure over (Ĝ,B(Ĝ)) with control measure µ ∈ M(Ĝ), and

let ν ∈ M(G) be such that ν is equivalent to mG. If φ ∈ L2(G× Ĝ,B(G)⊗ F , ν ⊗ µ) and {X(t), t ∈ G} is
defined by

X(t) =

∫
Ĝ

φ(t, γ)dΦ(γ) , (17)

Then there exists a measurable process
∼
X stochastically equivalent to X. (i.e. P(

∼
X(t) = X(t)) = 1 for all

t ∈ G)

In this Lemma by control measure, we mean the measure defined by µ( . ) = E|Φ( . )|2. For example, if
G is σ-finite, an equivalent measure ν ∈ M(G) can be obtained in the following way: Since there exists
countable disjoint subsets Kn ∈ B(G), n ∈ N such that mG(Kn) < ∞ and

⋃
n Kn = G, we can set

ν(A) =
∞∑

n=1
2−nmG(A∩Kn)

1+mG(Kn)
. In our context, the stationary case is obtained when φ(t, γ) = ⟨t, γ⟩. Lemma 1,

in some sense, allows us to regard X as a measurable function. In view of this, in the forthcoming we shall
assume this fact with no further mention of it when dealing with “measurable” operations over X. Finally,
in order to make the presentation self contained we present an adaptation to the LCA group context, of a
result of ([6] or [26] for an alternative argument) which will be useful in the sequel.
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Lemma 2 Let X be a wide sense stationary random process with associated random spectral measure ΦX

and let f ∈ L1(G). Then: ∫
G

X(t)f(t)dmG(t) =

∫
Ĝ

f̂(γ)dΦX(γ) a.s.

2.3.4 Example.

Convolution of a stationary random process X with a function f ∈ L1(G) (or f̂ ∈ A(Ĝ)). This is a “time
domain” interpretation of the filtering operation of equation (14). In fact, by Lemma 2, equation (14) can
be rewritten as:

(X ∗ f)(t) =
∫
G

X(s)f(t− s)dmG(s) =

∫
Ĝ

f̂(γ)⟨t, γ⟩dΦX(γ) a.s. (18)

In general, the stochastic integrals with respect to ΦX are interpreted in the mean square sense (i.e. in the
L2(Ω,A,P)-norm).

2.3.5 Random Processes and Sampling.

There is not a complete analogue result to Theorem 1 for w.s.s. random processes involving the convergence
of an interpolating series under a somewhat general condition as in the L2(G) case. However one can
formulate a weaker result in terms of the support of the spectral measure µX and its translates (See next
Theorem 2). Let X = {X(t), t ∈ G} be a zero mean w.s.s. random process and let H ⊂ G be a closed
subgroup. If by X|H we denote the sampled random process X|H = {X(t), t ∈ H} and the canonical
projection map by

π : Ĝ −→ Ĝ/H⊥

γ 7→[γ]

then one can verify the following intuitive relation between the spectral measures of X and X|H .

Lemma 3 Let µX be the spectral measure of X. Then: π−1µX ∈ M(Ĝ/H⊥) and µX|H = π−1µX .

Proof. The regularity of π−1µX follows from e.g. Lemma 2.1. of [22]. Let us obtain an expression of µX|H ,
the spectral measure of X|H . Since the Fourier transform of this measure is the covariance function, for
t ∈ H, of X|H :

RX|H (t) =

∫
Ĝ⧸H⊥

⟨t, [γ]⟩dµX|H ([γ]).

On the other hand, by the change of variable induced by the projection map π : Ĝ −→ Ĝ/H⊥, a direct
calculation for any t ∈ H gives:

RX|H (t) = E(X|H(t)X|H(0)) = RX(t) =

∫
Ĝ

⟨t, γ⟩dµX(γ) =

∫
Ĝ⧸H⊥

⟨t, [γ]⟩dπ−1µX([γ]) .

Then by the uniqueness of the Fourier transform we obtain µX|H = π−1µX . So that π−1µX is the spectral
measure of X|H . □
We recall the following known and related result:

Theorem 2 Let X be a wide sense stationary random process over a LCA group G, with spectral measure
µX , and let H ⊂ G be a closed subgroup with countable annihilator H⊥. Then H(X) = H(X|H) if and only

if there exists SX ∈ B(Ĝ) such that µX is concentrated in SX and SX

⋂
SX + λ = ∅ for all λ ∈ H⊥ \ {0}.
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Although one may not have an interpolating series, the result gives a condition, of statistical value, under
which X is completely and linearly determined by the samples X|H . This theorem is originally formulated
in terms of density conditions for trigonometric polynomials in e.g. [22]. (For more references on similar
conditions see [16, 20]) However, in view of (11), the two statements are equivalent. In fact, the result holds

for Lα(Ĝ, µ) and the condition of H⊥ being countable can be replaced by Ĝ being a Polish space. As we
will see, we cannot formulate this condition in terms of an isometric formula as in Theorem 1 for the L2(G)
case, unless we restrict to the class of random processes with discrete spectrum. See Theorem 6 herein. In
this context, we shall also formulate an stability condition analogue to Theorem 9 of [3], in terms of an open

subset of M(Ĝ). See Theorem 8 of section 3.1.1. Finally, observe that the condition of H⊥ being countable
in Theorem 2 is, in general, different from the condition in Theorem 1 of being a lattice. This is shown in
the following example from Chapter 21 of [7]:

2.3.6 Example.

Let G = Rd. In this case, the condition of H being a lattice is less general than H⊥ being countable. In
fact:

• Every closed subgroup H of Rd such that H⊥ is countable has the form H = A(Rs × Zd−s) with
A ∈ Rd×d an invertible matrix and s ∈ {0, 1, . . . , d}. In this case H⊥ = (A−1)T ({0}s × Zd−s).

• Every lattice in Rd has the form H = AZd with A ∈ Rd×d an invertible matrix. Then H⊥ =
(A−1)T (Zd).

2.3.7 The Ergodic Theorems.

Natural estimators of the mean, variance and other statistics of a stationary process X are appropriate
time averages. Convergence results for these averages take the form Law of Large Numbers for stationary
processes or Ergodic Theorems. Here we gather some known results which will be useful in the sequel.
We say that the strictly stationary process X is metrically transitive (or equivalently ergodic) if the only
measurable sets which are invariant under the shift X 7−→ XT = {X(t + T ), t ∈ G} have probability
zero or one. Let G carry a Haar measure mG, under the assumption that it contains a Følner sequence
K = {Kn : n ∈ N} verififying condition (2) E. Linderstrauss proved a version of the Pointwise Ergodic
Theorem for general amenable groups [19]. We give an adaptation of this result which will be sufficient for
our derivations.

