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Abstract

Kluvének extended the Whittaker-Kotel’'nikov-Shannon theorem to the abstract harmonic analysis
setting over a LCA group G. In this context, the classical condition for f € L?*(R) to be band limited is
replaced by fhaving its support essentially contained in a transversal set of a compact quotient group.
This condition was later shown to be necessary in general. Moreover, the classical interpolation formula
is also equivalent to a Plancherel like isometric formula involving the L?(G) norm of f and the norm of
the sequence of its samples over a subgroup H. Here, recalling some Laws of Large Numbers, we will
prove an equivalent result for the support of the spectral measure px of a Gaussian stationary random
process X, indexed over a LCA group G. The conditions are formulated in terms of an almost sure
isometric formula involving the sample variances of X, and its samples over a subgroup H respectively.
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1 Introduction

A key result in Harmonic Analysis and Signal Processing over R? is the so called Whittaker-Kotel nikov-
Shannon (WKS) sampling theorem which gives conditions to reconstruct (interpolate) a band limited L?(R<)
function from its discrete samples taken at a uniform and appropriate rate. The WKS theorem was extended
to L?(G), with G a Locally Compact Abelian (LCA) group, by Kluvének [15]. In addition to its elegance,
Kluvének’s result provides an example of a unified theory which gives a positive answer to several similar
problems of uniform sampling that may seem different at first glance. In practice, if f represents a signal
then its samples are obtained evaluating f over a subgroup H C G. Usually the case of interest is when H
is countable. Kluvének proved that a sufficient condition for the validity of a general interpolating formula,
for f € L?(G), is that the support of f being essentially contained in a transversal set of G JH*. Where G
is the dual group of G and H' the annihilator of H. Furthermore, in this case, an analogue of Plancherel S
isometric formula holds for f and the sequence of its sampled values over H. For more details see Section
2.2.3. Converse results were presented in [2, 3].

Here, with the aid of certain Laws of Large Numbers (LLNs in short) for stationary random processes, we
will replace the L?(G) norm by appropriate estimators of the variances of a stationary Gaussian random
processes and its samples respectively. With this device we will prove that a similar almost sure isometric
formula, in this case an analogue of Bohr’s formula, is equivalent for a such a random process to have the
support of the discrete part of its spectral measure contained in a transversal subset. Some of the ideas
presented here, partially follow the techniques introduced in [6]. In that case, with the aid of some well
known results form Ergodic Theory, it was proved that the equivalent and apparently unrelated notions



of AP-Gabor frames (see e.g. [4] and references therein) and L?(R)-Gabor frames can be characterized in
terms of an isometric formula involving the sample variance of a Gaussian stationary random process and
the sample variance of its countable frame coefficients. The present work is tries to analyse further and
bring more light to the relation between almost periodic functions, ergodic theorems and sampling. This is
of certain importance in the sampling theory of finite-power signals, see e.g. [5].

Paper Organization.

The paper is organized as follows: Section 2 gathers most of the auxiliary results and previously known
results, needed for our developments. Some of these results are originally spread separately in the literature.
In order to make this work self-contained, some are presented as slight modifications of the original ones and
a sketch of proof may be also given for a few of them. Most of the original results of this work are presented
in Section 3. Theorems 6 and 7 relate conditions on the support of the spectral measure of the sampled
random process X with an appropriate isometric formula. Finally, in Theorem 8 stability conditions are
given.

2 Preliminaries

2.1 Some generalities.

If (G,+) is a group, given A C G and B C G then we define the sum subset A+ B = {z+y: =,y € G}, and
the subset of differences A — B respectively. This must not be confused with the set theoretical difference
A\ B = AN B¢. The symmetric difference is denoted by AAB. Let U be a topological Hausdorff space and
B(U) the Borel o-algebra of U. By M(U) we will denote the class of all complez-valued regular measures
with finite total variation. In the case that p is a (real) signed measure associated the variation measure is
given by |u| = py + pu—. Where the pair puo,u_ is given by the Hahn-Jordan decomposition of p and the
total variation norm is given by ||ul| yqr) = [#/(U). So that M(U) is a normed linear space with || || ;-
Let W be a set and S any oc-algebra of W. If ¢ : U — W is a S-measurable map between U and W
(i.e. a map such that ¢~1(S) C B(U)), we denote by ¢~u the induced measure by ¢, for u € M(U).
Following [20], a support of p € M(U) is any C € B(U) such that |u|(C¢) = 0. Alternatively, we may say
that p is concentrated on C, see e.g. p.266 of [30]. Note that this differs from the definition of support of
a measure of p.124 of [13]. A measure p is discrete if it is concentrated on a countable set; p is continuous
if u(E) = 0 for every countable set E. Every p € M(U) has a unique decomposition p = p. + pg where
e is continuous and gy is discrete. By My(U) we will denote the subset of discrete measures and by d,
the unit mass measure concentrated on z € U. The symbol 1g stands for the indicator function of the set
S. The respective Lebesgue spaces of square integrable (equivalence classes) functions will be denoted by
L?(U,B(U), ) or L?(U, i) for short, if the underlying o-algebra is clear from the context.

2.2 Fourier Transform and Function Spaces.

A LCA group G is a Hausdorff space with a locally compact topology which is an abelian group, provided
that its group operation ‘4+’ (here written in additive form) is continuous. Denote by G the dual group of G
and by (v, z) the value of y € G at z € G. If H C G is a closed subgroup of G its annihilator is defined by

H ={yeG:(x,7)=1,Vz e H}.

Let m¢ denote a fixed Haar measure on G, i.e. the unique, up to multiplicative positive constant, invariant
measure with respect to the group operation ‘4+’. For the case of the Haar measure mcq, the respective
Lebesgue spaces of functions, for p € [1, oo], are denoted by LP(G). Recall that in the case p = 2, the inner
product is given by (f,g) = [, f(z)g(x)dma(x). This notation should not be confused with the duality

~

relation between G and G although it will be clear form the context. If f € L'(G), its Fourier Transform at



v € G is defined by

Fr) = fy) = / SO Bdme(t).

G

~

We will denote A(G) := F(LY(@)) = {f : f € L*G)}. On the other hand, the Haar measure me

over (G, B(G)) can be adjusted so that the inverse Fourier transform for f € L}(G) at z € G is given by:

f(@) = [ f(v)(7,t)dmg(y) . We need the following proposition. This is a variant of Theorem 1.6.4, p. 27,
G

~

of [30], or alternatively this also a consequence of A(G) being a standard function algebra (Definition 2.1.1
of [27]):

Proposition 1 If E is a nonempty open set ofé and g € E, there exist a non-negative function fe A(@),

o~ ~

f(v0) # 0 such that f(y) =0 for all v outside E.

If 11 € M(G), we define its inverse Fourier Transform by:

Ji(t) = / (v, t)du(7) -

Q)

In fact, if p is defined by du = fdmg for some f € LY(G) then both definitions coincide. If € M(G) it is
uniquely determined by its Fourier transform and Bochner’s theorem states that a continuous function on G
is positive-definite if and only if is the Fourier transform of a non-negative measure u € M(G). Obviously the
roles of G of G can be exchanged. However the present form seems to be more adequate for the presentation
of subsequent results related to the theory of random processes. R

A classical example of LCA group is G = R¢ with its usual addition operation +, and its dual G = R?. In
this case (y,z) = €7'® with dmg(z) = (szI)d and dmg(y) = dv, where dt and dvy denote the usual Lebesgue

measure of R, Another usual example is the torus G = T = R/27Z and its dual G = Z. In this case,
(v,z) = €7 with dmg(z) = 22 and mg the counting measure. With these basic definitions in hand, the
most relevant results for these classical cases, such as Plancherel’s formula, can be extended with no difficulty

to the general abstract setting of an LCA group G [13]. We shall need another class of functions [30]:
Definition 1 The space AP(G) is the uniform norm closure, in Cg(G), of the space of trigonometric

polynomials p(t) = " C(7){y,t) with v € G and C(v) € C.
Bt

Here Cp(G) is the linear space of continuous and bounded functions over G. Also note that in Definition
1, with the abbreviated notation p(t) = > C(v)(v,t) and by a trigonometric polynomial we mean a finite
¥
n ~
linear combination of the form p(t) = > C(v;) (v, t) with 7; € G. In the forthcoming this will be clear from
i=1

the context.

