Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/11469
Título: GIAO C−H COSY simulations merged with artificial neural networks pattern recognition analysis: pushing the structural validation a step forward
Autor: Zanardi, María Marta 
Sarotti, Ariel M. 
Palabras clave: ESTRUCTURA QUIMICAESTRUCTURA MOLECULARQUIMICA TEORICA Y COMPUTACIONALCALCULOS QUIMICOS
Fecha de publicación: 2015
Editorial: ACS Publications
Cita: Zanardi, M.M., Sarotti, A.M. GIAO C−H COSY simulations merged with artificial neural networks pattern recognition analysis: pushing the structural validation a step forward [en línea]. The Journal of Organic Chemistry. 2015 (80). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11469
Resumen: Abstract: The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C−H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.
URI: https://repositorio.uca.edu.ar/handle/123456789/11469
ISSN: 1520-6904
1520-6904 (Online)
Disciplina: QUIMICA
DOI: 10.1021/acs.joc.5b01663
Derechos: Acceso abierto
Fuente: The Journal of Organic Chemistry Vol.80, 2015
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
giao-c-h-cosy-simulations-merged.pdf2,86 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro Dublin Core completo del ítem

Visualizaciones de página(s)

79
comprobado en 27-abr-2024

Descarga(s)

100
comprobado en 27-abr-2024

Google ScholarTM

Ver en Google Scholar


Altmetric

Altmetric


Este ítem está sujeto a una Licencia Creative Commons Creative Commons