Theorem 3 Let X be a stationary random process and let K be a Følner sequence which verifies (2). Then:

MK
G(X) = lim

n−→∞

1

mG(Kn)

∫
Kn

X(t)dmG(t)

exists a.s. and equals E(X(0)|FX). In particular, if the G action is ergodic, MK
G(X) = E(X(0)) a.s..

Here E(X(0)|FX) denotes the conditional expectation with respect the invariant sub σ-algebra FX . If
H ⊆ G is a closed subgroup, we can respectively define by an analogue averaging process the random
variable denoted by MK′

H (X), for any random process indexed over H. One can deduce that X is metrically
transitive if and only if in the above (a.s.) limit MK

G(X) = E(X). Under the the weaker assumption on X
of being a w.s.s. random process we have the following adaptation of the mean ergodic theorem. See for
example [33] Theorem 2.1. p.481, or [9] , Theorem 1.

Theorem 4 If X is a w.s.s. random process then, for every γ ∈ Ĝ, the limit

lim
n−→∞

1

mG(Kn)

∫
Kn

⟨t, γ⟩X(t)dmG(t) = θ(γ)

10



exists in the mean square sense. Where θ(γ) ∈ H(X) is given by θ(γ) =
∫̂
G

1{−γ}dΦX . In particular, θ(γ) = 0

a.s. if µX({−γ}) = 0.

Proof. (Sketch.) This is a consequence of Theorem 2.1. p.481 [33]. Define a new process Y = {Y (t) =
⟨t, γ⟩X(t), t ∈ G}. It is easy to verify that Y is also a w.s.s. random process, and so that its spectral random
measure is given by :

ΦY (B) =

∫
Ĝ

1B−γdΦX .

In this case MK
G(Y ) converges in the L2(Ω,F ,P)-norm to ΦY ({0}) = ΦX({−γ}).

In particular, MK
G(⟨t, γ⟩X(t)) = 0 if µX({−γ}) = 0. □

For a general exposition on Ergodic Theorems for Group Actions see e.g. [31].

Remark.

Note that the last results can be adapted to the averages given by a.s. or mean square sense limits:

MK
G(|X|2) = lim

n−→∞

1

mG(Kn)

∫
Kn

|X(t)|2dmG(t) and ρX(τ) = MK
G(XX(.+ τ)) for any τ ∈ G .

Moreover, related to these we have the following useful Proposition. First, we recall the following formula.
Let (X1, . . . , X4) be a Gaussian multivariate random vector then:

E(XiXjXkXl) = σi jσk l + σi kσj l + σi lσj k , (19)

where σi j is the covariance of Xi and Xj . Note that a similar result holds in the complex case.

Proposition 2 Let Let X be a zero mean Gaussian stationary random processes with continuous spectrum
and let K be a Følner sequence which verifies (2). Then for all τ ∈ G the limit ρX(τ) = MK

G(XX(.+ τ))

exists a.s. and equals E((0)X(τ)) = RX(τ).

Proof. Define, for each τ ∈ G, the stationary random process Yτ = {X(t)X(t+ τ)− RX(τ), t ∈ G }. Let
us obtain an xpression for its spectral measure.
First, assume that X is real, since X is Gaussian, recalling (19) we obtain the covariance function of Yτ :

RYτ
(t) = E(Yτ (t))Yτ (0)) = E(X(t)X(0)X(t+ τ)X(τ))− (RX(τ))2 = (RX(t))2 +RX(t− τ)RX(t+ τ) .

Define dµτ
X(γ) = ⟨t, γ⟩dµX . Then:

RX(t))2 =

∫
Ĝ

⟨t, γ⟩d(µX ∗ µX)(γ) , RX(t− τ)RX(t+ τ) =

∫
Ĝ

⟨t, γ⟩d(µτ
X ∗ µ−τ

X )(γ) .

Therefore,

RYτ
(t) =

∫
Ĝ

⟨t, γ⟩d(µX ∗ µX + µτ
X ∗ µ−τ

X )(γ) ,

and thus, since µX is continuous, the spectral measure of Yτ , obtained by the sum of two convolutions, is also
continuous. Consequently, by Theorem 4, MK

G(Yτ ) = 0 a.s. for each τ ∈ G. Equivalently, by the definition
of Yτ , ρX(τ) = RX(τ) a.s., where the limit is taken in the L2(Ω,F ,P)-norm. However, by Theorem 3, the
limit ρX(τ) = MK

G(XX(.+ τ)) exists a.s.. Thus, taking an appropriate sub-sequence {Kn(k) : k ∈ N}, we
get

MK
G(XX(.+ τ)) = lim

k−→∞

1

mG(Kn(k))

∫
Kn(k)

X(t)X(t+ τ)dmG(t) = RX(τ) a.s.

11



Therefore the limit exists a.s. and equals RX(τ) as claimed.
The complex case is similar: Since X is Gaussian, recalling (19) and condition (13) we obtain the covariance
function of Yτ :

RYτ (t) = E(Yτ (t))Yτ (0)) = E(X(t)X(0)X(t+ τ)X(τ))− |RX(τ)|2 = |RX(t)|2.

But:

|RX(t)|2 =

∫
Ĝ

⟨t, γ⟩d(µX ∗ ∼
µX)(γ),

where
∼
µX)(A) = µX(−A) for all A ∈ B(Ĝ). Therefore, Yτ has a continuous spectral measure. Consequently,

a similar argument to the real case gives that ρX(τ) = MK
G(XX(.+ τ)) = RX(τ) a.s. □

Finally, note that in the particular case when τ = 0 we get that MK
G(|X|2) = σ2

X a.s..

2.3.8 Random Series in B2(G,K).

Alternatively one may identify the whole trajectory of X as a random element of an appropriate Hilbert
space H. The following Theorem from [14], which is Hilbert space version of Kolmogorov’s result for the
sum of independent random variables, will be useful:

Theorem 5 Let {Xn , n ∈ N} be a sequence of independent random elements in a Hilbert space H such that

for all n: E(Xn) = 0, and moreover
∑
n
E ∥Xn∥2H < ∞. Then

∑
n
Xn converges in H a.s..