2.2.1 The Invariant Mean over G.

In this section we deal with the problem of defining a unique invariant mean over AP(G) by an appropriate
averaging process. A nice self-contained exposition of this topic is given in the article [23]. Here, the aim
is to always keep the level of generality in proportion to our needs of showing a relation between LLNs and
Sampling Theory. Recall that the Haar measure is unique up to scaling, so let us choose one such measure
mg to introduce the concepts of this section.

Definition 2 A sequence K = {K,, : n € N} of non void, compact subsets of G is called a Fplner sequence
if the following conditions are satisfied:

(1) 0<ma(Ky), neN, (i)

ma((z + K,)AK,)
e () njoo() forallz € G. (1)



Moreover, we shall assume that G contains a Fglner sequence satisfying the additional Shulman condition
[19]. There exists C > 0 such that for all n:

ma (U (K, — Kk)> < Cmg(Ky,). (2)

k<n

Fglner sequences allows us to define a mean for f € AP(G) as:

ME(f) = lim / F(O)dma(t) 3)

n—oo mG

If G is an LCA group, it follows that the value of Mg (f) is independent of the choice of the Fglner sequence
so, if f € AP(G) , we can write Mg(f). In fact there exists a unique invariant mean over AP(G) . See
e.g. Theorem 18.10, p.252 of [13] or Section 4.5. of [23]. On the other hand, the additional condition of
equation (2) may be crucial for the validity of the Pointwise Ergodic Theorem (in Section 2.3.7). For general
topological groups, see e.g. [19] or p. 212 [24] and references therein for alternative conditions. So, in the
forthcoming we will assume that G contains a Fglner sequence verifying condition (2). This is not a great
restriction. It is known that every o-compact LCA group G admits a Fglner sequence verifying condition
(2). This is a consequence of Proposition 1.4 of [19].

2.2.2 Besicovitch Almost Periodic Functions.

The following inner product is well defined over AP(G):

(f.9)apc) = lim — / (g dme(t) = Mc(fg) (4)

The norm induced by this inner product makes AP(G) a non-complete inner-product space and, if for
example G = R, a non-separable space. For K = {K,, : n € N} a Fglner sequence, we introduce the Hilbert
space B2(G, K) of Besicovitch almost periodic functions containing AP(G). Let f € L? (G) we can define
the semi-norm:

1
2

1
= (1l — t)|2d t
11,5, = | Himsup s K/ £

A function f € L? (G) is called Besicovitch almost periodic, with respect to K if for every e > 0 there exists
g € AP(G) such that [|f = g|[, 5 x <e. It is possible to turn B*(G,K) into a Hilbert space. First one can
define an equivalence relation on B?(G,K) in the following way: f =g if and only if || f — gl|, 5 « = 0. The
norm of [f] € B%(G,K)/ = is given by ||[f Wa2ax) = I fllp o In particular if f € L? (G) is such that
1£ly,2,x = 0 then f = 0. Finally, one can prove that B*(G,K)/ = is complete (see e.g. p.39 of [18]). With
some abuse, if there is no confusion, we will write f instead of [f] the equivalence class of f and B%(G, K) for
B?(G,K)/ =. Moreover, it can be proved that the inner product (., )B2(G.K) in B%(G,K) coincides with

equation (4) for any f,g € B2(G,K). We recall that {(v,t) : v € G} forms a complete orthonormal basis of
B?(G,K) and that the following analogue of Plancherel identity holds:

112y = 1O 2@ ,ae) (5)
(Gde)
where C(f)(v) = (f, (v, -))B2(c, ) = lim mG(K f f(t){~,t)dmq(t) denotes the Fourier-Bohr coefficient
n—oQ

of faty e G (or Fourier-Bohr transform in some hterature) and c denotes the counting measure. Obviously,

C(f)(y) = 0 for all ¥ € G except for a finite or countable subset of them. We summarize some remarkable
facts about are B%(G,K) :



1. (Riesz-Fischer property) Let C : G — C and let K be a Folner sequence. Then there exists a
unique f € B?*(G,K) (as an equivalence class) such that C(v) = (f, (7, .))s2c.x) if and only if
|C I12(& .4y < 00- In this case f = ZA C(y)(7, . ), where the convergence is in the B?(G, K)-norm.

yeG

2. It follows that despite the spaces B?(G,K) may be different for distinct choices of K, all of them are
isometrically isomorphic.

3. Let f € AP(G), 7 € G and let T f = f(. + 7) € AP(G) be the translation of f by 7. Then
| f g2y = 1T+ f | g2(g k) and hence T extends uniquely to an isometry on B?(G,K) (For more
details see p. 39 of [18]). Here, with some abuse we will shall also denote this extension by T.
Moreover, one can define the deterministic auto-correlation of f € B*(G,K) at 7 € G by:

ps(1) = (f, Trf)B2(cK) - (6)

If f € B*(G,K) then py € AP(G) (see e.g. Lemma 2.1. of [17]). In fact, from (5) one can deduce that

pi(T) =Y ICHIP{TA),
’yeé

and therefore py is the Fourier transform of the discrete measure v = > |C(v)[?4,
V€A

For more details about these facts, see [23] or [13] for more general results. For the case G = R¢ another
interesting introductory article is [21].

Finally, if H C G is a closed subgroup carrying a Haar measure mpy and containing a Fglner sequence,
a similar argument leads to existence of a Fglner sequence X' = {K], : n € N} for H which verifies (2).
Subsequently, one can define the mean M’fll over H.

2.2.3 Paley-Wiener Spaces and Sampling in L?(G).

Let G be an LCA group. Analogously to the R? case, for a measurable S C G such that mg(S) < oo, one

)
can define the Paley-Wiener spaces of S-band limited functions as: PWs = {f € L?(G) : supp(f) € S}. In
the context of sampling, the following definition is useful:

Definition 3 [7] Let G be a LCA group. A discrete subgroup H C G for which G/H is compact is called a
lattice.

Note that G'//H being compact is equivalent to H* being discrete. In some literature, e.g. [8], the condition
of H being countable is included in the definition of a lattice. Now, we can introduce Kluvanek’s Sampling
Theorem. Given a lattice H, we shall use Kluvanek’s original normalization procedure for the Haar mea-
sures m¢ and mg: First, noting that G/H™* is compact, one fixes M o SO that mG/HL(G/Hi) = 1.
Furthermore, let be my. ({\}) = 1 forall A € H+ and mg({h}) = 1 for all h € H. Once, Mo and My

are fixed, one can take mg so that Weil’s formula holds, i.e. for every non-negative measurable f on G:

/f Ydmg = / /f’Y+AdeLde/HL.

G/HL Ht

Finally, m is taken so that the Fourier inversion formula holds. Under the assumption that H is a lattice,
Kluvanek’s fundamental result for error free reconstruction of a PWg-function from its samples in H is:

Theorem 1 Let H be a lattice and let S be a Borel measurable subset of@ such that:

SNS+A=0 forall xeH"\{0}, u S+A=G; (7)
€ €1



and let f € PWg. Then f is equal a.e. to a continuous function and if f is itself continuous then:

£ty =" f(h)ks(t—h), (8)

heH

where the convergence is uniform on t € G and in the L*(G)-norm, and ks = F~11g. Moreover,
2 2
sy = [ 1Pame = [ 152dmss = 11l )
G H

The translate condition S NS + A = ) of Theorem 1 can be weakened to mg(S NS+ X) = 0. Every subset
S which verifies (7) it is said to be a transversal subset. Note that a transversal may not be a compact set.
The classical example is the WSK Theorem, with G = G = R, H = tyZ, H+ = %—”Z and T = [—7/tg, 7to).
Equations (7) are anti-aliasing conditions. Moreover, in [1] for G = R, it is proveod that this last condition
is also necessary for the validity of a perfect reconstruction formula as (8). Furthermore, it can be proved
that condition (9) is equivalent to (8) [1, 2]. So these results can be stated departing from equation (9).
In Theorem 9 of [3] an stability condition is given in terms of an open subset of L?(G) () C(G) for which
formula (8) holds.