A direct application of this is the following:

Lemma 4 Let X be a zero mean Gaussian stationary random process and let K be a Følner sequence in G
which verifies (2). Then:
(i) If X has discrete spectrum then X ∈ B2(G,K) a.s.. Moreover, if (16) is the spectral representation of
X, then: (16) converges a.s. for all t ∈ G and MK

G(|X|2) = ∥X ∥B2(G,K) =
∑

γ∈DX

|ΦX({γ})|2 a.s.

(ii) Let G be a separable LCA group. If X has continuous spectrum and X ∈ B2(G,K) a.s. then X is the
trivial null process. i.e. for every t ∈ G, X(t) = 0 a.s..

Proof. (i) Recall (16). If X has discrete spectrum, there exists DX ⊂ Ĝ, a finite or countable subset such
that the integral representation (12) takes the form of a random series:

X(t) =

∫
Ĝ

⟨t, γ⟩dΦX(γ) =
∑

γ∈DX

⟨t, γ⟩ΦX({γ}) , (20)

where the {ΦX({γ})}γ∈DX
defines a sequence of zero mean independent Gaussian random variables. Note

that,

E

∣∣∣∣∣∣
∑

γ∈DX

⟨t, γ⟩ΦX({γ})

∣∣∣∣∣∣
2

=
∑

γ∈DX

E|ΦX({γ})|2 =
∑

γ∈DX

µX({γ}) = µX(Ĝ) < ∞ ,

since µX(Dc
X) = 0. Then by the Three Series theorem

∑
γ∈DX

⟨t, γ⟩ΦX({γ}) converges a.s. for each t ∈ G.

Moreover, since E(⟨t, γ⟩ΦX({γ})) = 0 and
∑

γ∈DX

E ∥⟨ . , γ⟩ΦX({γ}∥2B2(G,K) =
∑

γ∈DX

E|ΦX({γ})|2 < ∞, by

Theorem 5, we get that the series representing X converges to an element of B2(G,K) a.s. with (random)
Fourier coefficients given by ΦX({γ}), γ ∈ DX .

(ii) Recalling Property 3 of Section 2.2.2, since X ∈ B2(G,K) a.s. then P (ΩAP ) = 1 where

ΩAP = {ω ∈ Ω : ρX( . , ω) ∈ AP (G)} .
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Let D be a countable and dense subset of G and define, for each d ∈ D,

Ωd = {ω ∈ ΩAP : ρX(d, ω) = RX(d)} and Ω0 =
⋂
d∈D

Ωd .

Therefore, recalling Proposition 2, P(Ω0) = 1. Noting that ρX(d, ω) = RX(d) for all d ∈ D and ω ∈ Ω0

and that for each ω ∈ Ω0: ρX( . , ω)− RX ∈ C(G), then ρX(t, ω) = RX(t) for all t ∈ G and ω ∈ Ω0. Now,

suppose that σ2
X = E|X(0)|2 = RX(0) = µX(Ĝ) > 0. Then recalling again Property 3 of Section 2.2.2, for

any ω ∈ Ω0, ρX( . , ω) is the Fourier Transform of a non-zero discrete random measure. But, on the other
hand RX is the Fourier transform of a continuous measure, which is a contradiction by the uniqueness of
the Fourier transform. □

Brief Review and Remarks of Existing Related Results.

1. Observe that X(t), for each t ∈ G, is an element of the Hilbert space L2(Ω,F ,P). Consequently,
many problems of this theory can be tackled using only the geometry of Hilbert spaces. This fact
is exploited, by H. Feichtinger and W. Hörmann in e.g. [10] (and references therein). Let H be an
arbitrary Hilbert space. In their context, an ordinary random process X can be seen as a measurable
mapping X : G −→ H. In this way, these random elements, can be treated as appropriate bounded
linear mappings. this approach allows to avoid elegantly to a certain extent some technical results
from Probability Theory. In the case of ordinary random processes, both definitions are compatible.
However, the results presented herein rely on certain concepts of more measure theoretic nature (see
e.g. Section 2.3.7), therefore a more classic approach may be desirable in the present case.

2. Alternatively, in Lemma 4, ρX ∈ AP (G) a.s. since it is the Fourier transform of the measure∑
γ∈Ĝ

|ΦX({γ})|2δγ , as a consequence of Lemma 4.8.10 of [23]. Furthermore, Lemma 4 seems to be

related to some else of the results of Sec. 4.7 of [23] as was kindly suggested by one of the reviewers.
However, note that in our case we are dealing with random objects and the statement (ii) X(t) = 0
a.s. for all t ∈ G does not mean X = 0.

3 Spectral Translates and Sampling.

Kluvanek’s Theorem relies mostly on Weil’s and the Fourier inversion formulas, and as a consequence these
impose some restrictions on the possible choices of the several Haar measures involved. In contrast, we
shall rely mostly on the concepts introduced in Sections 2.2.1 and 2.2.2 where the main objective is to
define an adequate mean over the group G (or H) and its subsequent consequences are, to a certain extent,
independent of the particular normalization of the associated Haar measure.
To avoid repetitions in the statements of the theorems, the general assumptions made are the following:

• If X denotes a stationary random process , with no loss generality we assume that its mean is equal
to zero.

• If X is a stationary Gaussian complex random process (or variable), we will assume that it verifies
(13). Under this condition many proofs are almost the same as in the real case. So, unless otherwise
stated, we will not distinguish between the two cases.

• G is a LCA group which carries a Haar measure. Again, since this is unique up to multiplicative
constant, we shall choose one such measure, say mG, once and for all the forthcoming. Additionally,
we will suppose that G contains a Følner sequence K = {Kn : n ∈ N} verifying condition (2).

• H ⊂ G will be a closed subgroup containing also a Følner sequence K′ which verifies (2) and a
corresponding Haar measure mH . So, we can think that we are working with a given pair of sequences
K and K′. These conditions can be achieved if, for example, G is σ-compact.
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• H is such that its annihilator H⊥ is countable (and therefore discrete).

Recall that there exists a Borel measurable transversal set T of the quotient group Ĝ/H⊥ (see [2] and
references therein). Note that several of the following results are stated in terms of the norm B2(G,K)
(or B2(H,K′) respectively) as well as the means MK

G( . ). These spaces and values are determined by the
particular choice of K and K′, but in contrast our claims and proofs are independent of the particular choice
of K and K′. This is a consequence of the following facts. Every Gaussian (real or complex under condition
(13)) stationary random process can be decomposed in two independent parts Xc and Xd with continuous
and discrete spectrum respectively. By Lemma 4 (i), Xd belongs to B2(G,K) a.s. and the (a.s.) value of its
norm is independent of the sequence K. On the other hand, we shall apply to Xc Theorems 3 and 4 which,
in some sense, are also independent of K (and the particular choice of mG).
It is clear that, for each realization of X, X|H can be seen as the restriction of X over H. First, let us study
which information of X can be recovered from X|H and how are related their respective spectral structure.
We begin with a rather intuitive result.

Lemma 5 Let X = {X(t), t ∈ G} be a w.s.s. stationary random process Then:
(X|H)d(t) = Xd|H(t) and (X|H)c(t) = Xc|H(t) a.s. , for all t ∈ H.

Proof. Let µX be the spectral measure of X and let D,C ∈ B(Ĝ), D ∩ C = ∅ be such that µX d(A) =

µX(A
⋂
D) and µX c(A) = µX(A

⋂
C) for all A ∈ B(Ĝ). Then the spectral representation of X is given, for

every t ∈ H, by:

X(t) = Xc(t) +Xd(t) =

∫
Ĝ

⟨t, γ⟩1C(γ)dΦX(γ) +

∫
Ĝ

⟨t, γ⟩1D(γ)dΦX(γ) .

Applying Lemma 3 to Xd|H we get that the spectral measure of Xd|H is given by π−1µX d ∈ M(Ĝ/H⊥).

Noting that µX d =
∑

γ∈D

cγδγ for some positive cγ . Then for any A ∈ B(Ĝ/H⊥):

π−1µX d(A) =
∑
γ∈D

cγδγ(π
−1(A)) =

∑
[γ]∈π(D)

cγδ[γ](A) ,

since δγ(π
−1(A)) = 1 if and only if γ ∈ π−1(A), or equivalently if and only if [γ] ∈ A. Therefore Xd|H has

discrete spectrum.
By a similar argument, one can obtain the following expression for Xc|H :

µXc|H = π−1µX c .

Now, we must check that π−1µX c is a continuous measure. For γ ∈ Ĝ its corresponding coset in Ĝ/H⊥ is
given by [γ] = γ +H⊥. Then, recalling that H⊥ is countable:

π−1µX c({[γ]}) = µX c(γ +H⊥) =
∑

λ∈H⊥

µX c({γ + λ}) = 0 .

Clearly Xc|H has continuous spectrum. The claim is proved since we have decomposed X|H in the sum of
two processes, one with continuous spectrum: Xc|H , and other Xd|H , with discrete spectrum. □

If X has discrete spectrum we have the following isometric formula.

Lemma 6 Let X = {X(t), t ∈ G} be a Gaussian stationary random process with discrete spectrum. Then:

there exists DX ∈ B(Ĝ) a support of µX such that DX

⋂
(DX + λ) = ∅ for all λ ∈ H⊥ \ {0}, if and only if

∥X∥2B2(G,K) = ∥X|H∥2B2(H,K′) a.s. (21)
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Proof. If X has discrete spectrum then it has the following representation for some countable DX ∈ B(Ĝ):

X(t) =

∫
Ĝ

⟨t, γ⟩dΦX(γ) =
∑

γ∈DX

⟨t, γ⟩ΦX({γ}) , (22)

where E|ΦX(γ)|2 = µX({γ}) > 0 for all γ ∈ DX and µX({γ}) = 0 for all other γ. Recalling Lemma 4,
X ∈ B2(G,K) a.s. and thus recalling equation (5):

∥X∥2B2(G,K) =
∑

γ∈DX

|ΦX({γ})|2 a.s.. (23)

On the other hand, by Lemma 5, X|H also has discrete spectrum and then, by Lemma 4, X|H ∈ B2(H,K′)
a.s.. We can find the random Fourier coefficients of X|H from ΦX({γ}), γ ∈ DX . In fact, for any t ∈ H, it
is possible to rearrange the sum (22) in the following way:

X|H(t) = X(t) =
∑

λ∈H⊥

∑
γ∈DX

⋂
(T+λ)

⟨t, γ⟩ΦX({γ}) , (24)

since ⟨t, γ⟩ = 1 for all t ∈ H and λ ∈ H⊥. For each λ, one can make the change of variable γ′ = γ − λ, so
that γ ∈ DX

⋂
(T + λ) if and only if γ′ ∈ (DX − λ)

⋂
T . Therefore equation (24) takes the form:

=
∑

λ∈H⊥

∑
γ′∈(DX−λ)∩T

⟨t, γ⟩ΦX({γ′+λ}) =
∑
γ′∈T

 ∑
λ∈H⊥

1DX−λ(γ
′)ΦX({γ′ + λ})

 ⟨t, γ′⟩ =
∑
γ′∈T

∼
ΦX({γ′})⟨t, γ′⟩ .

So, if
∼
ΦX(γ′) =

∑
λ∈H⊥

1DX−λ(γ
′)ΦX({γ′ + λ}), then again by equation (5) applied to H and Ĥ:

∥X|H∥2B2(H,K′) =
∑
γ∈T

|
∼
ΦX({γ})|2 a.s., (25)

since Ĝ/H⊥ ∼= Ĥ (see e.g. p. 136 of [27]) and there exists a bijective correspondence with T .
Note that if Ω1 = {ω ∈ Ω : ∥X(ω)∥B2(G,K) < ∞} and Ω2 = {ω ∈ Ω : ∥X|H(ω)∥B2(H,K′) < ∞} then, by

Lemma 4, applied to X and X|H respectively, we obtain P(Ω1

⋂
Ω2) = 1. Additionally, we have that over

Ω1

⋂
Ω2, equations (23) and (25) are equal if and only if∑

γ∈T

|
∼
ΦX({γ})|2 =

∑
γ∈DX

|ΦX({γ})|2 . (26)

But,
∑
γ∈T

|
∼
ΦX({γ})|2 is equal to:

∑
γ∈T

 ∑
λ∈H⊥

1DX
(γ + λ)|ΦX({γ + λ})|2 +

∑
λ ̸=λ′

1(DX−λ)
⋂
(DX−λ′)(γ) ΦX({γ + λ})ΦX({γ + λ′})


=
∑

γ∈DX

|ΦX({γ})|2 +
∑
γ∈T

∑
λ̸=λ′

1(DX−λ)
⋂
(DX−λ′)(γ) ΦX({γ + λ})ΦX({γ + λ′}) . (27)

Consequently, (26) holds if and only if∑
γ∈T

∑
λ̸=λ′

1(DX−λ)
⋂
(DX−λ′)(γ) ΦX({γ + λ})ΦX({γ + λ′}) = 0 a.s.
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Taking the variance to this expression, this is equivalent to the condition:∑
γ∈T

∑
λ̸=λ′

1(DX−λ)
⋂
(DX−λ′)(γ)µX({γ + λ})µX({γ + λ′}) = 0 ,

and recalling that µX({γ}) > 0 for all γ ∈ DX , one gets that 1(DX−λ)
⋂
(DX−λ′)(γ) = 0 for all γ ∈ T or

equivalently (DX + λ)
⋂
DX = ∅ for all λ ∈ H⊥ \ {0}. □

Note that if X has discrete spectrum then DX is at most countable. If A ∈ B(Ĝ) is arbitrary then we have
the following derivation.