Note that if f € L?(G) (N B?(G, K) then f = 0 (as an element of B?(G, K)). So in general, the tools developed
for the L?(G) setting are not directly applicable to B?(G,K). This fact justify, in part, the present work.
Note also that the original statements for L?(G) generally hold a.e. with respect to mg (or mg) the Haar
measure associated to the separable space L?(G). In contrast the non separable B?(G,K) space, in some
way, is associated to the counting measure. As a consequence, in the present case, the results are true for
all the members of a certain subset and not only a.e..

2.3 Probability and Random Processes.

Let (€2, A,P) be a probability space and X a random variable defined on it. If ¢ is any Borel measurable
real or complex function, we denote E(p(X)) the expectation of ¢(X). The following brief description of
the Theory of stationary random processes follows closely [25, 29]. Let X = {X(t), t € G} C L*(Q, A, P)
be a real or complex, mean square continuous wide sense stationary (w.s.s. for short) random process, i.e.
X verifies the following three conditions, for all t, s € G:

(i) E(X(t)) =0, (i1) E(X(t)X(s)) = Rx(t —s), (iii) Rx(t)is a continuous function of t € G.  (10)

For simplicity and with no loss of generality we imposed that X has a mean equal to zero. A stronger notion
is (strict) stationarity. i.e. if the shifted families X7 = {X (¢t +T), t € G} have the same finite distributions
as X for all T € G. A strictly stationary process is w.s.s. but the converse is not always true. If X is real
and Gaussian both notions are equivalent. In the complex case some additional care may be necessary, see
Section 2.3.2.

2.3.1 Harmonic Analysis of Stationary Random Processes.

If X is a w.s.s. random process it is known by Bochner’s Theorem that there exists a non-negative Borel
measure measure ux € M(G), the spectral measure, such that

Vv

R(t) = (1) = [ (t.1)dux ().
G
Conversely, if ux is a finite Borel measure, there exists X a w.s.s random process with ux as its spectral

measure. Morover, X can be defined as a Gaussian process and in the complex case it can be chosen such
the next condition (13) holds, see e.g. p.147 of [29].



Defining the Hilbert space of random variables
H(X) =3pan X C L*(Q,F,P),

then the mean square estimation theory for stationary sequences is mainly based on Kolmogorov’s isomor-
phism: N R
I L2(G,B(G), ux) — H(X) (11)

given by the stochastic integral:

1(f) = /G F(1)d®x (),

where @ x is the (orthogonal) random measure associated to X . In fact, if A is a Borel subset then px and @ x
are related by the following formulas: E[I(14)> = E|®x(A)]> = ux(A) and E| [ fd<I>X|2 = [a1fPdux.
Moreover X has the following spectral representation:

X(t) = I({t, .)) = /é<t77>d<1>x(7)~ (12)

A detailed description of these representations can be found in [26]. The complex Gaussian case deserves a
brief discussion:

2.3.2 Gaussian Complex Processes.

In general, if X is w.s.s. complex random process, we assume that X (¢) = X (t) + iXz(¢) for all ¢ € G.
Where X;, i = 1,2 are two stationary (cross)correlated real w.s.s. stationary random processes. If X is
Gaussian and complex we shall impose, in addition to (10), the condition:

E(X(t)X(s)) =0 forall ¢t,s € G. (13)

Gaussian complex random processes or vectors verifying condition (13) are said to be circular. This require-
ment is usual in signal theory and moreover it makes X retain most of the usual properties of real Gaussian
processes [29]:

e If two random variables belonging to the closed linear span of X are uncorrelated then they are
independent.

e X is completely determined by Rx and its mean, in our case E(X(t)) = 0 for all ¢.

e Condition (13) is preserved by all linear operations on X. For more details see Lemma 10 in the
Appendix.

e If X is w.s.s. random process then X is a stationary processes.

Throughout this work, to avoid repetitions, if X is a complex Gaussian and stationary random process, we
shall assume that (13) holds. For a single complex Gaussian random variable Z with its mean equal to zero,
this condition is equivalent to E(Z?) = 0.

2.3.3 An example of random measure.

An example of a Gaussian random measure is the following. Given p € M(é), choose any orthonormal
basis of L?(G,p), {¢n : n € N} and {C(n) : n € N} a sequence of independent random variables such

~

that C(n) ~ N(0,1). Then define for any A € B(G): ®(4) =5 C(n){pn, 14)12G,- In particular, when

p=mg, ® is the so called Wiener measure.



Following [29], linear time invariant filtering operations on X are defined, for any t € G, by:

) = /G F()Edex (), f € LG, px), (14)

so the resulting stationary process Y = {Y (t)}:c¢ can be thought as the output of a linear system with a
frequency response given by f (i.e. filter) and a random input X. In this case, the covariance of Y is given
by:

Ry (t — u) = B(Y( / FOP ) dux (7). (15)

Finally, the spectral measure px can be decomposed into a continuous and purely discrete part ux . and px 4
and there exists measurable and disjoint subsets C, D such that px C(A) ux(ANC) and ux a(A) = px (AN
D). From this we can give an orthogonal decomposition of X, X (t) = [,(t,7)d®x(v) + [, {t,7)d®x(y) =

X.(t) + Xa4(t) a.s.. In the Gaussian case X, and Xy are 1ndependent In the complex case, see Lemma 10
in the Appendix for a justification. This corresponds to the case when one replaces f = 1¢, or f = 1p,
n (14). For short, X. and X4 will be called the continuous and discrete parts of X respectively. If ux is
discrete then it is concentrated over a (countable) subset Dx of G and moreover (12) takes the form of a

random series:
X()=1I((t )= Y {ENex({r}). (16)
YyEDx

In this case, we shall say that the process X has discrete spectrum, and in contrast if ux = ux . we will say
that X has continuous spectrum. In addition, if X is Gaussian and real (or complex verifying (13)), then
the terms of the series (16) are independent random variables, in the complex case this is a consequence of
e.g. Lemma 10 in the Appendix. A random process, for fixed w € ) may not be a measurable function
of t € G. To avoid pathological cases, condition (iii) gives a sufficient condition for the existence of a
measurable process and equivalent to X. More generally, under rather mild conditions, if X is represented
by a stochastic integral in practice it can be regarded as a measurable process, i.e. X : Q@ x G — C is
a measurable function with respect to the complete product o-algebra CNI(B(G) ® F). This is the case of
stationary processes. In fact, we have the following result which is an adaptation of one presented in [11]
(For more details see the Appendix):

Lemma 1 Let ® be an orthogonal random measure over (G, B(G)) with control measure p € M(G), and
let v € M(QG) be such that v is equivalent to mg. If p € L?>(G x G,B(G) ® F,v ® p) and {X(t),t € G} is
defined by

X(t) = / (£, 7)dB(7) (17)
G

Then there exists a measurable process X stochastically equivalent to X. (i.e. P()N((t) =X(t)) =1 for all
te G)

In this Lemma by control measure, we mean the measure defined by u(.) = E|®(.)[%. For example, if
G is o-finite, an equivalent measure v € M(G) can be obtained in the following way: Since there exists
countable disjoint subsets K,, € B(G), n € N such that mg(K,) < oo and |J, K, = G, we can set

v(A) = Z 27" ng;?ﬁ )) In our context, the stationary case is obtained when ¢(t,v) = (¢,7). Lemma 1,

in some sense allows us to regard X as a measurable function. In view of this, in the forthcoming we shall
assume this fact with no further mention of it when dealing with “measurable” operations over X. Finally,
in order to make the presentation self contained we present an adaptation to the LCA group context, of a
result of ([6] or [26] for an alternative argument) which will be useful in the sequel.