Corollary 1 A subset A ∈ B(Ĝ) verifies A
⋂
(A+ λ) = ∅ for all λ ∈ H⊥ \ {0} if and only if (21) holds for

every Gaussian stationary process X with discrete spectrum such that µX(Ac) = 0.

Proof. The only if part of the claim is an immediate consequence of the previous Lemma. For the
if part, suppose that for some γ ∈ A and some λ ∈ H⊥ \ {0}: γ + λ ∈ A. Let C(γ), C(γ + λ) be
two i.d.d’s, zero mean Gaussian complex random variables. Recall that they can be chosen such that
E(C(γ + λ)2) = E(C(γ)2) = 0. Then consider the auxiliary Gaussian stationary random process defined
by X(t) = C(γ)⟨t, γ⟩ + C(γ + λ)⟨t, γ + λ⟩ for every t ∈ G. Thus the sampled process X|H is given by
X|H(h) = ⟨h, γ⟩(C(γ) + C(γ + λ)) for every h ∈ H. Therefore, a direct calculation gives that (21) holds if
and only if P(Re(C(γ)C(γ + λ)) = 0) = 1 but this is impossible since the joint probability distribution of
C(γ) and C(γ + λ) is absolutely continuous with respect to the Lebesgue measure. □

In Theorem 8 of the next section, one can see a kind of refinement to this last result. In contrast to Lemma
6, if X has continuous spectrum we have the following result.

Lemma 7 If X is a Gaussian stationary process with continuous spectrum, then:

MK
G(|X|2) = MK′

H (|X|H |2) a.s.

Proof. By Theorem 3, both limits MK
G(|X|2) and MK′

H (|X|H |2) exist a.s.. We shall prove that these limits
are equal. This will be a consequence of Proposition 2 with τ = 0 . In fact, MK

G(|X|2) = E(|X(0)|2) = σ2
X

a.s..
On the other hand, from Lemma 5, one gets that µX|H is continuous and then we can also apply Proposition

2 to X|H , obtaining that MK′

H (|X|H |2) = E(|X|H(0)|2) = σ2
X a.s., which proves the claim.

□

If, Xd and Xc denote the discrete and continuous parts of X respectively, we have the following (a.s.)
orthogonality relation.

Lemma 8 Let X be a Gaussian stationary random process. For t ∈ G define the random process Y (t) =
Xc(t)Xd(t). Then Y = {Y (t), t ∈ G} is a stationary zero mean random process with continuous spectrum.
Moreover, we have:

lim
n−→∞

1

mG(Kn)

∫
Kn

Y (t)dmG(t) = MK
G(Y ) = MK

G(XcXd) = 0 a.s. (28)

Proof. If X is stationary then the same holds for Y , since Y (t) is defined as the composition of a measurable
function with X(t). Therefore, by Theorem 3, the limit (28) exists and is finite a.s.. On the other hand,
recalling that Xc and Xd are independent, an easy calculation gives that E(Y (t)) = 0. We can also calculate
its covariance:

RY (t) = E(Y (t)Y (0)) = E(Xc(t)Xc(0)Xd(t)Xd(0)) = E(Xc(t)Xc(0))E(Xd(t)Xd(0))
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= RXc
(t)RXd

(t) =

∫
Ĝ

⟨t, γ⟩d(µX c ∗ µX d)(γ) .

Where the last equality is due to the convolution property of the Fourier Transform of measures. Then
µX c ∗ µX d is the spectral measure of Y . But µX c ∗ µX d is continuous. In fact, if DX is the (countable)

support of µX d, then for any γ ∈ Ĝ: µX c∗µX d({γ}) =
∑

γ′∈D

µX c({γ+γ′})µX d({γ′}) = 0 since µX c({γ}) = 0

for any γ. Thus, by Theorem 4, we get that:

lim
n−→∞

1

mG(Kn)

∫
Kn

Y (t)dmG(t) = E(Y (0)) = 0 a.s.

□
A direct consequence is the following:

Lemma 9 Let X be a Gaussian stationary random process, then:

MK
G(|X|2) = MK

G(|Xc|2) +MK
G(|Xd|2) a.s. (29)

Proof. Given Kn ∈ K,
1

mG(Kn)

∫
Kn

|X(t)|2dmG(t)

=
1

mG(Kn)

∫
Kn

|Xc(t)|2dmG(t) +
1

mG(Kn)

∫
Kn

2Re(Xc(t)Xd(t))dmG(t) +
1

mG(Kn)

∫
Kn

|Xd(t)|2dmG(t)

Define the events:
Ω0 = {ω ∈ Ω : MK

G(|X|2)(ω) < ∞}, Ω1 = {ω ∈ Ω : MK
G(|Xc|2)(ω) < ∞}, Ω2 = {ω ∈ Ω : MK

G(|Xd|2)(ω) < ∞}
and

Ω3 =
{
ω ∈ Ω : MK

G(XcXd) = 0
}
.

Then, by Theorem 3, P(Ωi) = 1, i = 0, 1, 2. In addition P(Ω3) = 1 by Lemma 8, equation (28). Conse-

quently, if
∼
Ω = ∩3

i=0Ωi, P(
∼
Ω) = 1 then for every ω ∈

∼
Ω:

MK
G(|X|2) = lim

n−→∞

1

mG(Kn)

∫
Kn

|X(t, ω)|2dmG(t) =

lim
n−→∞

 1

mG(Kn)

∫
Kn

|Xc(t)|2dmG(t) +
1

mG(Kn)

∫
Kn

|Xd(t)|2dmG(t)

 ,

which proves (29). □

3.1 Main Results.

In Lemmas 6 and 9 we construct a subset-event of probability 1, where several required properties hold for
a certain random process. It will be clear that in some of the reminding results one may repeat a similar
argument. However, we left these details for the reader since it is assumed, at this point, that this is a clear
exercise.

Theorem 6 Let X be a stationary Gaussian random process. Then: there exists a support of µX d, DX ∈
B(Ĝ), such that DX

⋂
DX + λ = ∅ for all λ ∈ H⊥ \ {0}, if and only if

MK
G(|X|2) = MK′

H (|X|H |2) a.s.
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Proof. By Lemma 9 applied to X|H , since the same result can be applied over H in the place of G, in
addition to equation (29) we obtain:

MK′

H (|X|H |2) = MK′

H (|(X|H)c|2) +MK′

H (|(X|H)d|2) a.s. (30)

= MK′

H (|X|H |2) = MK′

H (|Xc|H |2) +MK′

H (|Xd|H |2) a.s., (31)

since by Lemma 5, Xc|H = (X|H)c and Xd|H = (X|H)d a.s..
By Theorem 3, the lim can be replaced by a lim in

∥Xd∥2B2(G,K) = lim
n−→∞

1

mG(Kn)

∫
Kn

|Xd(t)|2dmG(t) = MK
G(|X|2) a.s.

The same argument applies to X|H . So that equation (31) becomes:

MK′

H (|X|H |2) = MK′

H (|Xc|H |2) + ∥Xd|H∥2B2(H,K′) a.s.. (32)

In a similar way to (32) one can argue to obtain

MK
G(|X|2) = MK

G(|Xc|2) + ∥Xd∥2B2(G,K) a.s.. (33)

In addition, from Lemma 7, MK′

H (|Xc|H |2) = MK
G(|Xc|2) and thus, from equations (32) and (33),

MK
G(|X|2) = MK′

H (|X|H |2) a.s.

if and only if ∥Xd|H∥2B2(H,K′) = ∥Xd∥2B2(G,K) a.s. which, from Lemma 6, is equivalent to the condition

DX

⋂
DX + λ = ∅ for all λ ∈ H⊥ \ {0}. □

We can also obtain a condition in terms of filtered versions of X. Namely:

Theorem 7 Let X be a stationary Gaussian random process. Then: there exists a support of µX d, DX ∈
B(Ĝ), such that DX

⋂
DX + λ = ∅ for all λ ∈ H⊥ \ {0}, if and only if

MK
G(|φ ∗X|2) = MK′

H (|φ ∗X|H |2) a.s. (34)

for every φ̂ ∈ A(Ĝ) .

Proof. Define the convolution process Y = φ ∗ X = φ ∗ Xc + φ ∗ Xd. Then, if φ̂ ∈ A(Ĝ) ⊂ L2(Ĝ, µX),
recalling Example 2.3.4 and equation (22), the spectral representation of the discrete component Yd is given
by:

Yd(t) =
∑

γ∈DX

⟨t, γ⟩φ̂(γ)Φ({γ}) .

Only if part) Let Y be defined as above. Is immediate that the discrete part of the spectral measure of Y ,
is given by

µY d(A) =
∑

γ∈DX

1A(γ)|φ̂(γ)|2µX({γ}) , (35)

and then there exists a support of µY d, DY ⊆ DX , so that DY

⋂
DY + λ = ∅ for all λ ∈ H⊥ \ {0}. But,

recalling Theorem 6, this is equivalent to MK
G(|Y |2) = MK′

H (|Y |H |2) a.s..
If part) For Y defined as above, we shall construct an appropriate φ̂ ∈ A(Ĝ) such that DX = DY . To
simplify, let us enumerate DX = {γk, k ∈ N}. In addition we can find a family of open neighbourhoods of
each γ ∈ DX , say {Vγ , γ ∈ DX} and such that 0 < mĜ(Vγ) < ∞. Recalling Proposition 1, for each k ∈ N,
we can find a non-negative f̂k ∈ A(Ĝ) so that:

f̂k(γk) > 0 and 1 ≥ f̂k(γ) ≥ 0 for all γ ∈ Ĝ . (36)
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Now, we can define φ̂ ∈ A(Ĝ) as

φ̂(γ) =
∑
k∈N

2−kf̂k(γ) . (37)

By construction φ̂(γk) > 0, for every k ∈ N.
Thus, from equation (35), µY d(γk) > 0 for k = 1, . . . or equivalently DX = DY . But recalling from

the hypothesis that MK
G(|Y |2) = MK′

H (|Y |H |2) a.s. we get, by Theorem 6, that DY

⋂
DY + λ = ∅ for all

λ ∈ H⊥ \ {0} with DY = DX , proving the claim. □

3.1.1 Stability Conditions.

Suppose that X is a Gaussian stationary random process for which some of the previous results hold. We
now aim to describe a condition under which the results are still valid for a corrupted or distorted version
of X. To illustrate, consider the following simple examples:

Example 1.

Let G = R (so that Ĝ = R), H = Z and H⊥ = 2πZ. In addition, let f ∈ L2(R) and let X be a Gaussian
stationary random process with discrete spectrum. Suppose that we receive a signal Y which is X plus an
additive noise N . A reasonable model for N could be the following. If W is a Wiener random measure over
R and independent of X, define N(t) =

∫
R
f̂(γ)ei tγdW (γ) and Y (t) = X(t) +N(t) for each t ∈ R. An easy

calculation shows that the spectral measure µY is given by:

µY (A) = µX(A) + µN (A) = µX(A) +

∫
A

|f̂(γ)|2dγ , (38)

for each measurable subset A ⊆ R, and thus ∥µX − µY ∥M(R) =
∫
R
|f̂(γ)|2dγ . So that Y can be regarded as

the original signal corrupted by certain noise N with variance ∥f∥2L2(R) and, by (38), this value gives an

idea of how close is X from Y . In fact, this also equals for all t, the mean square error: E|X(t)− Y (t)|2 =

∥f∥2L2(R) > 0, if f ̸= 0. Suppose that it is also known that

lim
T−→∞

1

2T

T∫
−T

|Y (t)|2dt = lim
N−→∞

1

2N

N∑
n=−N

|Y (n)|2 a.s.

In this case, under the knowledge that X has originally discrete spectrum we can infer, by Theorem 6, that
there exists a support DX of µX verifying that DX

⋂
(DX +λ) = ∅ for all λ ∈ 2πZ \ {0}, which is equivalent

to H(X) = H(X|Z) by Theorem 2.

Example 2.