Lemma 2 Let X be a wide sense stationary random process with associated random spectral measure @ x

and let f € LY(G). Then:
/X( ) f(t)dme(t /f )dPx () a.s.
a

2.3.4 Example.

Convolution of a stationary random process X with a function f € L'(G) (or f € A(é)) This is a “time
domain” interpretation of the filtering operation of equation (14). In fact, by Lemma 2, equation (14) can
be rewritten as:

:/X(s) f(t—s)dmg(s /f )t,7)dPx(y) a.s. (18)
G

In general, the stochastic integrals with respect to ®x are mterpreted in the mean square sense (i.e. in the
L*(Q, A,P)-norm).

2.3.5 Random Processes and Sampling.

There is not a complete analogue result to Theorem 1 for w.s.s. random processes involving the convergence
of an interpolating series under a somewhat general condition as in the L?(G) case. However one can
formulate a weaker result in terms of the support of the spectral measure px and its translates (See next
Theorem 2). Let X = {X(t), t € G} be a zero mean w.s.s. random process and let H C G be a closed
subgroup. If by X|g we denote the sampled random process X|g = {X(t), t € H} and the canonical
projection map by R R
m:G— G/H*
vl

then one can verify the following intuitive relation between the spectral measures of X and X|p.
Lemma 3 Let px be the spectral measure of X. Then: 7 ux € M(G/HL) and px)y =7 tpx.

Proof. The regularity of 7=1ux follows from e.g. Lemma 2.1. of [22]. Let us obtain an expression of BX |5
the spectral measure of X|gy. Since the Fourier transform of this measure is the covariance function, for
te H, of X|H:
Rxta®= [ (60dix (b)),
G/ H+
On the other hand, by the change of variable induced by the projection map w : G — G JH*, a direct
calculation for any ¢t € H gives:

Rx ), (t) = E(X|u () X|u(0)) = Rx(t) = /<t,7>dux(7) = / {t. drn ™ ux ([7) -
G G/ HL
Then by the uniqueness of the Fourier transform we obtain x|, = 7 x. So that 7~ 'ux is the spectral

measure of X |g. O
We recall the following known and related result:

Theorem 2 Let X be a wide sense stationary random process over a LCA group G, with spectral measure
px, and let H C G be a closed subgroup with countable annihilator H+. Then H(X) = H(X|g) if and only

if there exists Sx € B(G) such that px is concentrated in Sx and Sx () Sx + A =0 for all X € H*\ {0}.



Although one may not have an interpolating series, the result gives a condition, of statistical value, under
which X is completely and linearly determined by the samples X|g. This theorem is originally formulated
in terms of density conditions for trigonometric polynomials in e.g. [22]. (For more references on similar
conditions see [16, 20]) However, in view of (11), the two statements are equivalent. In fact, the result holds
for L® (CAT', u) and the condition of H* being countable can be replaced by G being a Polish space. As we
will see, we cannot formulate this condition in terms of an isometric formula as in Theorem 1 for the L?(G)
case, unless we restrict to the class of random processes with discrete spectrum. See Theorem 6 herein. In
this context, we shall also formulate an stability condition analogue to Theorem 9 of [3], in terms of an open
subset of M(@) See Theorem 8 of section 3.1.1. Finally, observe that the condition of H+ being countable
in Theorem 2 is, in general, different from the condition in Theorem 1 of being a lattice. This is shown in
the following example from Chapter 21 of [7]:

2.3.6 Example.

Let G = R%. In this case, the condition of H being a lattice is less general than H* being countable. In
fact:

e Every closed subgroup H of R? such that H' is countable has the form H = A(R® x Z~*) with
A € R¥4 an invertible matrix and s € {0,1,...,d}. In this case H+ = (A™)T({0}* x Z9~%).

e Every lattice in R? has the form H = AZ? with A € R¥? an invertible matrix. Then H+ =
(A=Y (z?).

2.3.7 The Ergodic Theorems.

Natural estimators of the mean, variance and other statistics of a stationary process X are appropriate
time averages. Convergence results for these averages take the form Law of Large Numbers for stationary
processes or Ergodic Theorems. Here we gather some known results which will be useful in the sequel.

We say that the strictly stationary process X is metrically transitive (or equivalently ergodic) if the only
measurable sets which are invariant under the shift X —— X7 = {X(t + T), t € G} have probability
zero or one. Let G carry a Haar measure m¢, under the assumption that it contains a Fglner sequence
K = {K, : n € N} verififying condition (2) E. Linderstrauss proved a version of the Pointwise Ergodic
Theorem for general amenable groups [19]. We give an adaptation of this result which will be sufficient for
our derivations.

Theorem 3 Let X be a stationary random process and let K be a Folner sequence which verifies (2). Then:

ME(X) = lim ;Kn) / X (t)dme(t)
K,

n—s 00 mG(

exists a.s. and equals E(X (0)|Fx). In particular, if the G action is ergodic, M&(X) = E(X(0)) a.s..

Here E(X(0)|Fx) denotes the conditional expectation with respect the invariant sub o-algebra Fx. If
H C G is a closed subgroup, we can respectively define by an analogue averaging process the random
variable denoted by Mg (X), for any random process indexed over H. One can deduce that X is metrically
transitive if and only if in the above (a.s.) limit MK (X) = E(X). Under the the weaker assumption on X
of being a w.s.s. random process we have the following adaptation of the mean ergodic theorem. See for
example [33] Theorem 2.1. p.481, or [9] , Theorem 1.

Theorem 4 If X is a w.s.s. random process then, for every v € @, the limat

lim % / {7 X)dmea(t) = 0(v)

n—oo mG n)
K’!L

10



exists in the mean square sense. Where 0(v) € H(X) is given by 0(y) = [ 1{_3d®x. In particular, 6(y) =0
G

a.s. if px({=7}) = 0.

Proof.  (Sketch.) This is a consequence of Theorem 2.1. p.481 [33]. Define a new process ¥ = {Y (t) =
(t,7) X (t), t € G}. Tt is easy to verify that Y is also a w.s.s. random process, and so that its spectral random
measure is given by :

Dy (B) = /1B,7d<I>X.

G

In this case MK(Y) converges in the L?*(Q, F, P)-norm to ®y ({0}) = ®x ({—7}).
In particular, M ((t,7) X (t)) = 0 if ux({—v}) = 0. O

For a general exposition on Ergodic Theorems for Group Actions see e.g. [31].

Remark.

Note that the last results can be adapted to the averages given by a.s. or mean square sense limits:

ME(|X]?) = lim %/|X(t)‘2dmg(ﬁ) and px (1) = ME(XX(. +7)) forany 7€ G.

n—>o0 mG(K

Moreover, related to these we have the following useful Proposition. First, we recall the following formula.
Let (Xy,...,X4) be a Gaussian multivariate random vector then:

E(X;X; X X)) = 0061+ 0i1k0j1 + 04105k , (19)
where o; ; is the covariance of X; and X;. Note that a similar result holds in the complex case.

Proposition 2 Let Let X be a zero mean Gaussian stationary random processes with continuous spectrum
and let K be a Folner sequence which verifies (2). Then for all 7 € G the limit px (1) = ME(XX (. + 7))

exists a.s. and equals E((0)X (7)) = Rx (7).

Proof. Define, for each 7 € G, the stationary random process Y; = {X(#)X(t +7) — Rx(7), t € G }. Let
us obtain an xpression for its spectral measure.
First, assume that X is real, since X is Gaussian, recalling (19) we obtain the covariance function of Y;:

Ry (t) = E(Y;(t))Y-(0)) = E(X ()X (0)X (t + 7)X (7)) — (Rx(7))* = (Rx(t))* + Rx(t — T)Rx(t +7) .
Define du’ (y) = (t,v)dux. Then:

Ry (1))* = / (t)dux * px) (7). Rt — 7R (t 4 7) = / (% 15T () -

G G

Therefore,
Ry, (t) = /<t, Yd(px * px + px * px )(Y),

a
and thus, since px is continuous, the spectral measure of Y, obtained by the sum of two convolutions, is also
continuous. Consequently, by Theorem 4, MK(Y;) = 0 a.s. for each 7 € G. Equivalently, by the definition
of Y;, px(7) = Rx(7) a.s., where the limit is taken in the L?({2, F, P)-norm. However, by Theorem 3, the
limit px (1) = ME(XX(. + T)) exists a.s.. Thus, taking an appropriate sub-sequence {Kn(k) . k € N}, we
get
ME(XX(.+7)) = lim ) / X)X+ 7)dmg(t) = Rx(7) a.s.

k—s00 mG
n(l.)
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Therefore the limit exists a.s. and equals Rx(7) as claimed.
The complex case is similar: Since X is Gaussian, recalling (19) and condition (13) we obtain the covariance
function of Y;:

Ry, (1) = E(Y;(1))Y;(0)) = E(X ()X (0)X (t + 7)X(7)) — |Rx(7)|* = |Rx (1)|*.

But:
Ry (t)[? = / (1) (ix # 153 (7),

G

where jix)(A) = ux(—A) for all A € B(CAT') Therefore, Y; has a continuous spectral measure. Consequently,

a similar argument to the real case gives that px(7) = ME(XX (. + 7)) = Rx(7) as. O

Finally, note that in the particular case when 7 = 0 we get that M&(| X |?) = 0% a.s..

2.3.8 Random Series in B?(G,K).

Alternatively one may identify the whole trajectory of X as a random element of an appropriate Hilbert
space H. The following Theorem from [14], which is Hilbert space version of Kolmogorov’s result for the
sum of independent random variables, will be useful:

Theorem 5 Let {X,,,n € N} be a sequence of independent random elements in a Hilbert space H such that
for all n: E(X,) =0, and moreover Y E HXTL||’2]-L < 00. Then > X,, converges in H a.s..

A direct application of this is the following:

Lemma 4 Let X be a zero mean Gaussian stationary random process and let IC be a Folner sequence in G
which verifies (2). Then:
(i) If X has discrete spectrum then X € B?(G,K) a.s.. Moreover, if (16) is the spectral representation of

X, then: (16) converges a.s. for allt € G and MG(IX*) = | X [|geg i) = 2 [2x({VD as.
y€Dx

(ii) Let G be a separable LCA group. If X has continuous spectrum and X € B%(G,K) a.s. then X is the
trivial null process. i.e. for everyt € G, X(t) =0 a.s..

Proof. (i) Recall (16). If X has discrete spectrum, there exists Dx C G, a finite or countable subset such
that the integral representation (12) takes the form of a random series:

X(t) = / A () = 3 (), (20)

= €D
a Y X

where the {®x ({7})}yepy defines a sequence of zero mean independent Gaussian random variables. Note

that,
2

E| Y (tmex({y)] = D Elex(h = Y ux{y}) = ux(@) < oo,

since px (D%) = 0. Then by the Three Series theorem > (¢,7)®x({7y}) converges a.s. for each t € G.
v€ Dx

Moreover, since B((,7)®x({1))) = 0 and 3 BI{. 1ex((1}Excr = 5 Blx({y) < oo by
yeDx ye Dx

Theorem 5, we get that the series representing X converges to an element of B%(G,K) a.s. with (random)
Fourier coefficients given by ®x({v}), v € Dx.

(i) Recalling Property 3 of Section 2.2.2, since X € B?(G,K) a.s. then P (Q24p) = 1 where
Qap={we: px(.,w) e AP(G)} .

12



Let D be a countable and dense subset of G and define, for each d € D,

Q= {w € Qap: px(dw)=Rx(d)} and Q= (] Q.
de D

Therefore, recalling Proposition 2, P(£) = 1. Noting that px(d,w) = Rx(d) for all d € D and w € Qq
and that for each w € Qp: px(.,w) — Rx € C(G), then px(t,w) = Rx(t) for all t € G and w € Qp. Now,
suppose that 0% = E|X(0)|> = Rx(0) = px (G) > 0. Then recalling again Property 3 of Section 2.2.2, for
any w € Qp, px(.,w) is the Fourier Transform of a non-zero discrete random measure. But, on the other
hand Rx is the Fourier transform of a continuous measure, which is a contradiction by the uniqueness of
the Fourier transform. (]

Brief Review and Remarks of Existing Related Results.

1. Observe that X (t), for each t € G, is an element of the Hilbert space L?({, F,P). Consequently,
many problems of this theory can be tackled using only the geometry of Hilbert spaces. This fact
is exploited, by H. Feichtinger and W. Hérmann in e.g. [10] (and references therein). Let H be an
arbitrary Hilbert space. In their context, an ordinary random process X can be seen as a measurable
mapping X : G — H. In this way, these random elements, can be treated as appropriate bounded
linear mappings. this approach allows to avoid elegantly to a certain extent some technical results
from Probability Theory. In the case of ordinary random processes, both definitions are compatible.
However, the results presented herein rely on certain concepts of more measure theoretic nature (see
e.g. Section 2.3.7), therefore a more classic approach may be desirable in the present case.

2. Alternatively, in Lemma 4, px € AP(G) a.s. since it is the Fourier transform of the measure
> | @x({~})]?,, as a consequence of Lemma 4.8.10 of [23]. Furthermore, Lemma 4 seems to be
'yeé
related to some else of the results of Sec. 4.7 of [23] as was kindly suggested by one of the reviewers.
However, note that in our case we are dealing with random objects and the statement (ii) X (¢) = 0

a.s. for all t € G does not mean X = 0.

3 Spectral Translates and Sampling.

Kluvanek’s Theorem relies mostly on Weil’s and the Fourier inversion formulas, and as a consequence these
impose some restrictions on the possible choices of the several Haar measures involved. In contrast, we
shall rely mostly on the concepts introduced in Sections 2.2.1 and 2.2.2 where the main objective is to
define an adequate mean over the group G (or H) and its subsequent consequences are, to a certain extent,
independent of the particular normalization of the associated Haar measure.

To avoid repetitions in the statements of the theorems, the general assumptions made are the following;:

e If X denotes a stationary random process , with no loss generality we assume that its mean is equal
to zero.

e If X is a stationary Gaussian complex random process (or variable), we will assume that it verifies
(13). Under this condition many proofs are almost the same as in the real case. So, unless otherwise
stated, we will not distinguish between the two cases.

e (G is a LCA group which carries a Haar measure. Again, since this is unique up to multiplicative
constant, we shall choose one such measure, say m¢, once and for all the forthcoming. Additionally,
we will suppose that G contains a Fglner sequence K = {K,, : n € N} verifying condition (2).

e H C G will be a closed subgroup containing also a Fglner sequence K’ which verifies (2) and a
corresponding Haar measure my. So, we can think that we are working with a given pair of sequences
K and K’. These conditions can be achieved if, for example, G is o-compact.

13



e H is such that its annihilator H+ is countable (and therefore discrete).

Recall that there exists a Borel measurable transversal set T of the quotient group G/H* (see [2] and
references therein). Note that several of the following results are stated in terms of the norm B?(G,K)
(or B2(H,K') respectively) as well as the means M%(.). These spaces and values are determined by the
particular choice of K and K’, but in contrast our claims and proofs are independent of the particular choice
of K and K'. This is a consequence of the following facts. Every Gaussian (real or complex under condition
(13)) stationary random process can be decomposed in two independent parts X, and Xy with continuous
and discrete spectrum respectively. By Lemma 4 (i), X4 belongs to B%(G, K) a.s. and the (a.s.) value of its
norm is independent of the sequence K. On the other hand, we shall apply to X, Theorems 3 and 4 which,
in some sense, are also independent of K (and the particular choice of m¢).

It is clear that, for each realization of X, X |y can be seen as the restriction of X over H. First, let us study
which information of X can be recovered from X|g and how are related their respective spectral structure.
We begin with a rather intuitive result.