Let γ0 ∈ Ĝ, λ0 ∈ H⊥ be such that µX({γ0, γ0 + λ0}) = 0, and take ε > 0. Another case of perturbation of
a random process can be given by the following model. We can consider a random process X with spectral
measure ΦX and and a modified version of it Xε, with spectral random measure given by:

Φε(A) = ΦX(A) +

√
ε

2
(1A(γ0)C(γ0) + 1A(γ0 + λ0)C(γ0 + λ0)) ,

for any A ∈ B(Ĝ). Where C(γ0) and C(γ0 + λ0) ∼ N (0, 1) i.i.d. complex random variables, and also
independent of X. In this case, since µε = µX + ε

4 (δγ0 + δγ0+λ0), we have that ∥µX − µε∥M(Ĝ) =
ε
2 .
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These examples motivate the following stability conditions. For A ∈ B(Ĝ), define the subsets of M(Ĝ)
by:

Kd(A) = {µ ∈ M(Ĝ) : µd(A
c) = 0} . (39)

K (A) = {µ ∈ M(Ĝ) : µ(Ac) = 0} . (40)

Recall that U ⊂ K (A) is relatively open, with respect to K (A), if there exists an open subset U ′ ⊂ M(Ĝ)
such that U = U ′⋂K (A). Analogously , we can consider relatively open subsets with respect to Kd(A).
Now, we can prove the following improvement of Corollary 1:

Theorem 8 Let A ∈ B(Ĝ). Then the following assertions are equivalent:
(i) A

⋂
A+ λ = ∅ , for all λ ∈ H⊥ \ {0}.

(ii) There exists a relatively open and non empty subset U ⊆ Kd(A) so that

MK
G(|X|2) = MK′

H (|X|H |2) a.s.

for any Gaussian stationary process X such that µX ∈ U .
(iii) There exists a relatively open and non empty subset U ⊆ K (A) so that

H(X) = H(X|H)

for any Gaussian stationary process X such that µX ∈ U .

Proof. (i) =⇒ (ii) For a fix ρ > 0, given a ∈ A, consider δa and the open ball B(δa, ρ) ⊂ M(Ĝ). Define

U =
⋃
a∈A

B(δa, ρ) ∩ Kd(A) . (41)

By construction, this subset U is relatively open. And the claim is an immediate consequence of Theorem 6.

Similarly, (i) =⇒ (iii) is a consequence of Theorem 2 by replacing Kd(A) by K (A) in equation (41).

(ii)=⇒(i) If U ≠ ∅ then there exists a Gaussian stationary random process, say X, such that its spec-
tral measure µX ∈ U , and µX d(A

c) = 0. Suppose that A
⋂
(A + λ0) ̸= ∅ for some λ0 ∈ H⊥ \ {0}. Let

DX be any support of µX d such that DX ⊆ A, then we have two possibilities: DX

⋂
(DX + λ0) ̸= ∅ or

DX

⋂
(DX + λ0) = ∅. In the first case, by Theorem 6, this is equivalent to MK

G(|X|2) ̸= MK′

H (|X|H |2) with a
positive probability. And the result, for this case, is proved.
In the other case, DX

⋂
(DX + λ0) = ∅ for all λ ∈ H⊥ \ {0}, there exists γ0 ∈ A \ DX ⊂ Ĝ such

that {γ0, γ0 + λ0} ⊂ A \ DX . For ε > 0 we can define a new stationary Gaussian random process
Xε = {Xε(t), t ∈ G} given by

Xε(t) = X(t) +

√
ε

2
(C(γ)⟨t, γ0⟩+ C(γ0 + λ0)⟨t, γ0 + λ0⟩) , (42)

for all t ∈ G, with C(γ0) and C(γ0+λ0) ∼ N (0, 1) i.i.d. complex random variables, and also independent
of X. (In fact, Xε has an spectral representation as in Example 2 )

Moreover, by a direct calculation, its covariance is

RXε
(t− s) = E(Xε(t)Xε(s)) = RX(t− s) +

ε

4
(⟨t, γ0⟩+ ⟨t, γ0 + λ0⟩) .

Thus, since the spectral measure of Xε verifies that
∨
µε = RXε , then:

µε = µX c + µX d +
ε

4
(δγ0 + δγ0+λ0) .

By construction, a support of the discrete part of µε , Dε is given by:
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Dε = {γ0, γ0 + λ0}
⋃

DX ⊆ A ,

and consequently,

Dε

⋂
(Dε + λ0) ̸= ∅ . (43)

Finally, since U is open, we can fix ε > 0 in (42) such that the open ball B(µX , ε) ⊆ U . Moreover,
µε ∈ B(µX , ε) since the supports of δγ0 and δγ0+λ0 are disjoint, and therefore

∥µX − µε∥M(Ĝ) =
ε

4
∥δγ0

+ δγ0+λ0
∥M(Ĝ) =

ε

4

(
∥δγ0

∥M(Ĝ) + ∥δγ0+λ0
∥M(Ĝ)

)
=

ε

2
.

So, under the assumption that A
⋂
(A + λ0) ̸= ∅, we found a stationary random Gaussian process Xε such

that its spectral measure µε ∈ U and, recalling Theorem 6, by equation (43) it also verifies: MK
G(|X|2) ̸=

MK′

H (|X|H |2) with a positive probability.

(iii)=⇒(i) Is very similar to the previous argument and we will sketch the main steps of the proof. Again,
if A

⋂
A+ λ0 ̸= ∅ for some λ0 ∈ H⊥ \ {0}, since U is non empty there exists a Gaussian stationary random

process X such that µX ∈ U and therefore it has a support SX ⊆ A. If µX(SX ∩ SX + λ0) > 0 the result is
immediate by Theorem 2. Otherwise, we have that µX(SX ∩ SX + λ) = 0 for all λ ̸= 0. However, as in the
previous proof, we can take the same process Xε of (42) sufficiently close to X (in the sense of the norm of

M(Ĝ)) such that µε ∈ U . Its spectral measure is given by µε = µX + ε
4 (δγ0

+ δγ0+λ0
) and thus Sε a support

of Xε verifies {λ0, λ0 + γ0} ⊆ Sε. Consequently:

µε(Sε

⋂
Sε+λ0

) >
ε

4
δγ0+λ0

({γ0 + λ0}) =
ε

4
> 0,

and therefore, by Theorem 2, H(Xε) ̸= H(Xε|H). □

An immediate consequence is that if we restrict to the class of Gaussian random processes with discrete
spectrum, the three conditions become equivalent.

Corollary 2 Let A ∈ B(Ĝ). Then the following assertions are equivalent:
(i) A

⋂
A+ λ = ∅ , for all λ ∈ H⊥ \ {0}.