Lemma 5 Let X = {X(¢), t € G} be a w.s.s. stationary random process Then:
(Xm)a(t) = Xa|lg(t) and (X|g)(t) = Xc|u(t) a.s. , forallt € H.

~

Proof. Let px be the spectral measure of X and let D,C € B(G), DN C = 0 be such that ux4(4) =

~

px(AND) and px (A) = ux (AN C) for all A € B(G). Then the spectral representation of X is given, for
every t € H, by:

X(0) = Xe0)+ Xa®) = [t )1c0)d@x () + [t a)1n(iex ().
G el
Applying Lemma 3 to X4|g we get that the spectral measure of Xy|z is given by 7~ tux g € M(G’/HL)

Noting that pux 4= ). ¢,0, for some positive ¢,. Then for any A € B(CAY'/HL):
ye D

Tt ux a(A) = Z ey by (m7H(A)) = Z 01 (4),

veD [v]e n(D)

since 6, (m1(A)) = 1 if and only if v € 7~!(A), or equivalently if and only if [y] € A. Therefore X4|y has
discrete spectrum.
By a similar argument, one can obtain the following expression for X.|g:

—1
BX |y =T [Xc-

Now, we must check that 7~ !pux . is a continuous measure. For vy € G its corresponding coset in G JH* is
given by [y] = v+ H*. Then, recalling that H~ is countable:

7 ux ({1 = pxc(y+HY) = > pxc({v+A}) =0.

Clearly X.|gy has continuous spectrum. The claim is proved since we have decomposed X|g in the sum of
two processes, one with continuous spectrum: X.|g, and other X,4|p, with discrete spectrum. O

If X has discrete spectrum we have the following isometric formula.

Lemma 6 Let X = {X(t), t € G} be a Gaussian stationary random process with discrete spectrum. Then:
there exists Dx € B(G) a support of ux such that Dx (\(Dx +X) =0 for all A € H+\ {0}, if and only if

2 2
X[ 52 e 0) = 1 X e 12 a1 ,0cr) @-5- (21)
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Proof. If X has discrete spectrum then it has the following representation for some countable Dx € B(CA;):

X() = [t rdvx() = 3 La)ex(n). 22
& v€ Dx

where E|®x (7)]? = pux({7}) > 0 for all v € Dx and ux({y}) = 0 for all other 7. Recalling Lemma 4,
X € B%(G,K) a.s. and thus recalling equation (5):

XI5 = D [@x({A}I? aus.. (23)
v€ Dx

On the other hand, by Lemma 5, X | also has discrete spectrum and then, by Lemma 4, X |y € B?(H,K')
a.s.. We can find the random Fourier coefficients of X|gy from ®x({v}), v € Dx. In fact, for any ¢t € H, it
is possible to rearrange the sum (22) in the following way:

X[u(t) = X(t) = Z Z t,vex({}), (24)

AeHL veDx N(T+A)

since (t,7) = 1 for all t € H and A € H*. For each )\, one can make the change of variable v/ = v — ), so
that v € Dx (((T + A) if and only if 4/ € (Dx — A) (7. Therefore equation (24) takes the form:

=Y Y e =Y | Y e a()Bx{Y A | () = S ex (YD)

AeHL v'€(Dx—A)NT Y €T \\eH~t y'eT

So, if <I>~X('y’) = 3 1p,x(7)®x ({7 +A}), then again by equation (5) applied to H and H:
AeH+

9 ~
X B2 (e = D 1 2x (VD as., (25)
~eT

since G/H* = H (see e.g. p. 136 of [27]) and there exists a bijective correspondence with 7.

Note that if € = {w € Q: | X ()|l g2 ) < oo} and Q2 = {w € Q: [ X[a(w)||g2(sr ) < o0} then, by
Lemma 4, applied to X and X |y respectively, we obtain P(€; ()Q2) = 1. Additionally, we have that over
Q1 (N Q2, equations (23) and (25) are equal if and only if

S el = Y 1ex{r P (26)

yeT vyeDx

But, > |‘I>NX({7})|2 is equal to:
yeT

S Y o+ ex{r+ AP+ D) 1w nnmx-a () Ex{y+ AN ex({y +X})
YET \XeHL A£N

= Z | ®x ({v})I* + Z Z Lpx—nnmx-—2) () ex{y+AHex({v+N'}). (27)

y€Dx ~yET A#AN

Consequently, (26) holds if and only if

3 1ne-namx-vMex{r +ADex({(Y+ X =0 as.
YET A£N
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Taking the variance to this expression, this is equivalent to the condition:

Z Z Lpx-nNox-2) ) px{y +A)ux{y+X'}) =0,
~ET AN

and recalling that ux({v}) > 0 for all v € Dx, one gets that 1(p,_xyn(px-x)(y) = 0 for all v € T or
equivalently (Dx + )\ Dx = 0 for all A € H*\ {0}. O

Note that if X has discrete spectrum then Dx is at most countable. If A € B(@) is arbitrary then we have
the following derivation.

Corollary 1 A subset A € B(G) verifies AN\(A+ X) =0 for all A\ € H-\ {0} if and only if (21) holds for
every Gaussian stationary process X with discrete spectrum such that pux (A€) = 0.

Proof. The only if part of the claim is an immediate consequence of the previous Lemma. For the
if part, suppose that for some v € A and some A € Ht\ {0}: v+ A € A. Let C(y), C(y + A) be
two i.d.d’s, zero mean Gaussian complex random variables. Recall that they can be chosen such that
E(C(y +A\)?) = E(C(7)?) = 0. Then consider the auxiliary Gaussian stationary random process defined
by X(t) = C(y){t,y) + C(y + A)(t,v+ A) for every t € G. Thus the sampled process X|g is given by
X|u(h) = (h,¥)(C(y) + C(y+ A)) for every h € H. Therefore, a direct calculation gives that (21) holds if
and only if P(Re(C(y)C(y+ A)) = 0) = 1 but this is impossible since the joint probability distribution of
C(v) and C(y + ) is absolutely continuous with respect to the Lebesgue measure. O

In Theorem 8 of the next section, one can see a kind of refinement to this last result. In contrast to Lemma
6, if X has continuous spectrum we have the following result.

Lemma 7 If X is a Gaussian stationary process with continuous spectrum, then:
Mg (1X[*) = My (1X|ul?) a.s.

Proof. By Theorem 3, both limits M&(]X|2) and MJ (| X|g|?) exist a.s.. We shall prove that these limits
are equal. This will be a consequence of Proposition 2 with 7 = 0 . In fact, M&(|X|?) = E(|X(0)[?) = 0%
a.s..
On the other hand, from Lemma 5, one gets that u x|, is continuous and then we can also apply Proposition
2 to X|p, obtaining that M (| X|z|?) = E(|X|g(0)|?) = 0% a.s., which proves the claim.

(I

If, X; and X, denote the discrete and continuous parts of X respectively, we have the following (a.s.)
orthogonality relation.

Lemma 8 Let X be a Gaussian stationary random process. For t € G define the random process Y (t) =
X () X4(t). ThenY ={Y(t), t € G} is a stationary zero mean random process with continuous spectrum.
Moreover, we have:

lim %w K/ Y (t)dme(t) = ME(Y) = ME(X.Xg) =0 a.s. (28)

n—aoo mG(

Proof. If X is stationary then the same holds for Y, since Y (¢) is defined as the composition of a measurable
function with X (¢). Therefore, by Theorem 3, the limit (28) exists and is finite a.s.. On the other hand,
recalling that X, and X, are independent, an easy calculation gives that E(Y (¢)) = 0. We can also calculate
its covariance:

Ry (t) = E(Y (£)Y(0)) = E(Xc(t) X, (0) Xa(t) Xa(0)) = E(Xc(t) X(0))E(Xq(t) X4(0))
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= RXc(t)RXd(t) = <t,’Y>d(,Uch*,uXd>(7) .

Q)\

Where the last equality is due to the convolution property of the Fourier Transform of measures. Then

Wx ¢ * bx ¢ is the spectral measure of Y. But px . * px g is continuous. In fact, if Dy is the (countable)

support of p1x g, then for any v € G: px cxpxa({7}) = 2 pxc({y+7'}uxa({7'}) = Osince px o({7}) =0
y'€D

for any . Thus, by Theorem 4, we get that:

lim _ /Y(t)dmg(t) =E(Y(0)) =0 a.s.

n—o0 Mg Kn)

K’!L
O
A direct consequence is the following:
Lemma 9 Let X be a Gaussian stationary random process, then:
Mg (1X[?) = ME(|Xc[?) + M& (| Xal*) a.s. (29)

Proof. Given K,, € K,
1
———— [ | X®)|Pdmg(t

. 2 ' e X, (t))dm 1 20m
:mG(Kn)K/ [ Xe(1)] de(t)+mg(Kn) /2R (Xe(t) Xq(t))d G(t)+mG(Kn)K/Xd(t)| dme(t)

K,
Define the events:
Qo ={we Q:ME(XP)(w) < oo}, U = {w e Q: ME(|X.]?)(w) < 00}, Qe = {w e Q: ME(]X4]?)(w) < 00}
and
Qs ={weQ: MGX.X4) =0} .
Then, by Theorem 3, P(Q;) = 1, ¢ = 0,1,2. In addition P(Q3) = 1 by Lemma 8, equation (28). Conse-
quently, if Q= N3_o, P((N)) =1 then for every w € Q:

1
KxI2) — 1 2 _
ME(XP) = tim e [ 1X(tw)Pdma(t)
Ky

. 1 2 1 2
i | iy [ X0 Pdmal) + K/ Xat) Pdma(t) |

n——oQ
Kn

which proves (29). O

3.1 Main Results.

In Lemmas 6 and 9 we construct a subset-event of probability 1, where several required properties hold for
a certain random process. It will be clear that in some of the reminding results one may repeat a similar
argument. However, we left these details for the reader since it is assumed, at this point, that this is a clear
exercise.

Theorem 6 Let X be a stationary Gaussian random process. Then: there exists a support of ux a4, Dx €
B(G), such that Dx N Dx + X =10 for all A\ € H* \ {0}, if and only if

ME(IX ) = MY (1X|ul*) a.s.
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Proof. By Lemma 9 applied to X|p, since the same result can be applied over H in the place of G, in
addition to equation (29) we obtain:

MY (1X|1?) = MG (I(X|#)el?) + MY ((X[m)al?) a.s. (30)

=M} (| X[a]*) = My (|Xclnl*) + M (IXalal?) a.s., (31)

since by Lemma 5, X;|p = (X|g). and Xg|g = (X|m)q a-s..
By Theorem 3, the lim can be replaced by a lim in

/ X (1) Pdma (t) = ME(X %) a.s.

n

X4 = i
1 Xall 526 ) St me (Ky)

The same argument applies to X|g. So that equation (31) becomes:
M7 (X1 %) = M (1Xelul®) + | Xal 52 a1 ) @-5- (32)
In a similar way to (32) one can argue to obtain
ME(1X[?) = ME(Xe?) + 1 Xal Ba g ey a-5- (33)
In addition, from Lemma 7, M¥ (| X.|g|?) = MK(]X.|?) and thus, from equations (32) and (33),
ME(1X1%) = M (1X|ul) a-s.

if and only if ||Xd|HH2B2(H,;c/) = ||Xd||1292(G7,C) a.s. which, from Lemma 6, is equivalent to the condition
Dx N Dx + =0 forall A € H+\ {0}. O

We can also obtain a condition in terms of filtered versions of X. Namely:

Theorem 7 Let X be a stationary Gaussian random process. Then: there exists a support of pxa, Dx €
B(G), such that Dx N Dx + X =0 for all A\ € H* \ {0}, if and only if

ME(lo* XI*) = M) (lo * X|ul*) a.s. (34)

~

for every ¢ € A(G) .
Proof. Define the convolution process Y = ¢ x X = ¢ x X, + ¢ x X4. Then, if ¢ € A(CA?) C Lz(é,ux),
recalling Example 2.3.4 and equation (22), the spectral representation of the discrete component Yy is given
by:

Yat) = 3 (L)@}

v€Dx

Only if part) Let Y be defined as above. Is immediate that the discrete part of the spectral measure of Y,
is given by

pya(A) = Y 1aMIEMPux ), (35)

yEDx

and then there exists a support of py 4, Dy C Dy, so that Dy () Dy + A = ) for all A € H*\ {0}. But,
recalling Theorem 6, this is equivalent to MK(|Y]?) = MK (|Y|x]?) a.s..

If part) For Y defined as above, we shall construct an appropriate @ € A(G) such that Dx = Dy. To
simplify, let us enumerate Dx = {yx, k¥ € N}. In addition we can find a family of open neighbourhoods of
each v € Dy, say {V,, v € Dx} and such that 0 < mg(V,) < co. Recalling Proposition 1, for each k € N,

~

~

we can find a non-negative f € A(G) so that:

Fulvs) >0 and 1> fu(y) >0forally € G. (36)
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Now, we can define @ € A(QG) as
P =3 2 (). (37)

keN

By construction $(vx) > 0, for every k € N.

Thus, from equation (35), puy 4(yx) > 0 for k = 1,... or equivalently Dx = Dy. But recalling from
the hypothesis that MS([Y[?) = M& (|Y|g|?) a.s. we get, by Theorem 6, that Dy Dy + A = 0 for all
A € H+\ {0} with Dy = Dx, proving the claim. O

3.1.1 Stability Conditions.

Suppose that X is a Gaussian stationary random process for which some of the previous results hold. We
now aim to describe a condition under which the results are still valid for a corrupted or distorted version
of X. To illustrate, consider the following simple examples:

Example 1.

Let G = R (so that G = R), H = Z and H* = 277Z. In addition, let f € L?(R) and let X be a Gaussian
stationary random process with discrete spectrum. Suppose that we receive a signal Y which is X plus an
additive noise N. A reasonable model for N could be the following. If W' is a Wiener random measure over
R and independent of X, define N (¢ f F()et"dW (v) and Y (t) = X (t) + N(t) for each t € R. An easy

calculation shows that the spectral measure wy is given by:

iy (4) = px (A) + px(A) = pux (A) + / F)2dy, (38)
A

for each measurable subset A C R, and thus |[ux — py || pmr) = Ik |F(7)2dv . So that Y can be regarded as
R

the original signal corrupted by certain noise N with variance || f ||2LQ(R) and, by (38), this value gives an
idea of how close is X from Y. In fact, this also equals for all ¢, the mean square error: E|X(t) — Y (¢)|? =
||f|\2Lg(R) > 0, if f # 0. Suppose that it is also known that

1 N
Jim o /\Y\dt lim 2—_2

In this case, under the knowledge that X has originally discrete spectrum we can infer, by Theorem 6, that
there exists a support Dx of px verifying that Dx (((Dx +A) = 0 for all A € 27Z\ {0}, which is equivalent
to H(X) = H(X]|z) by Theorem 2.

Example 2

Let 40 € G, Ao € H* be such that wx ({70,70 + Ao}) = 0, and take € > 0. Another case of perturbation of
a random process can be given by the following model. We can consider a random process X with spectral
measure ¢ x and and a modified version of it X., with spectral random measure given by:

2.(4) = @x(4) + % (14(10)C0(0) + Lalo + M)l + Ao)

for any A € B(G). Where C(y) and C(v9 + Ag) ~ N(0,1) iid. complex random variables, and also

)

independent of X. In this case, since p. = px + §(0+, + d942,), We have that ||ux — NEHM(é) = £
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These examples motivate the following stability conditions. For A € B(é), define the subsets of M(CA?)
by:
HalA) = {ne M@): pa(A%) = 0}. (

H(A) = {peM(G): p(A%) =0}. (40)

Recall that U C # (A) is relatively open, with respect to ¢ (A), if there exists an open subset U’ C M(@)
such that U = U'(# (A). Analogously , we can consider relatively open subsets with respect to J#;(A).
Now, we can prove the following improvement of Corollary 1:

w
= =

~

Theorem 8 Let A € B(G). Then the following assertions are equivalent:
(i) ANA+X=0, for all \ € H+\ {0}.
(ii) There exists a relatively open and non empty subset U C J#g(A) so that

ME(IX*) = MY (1X|ul*) a.s.

for any Gaussian stationary process X such that ux € U.
(iti) There exists a relatively open and non empty subset U C ¢ (A) so that

H(X) = H(X|n)
for any Gaussian stationary process X such that ux € U.