(ii) There exists U ⊆ Md(Ĝ) relatively open with respect to {µ ∈ Md(Ĝ) : µ(Ac) = 0} so that:

∥X∥2B2(G,K) = ∥X|H∥2B2(H,K′) a.s.

for any Gaussian stationary process X such that µX ∈ U .
(iii) There exists U ⊆ Md(Ĝ) relatively open with respect to {µ ∈ Md(Ĝ) : µ(Ac) = 0} so that:

H(X) = H(X|H)

for any Gaussian stationary process X such that µX ∈ U .

4 Appendix

4.1 The proof of Lemma 1.

Lemma 3, p.236 of the classic book [11], contains a proof of this result for a Real interval. However, in the
author’s opinion, the final steps of this proof contains a small gap since it involves the integration of a not
necessarily measurable function. In order to make the presentation self contained, we present the following
adaptation of the argument presented there.
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Proof. Let

φ(t, γ) =
∑
i

αi1Ri
(t, γ) (44)

be a simple function, with Ri = Fi ×Bi ∈ B(G)⊗B(Ĝ) a measurable rectangle. Then, by the definition of
the stochastic integral, if ω ∈ Ω:

∫̂
G

φ(t, γ)dΦX(γ)(ω) =
∑
i

αi1Fi
(t)ΦX(Bi)(ω) , which is clearly a B(G)⊗F-

measurable. Now, let φ ∈ L2(G×Ĝ,B(G)⊗F , ν⊗µ), there exists a sequence of {φn}n∈N of simple functions,
of the form as (44), such that limn−→∞ ∥φn − φ∥L2(G×Ĝ,B(G)⊗F,ν⊗µ) = 0 . Therefore {φn}n∈N is a Cauchy

sequence. Noting that, for each n, is defined
∫
Ĝ
φn(t, γ)dΦX(γ) and is a measurable function:

lim
n−→∞

∥φn − φm∥L2(G×Ĝ,ν⊗µ) =

∫
G

E

∣∣∣∣∫
Ĝ

(φn(t, γ)− φm(t, γ))dΦX(γ)

∣∣∣∣2 dν(t) .
Then there exists Y a B(G)⊗F-measurable function such that

lim
n−→∞

∫
G

E

∣∣∣∣∫
Ĝ

φn(t, γ)dΦX(γ)− Y (t)

∣∣∣∣2 dν(t) .
On the other hand, for each t ∈ G: lim

n−→∞
E
∣∣∫

Ĝ
φn(t, γ)dΦX(γ)−X(t)

∣∣2 , where X(t) =
∫
Ĝ
φ(t, γ)dΦX(γ).

Note that for mG-a.e. in t ∈ G: P(X(t) = Y (t)) = 1, since ν and mG are equivalent measures. Now, for

each (t, ω) ∈ G× Ω define a
∼
σ(B(G)⊗F)-measurable process

∼
X in the following way:

∼
X(t, ω) = Y (t, ω)1{t:P(X(t)=Y (t))=1} +X(t, ω)1{t:P(X(t)=Y (t))<1}

This measurable process verifies that P(X(t) = Y (t)) = 1 for all t ∈ G. □

4.2 More on Complex Stationary Random Processes.

Recall from Section 2.3.2, that a complex Gaussian stationary random process, that X is decomposed
in X(t) = X1(t) + iX2(t), where X1 and X2 are two real stationary (cross)correlated stationary random
processes. Recall that in this case there exists two cross-spectral measures µi j such that the cross correlations
verify E(Xi(t)Xj(s)) =

∫̂
G

⟨t− s, γ⟩dµi j(γ). Usually, in the applied literature it is claimed that condition (13)

is preserved by linear operations. In this direction, we state the following straightforward result adapted for
our context and for which no reference was found. Its proof is left for the reader.

Lemma 10 Let X be a complex w.s.s. stationary random process. The following statements are equivalent:
(i) X verifies condition (13).
(ii) µ1 1 = µ2 2 and µ1 2 = −µ2 1.
(iii) E(Z1Z2) = 0, for every Z1, Z2 ∈ H(X).

In the Gaussian case, note that (iii) implies that if in addition E(Z1Z2) = 0 then the random variables Zi

are independent. For example if fi ∈ L2(Ĝ,B(Ĝ), dµX), i = 1, 2 are such that {f1 ̸= 0} ∩ {f2 ̸= 0} = ∅ then
the random variables Zi =

∫̂
G

fidΦX , i = 1, 2 are independent. This fact was extensively used throughout

the present article.
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measures such as [23]. This article was also improved significantly thanks to the careful proofreading of one
of the anonymous reviewers, specially Section 2. It is worth to mention that he/she notices that some of the
results presented herein seem to be related to other in e.g. [18] and [28]. However, this apparent relation
with Model Sets deserves a deeper research and will be explored in further work.
This work was partially supported by Universidad de Buenos Aires (Grant No. 20020220400210BA) and
CONICET.
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2016.

[22] J.M. Medina, L. Klotz, M. Riedel, Density of Spaces of Trigonometric Polynomials with Frequen-
cies from a Subgroup in Lα Spaces, C.R. Acad. Sci. Paris, Ser. I-Math., 356, pp. 586-593, 2018.

[23] R.V. Moody, N. Strungaru, Almost Periodic Measures and Their Fourier Transforms in Chap. 4
of Aperiodic order, pp. 173-270, Eds. M. Baake and U. Grimm, Cambridge, 2017.

[24] A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, Vol. 29, AMS. 1988.

[25] M. Pourahmadi, Foundations of Time Series Analysis and Prediction Theory, Wiley series in Statis-
tics, 2001.

[26] M. M Rao, Random and Vector Measures, World Scientific Eds., 2011.

[27] H. Reiter, J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, 2nd. Ed.,
Oxford, 2000.

[28] C. Richard, C. Schumacher, On Sampling and Interpolation by Model Sets, J. Fourier Anal. Appl.,
26 (39), pp. 1-37, 2020.

[29] Y. Rozanov, Stationary Random Processes, Holden-Day, 1967.

[30] W. Rudin, Fourier Analysis on Groups, Wiley, 1990 Edition.

[31] A. Tempelman, Ergodic Theorems for Group Actions. Informational and Thermodynamical Aspects,
Vol. 78 of Mathematics and Its Applications, Springer-Science, 1992.

[32] A. Weron, On Characterizations of Interpolable and Minimal Stationay Porcesses, Studia Math.,
XLIX, pp. 166-183, 1974.

[33] A. Weron, Harmonizable Stable Processes on Groups: Spectral, Ergodic and Interpolation Properties,
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 68, pp. 473-491, 1985.

24