Proof. (i) = (ii) For a fix p > 0, given a € A, consider &, and the open ball B(8,, p) C M(G). Define

U= | B(da,p) N HalA). (41)

a€ A

By construction, this subset U is relatively open. And the claim is an immediate consequence of Theorem 6.
Similarly, (i) = (iii) is a consequence of Theorem 2 by replacing #5(A) by 2 (A) in equation (41).

(ii)=(1) If U # 0 then there exists a Gaussian stationary random process, say X, such that its spec-
tral measure ux € U, and pux 4(A°) = 0. Suppose that A((A + \g) # 0 for some \g € H* \ {0}. Let
Dx be any support of ux g such that Dx C A, then we have two possibilities: Dx ((Dx + Ao) # 0 or
Dx N(Dx + o) = 0. In the first case, by Theorem 6, this is equivalent to MIS(|X|?) # MY (| X|x|?) with a
positive probability. And the result, for this case, is proved. R

In the other case, Dx((Dx + Ao) = 0 for all A € HL \ {0}, there exists vp € A\ Dx C G such
that {y0,7 + Ao} € A\ Dx. For ¢ > 0 we can define a new stationary Gaussian random process
X. = {X.(t),t € G} given by

Ve

X (t)=X(t)+ 5

(C((t:70) + C(ro + Xo)(t 70 + o)) (42)
for allt € G, with C(y9) and C(yo+Xo) ~ N (0,1) i.i.d. complex random variables, and also independent
of X. (In fact, X. has an spectral representation as in Example 2 )
Moreover, by a direct calculation, its covariance is

€
Rx.(t—s) = E(Xc()Xe(s)) = Bx (t = ) + 1 ({t,70) + (£, 70 + Ao)) -
Thus, since the spectral measure of X, verifies that uve = Rx_, then:

g
e :MX0+HJXd+ 1 (5’}/0 +(570+)\0) .

By construction, a support of the discrete part of u. , D, is given by:
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D: = {07+ }HJDx €A,

and consequently,

Da m(DE+)\0) #Qj (43)
Finally, since U is open, we can fix ¢ > 0 in (42) such that the open ball B(ux,e) € U. Moreover,

pe € B(px,¢e) since the supports of ., and .4, are disjoint, and therefore

) g g
lax = el @) = 5 190 + Sotrallpg@) = 5 (1l sa@ + 180exellin@) = 5

So, under the assumption that A[(A + A\g) # 0, we found a stationary random Gaussian process X. such
that its spectral measure . € U and, recalling Theorem 6, by equation (43) it also verifies: M (| X|?) #
MK (| X | #|?) with a positive probability.

(iii)==(i) Is very similar to the previous argument and we will sketch the main steps of the proof. Again,
if AN A+ \o # 0 for some A\g € H* \ {0}, since U is non empty there exists a Gaussian stationary random
process X such that px € U and therefore it has a support Sx C A. If ux(Sx N Sx + Ag) > 0 the result is
immediate by Theorem 2. Otherwise, we have that pux(Sx NSx + A) =0 for all A\ # 0. However, as in the
previous proof, we can take the same process X of (42) sufficiently close to X (in the sense of the norm of

~

M(G)) such that p. € U. Its spectral measure is given by pe = px + 5 (04, + 04,+2,) and thus Se a support
of X, verifies {\o, Ao + 70} C Se. Consequently:

€ €
e(Se [ Sero) > 1002 ({70 +20}) = 7 >0,
and therefore, by Theorem 2, H(X.) # H(X.|x). 0

An immediate consequence is that if we restrict to the class of Gaussian random processes with discrete
spectrum, the three conditions become equivalent.

~

Corollary 2 Let A € B(G). Then the following assertions are equivalent:
(i) ANA+X=0, for all \ € H+\ {0}.
(i) There exists U C My(G) relatively open with respect to {y € Mq(G) : p(A°) =0} so that:

2 2
||XHB2(G,)C) = HX|H||BZ(H,)C/) a.s.

for any Gaussian stationary process X such that px € U. R
(iii) There exists U C My(G) relatively open with respect to {u € Mq(G) : p(A°) =0} so that:

H(X) = H(X][n)

for any Gaussian stationary process X such that ux € U.

4 Appendix

4.1 The proof of Lemma 1.

Lemma 3, p.236 of the classic book [11], contains a proof of this result for a Real interval. However, in the
author’s opinion, the final steps of this proof contains a small gap since it involves the integration of a not
necessarily measurable function. In order to make the presentation self contained, we present the following
adaptation of the argument presented there.
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Proof. Let
o(t,y) = Z a;lp,(t,7) (44)

be a simple function, with R; = F; x B; € B(G) ® B( ) a measurable rectangle. Then, by the definition of
the stochastic integral, if w € Q: [ ¢(t,7)d®x (7)(w) = > a;lp, ()P x (B;)(w), which is clearly a B(G) ®@ F-

G
measurable. Now, let ¢ € L?(G x G, B(G)®F,v®pu), there exists a sequence of {p, }nen of simple functions,
of the form as (44), such that lim, ., ||¢n — CPHLz(GX@ B(G)aFwveu — 0. Therefore {¢n}nen is a Cauchy

sequence. Noting that, for each n, is defined f@ ©n(t,7)d®x () and is a measurable function:

2

dv(t).

i low = pulguionn = | B| Lont) ~ ontmavx s
G

Then there exists Y a B(G) ® F-measurable function such that

2
lim E dv(t) .

n—aoo

& Pn (ta V)dq)X (7) - Y(t)

On the other hand, for each t € G: lim E|[5 ¢n(t,7)d®x () — X(t )| where X (t) = [5@(t,7)d®x (7).
n—oo

Note that for mg-a.e. int € G: P(X(¢t) = Y(¢)) = 1, since v and m¢ are equ1valent measures. Now, for

each (t,w) € G x Q define a 0(B(G) ® F)-measurable process X in the following way:

~

X(t,w) =Y (t,w)lpxm=y@)=1} + Xt w)lpx )=y @)<1}
This measurable process verifies that P(X(¢) =Y (¢)) =1 for all t € G. O

4.2 More on Complex Stationary Random Processes.

Recall from Section 2.3.2, that a complex Gaussian stationary random process, that X is decomposed
in X(t) = X1(t) + iXo(t), where X; and X5 are two real stationary (cross)correlated stationary random
processes. Recall that in this case there exists two cross-spectral measures p; ; such that the cross correlations
verify E(X;(t)X;(s)) = [({t — s,7)du; j(7). Usually, in the applied literature it is claimed that condition (13)
is preserved by linear opcérations. In this direction, we state the following straightforward result adapted for
our context and for which no reference was found. Its proof is left for the reader.

Lemma 10 Let X be a complex w.s.s. stationary random process. The following statements are equivalent:

(i) X wverifies condition (13).

(ii) p11 = p22 and 1o = —pi21.

(111) B(Z1Z5) = 0, for every Z1,Zy € H(X).

In the Gaussian case, note that (#ii) implies that if in addition E(Z;Z3) = 0 then the random variables Z;

are independent. For example if f; € L?(G,B(G),dux), i = 1,2 are such that {f; # 0} N {f2 # 0} = 0 then

the random variables Z; = [ f;d®x, i = 1,2 are independent. This fact was extensively used throughout
€

the present article.
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