Please use this identifier to cite or link to this item: https://repositorio.uca.edu.ar/handle/123456789/5494
Título : Mott transition and integrable lattice models in two dimensions
Autor : Bottesi, Federico L. 
Zemba, Guillermo Raúl 
Palabras clave : TRANSICION DE MOTTMATRICES DE INTERACCION ANTIFERROMAGNETICASECUACION DE ZAMOLODCHIKOVMODELO DE ISINGTEORIA DE CHERN SIMONSFISICA
Fecha de publicación : 2008
Cita : Bottesi FL, Zemba GR. Mott transition and integrable lattice models in two dimensions [en línea]. Documento de trabajo publicado en arXiv.org. 2008. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/5494
Resumen : Abstract: We describe the two-dimensional Mott transition in a Hubbard-like model with nearest neighbors interactions based on a recent solution to the Zamolodchikov tetrahedron equation, which extends the notion of integrability to two-dimensional lattice systems. At the Mott transition, we find that the system is in a d-density wave or staggered flux phase that can be described by a double Chern Simons effective theory with symmetry su(2)1 xsu(2)1. The Mott transition is of topological nature, characterized by the emergence of vortices in antiferromagnetic arrays interacting strongly with the electric charges and an electric-magnetic duality. We also consider the effect of small doping on this theory and show that it leads to a quantum gas-liquid coexistence phase, which belongs to the Ising universality class and which is consistent with several experimental observations.
URI : https://repositorio.uca.edu.ar/handle/123456789/5494
Disciplina: INGENIERIA
Derechos: Acceso Abierto
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat
0812.1764.pdf143,53 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

53
checked on Aug 11, 2022

Download(s)

19
checked on Aug 11, 2022

Google ScholarTM

Check



This item is licensed under a Creative Commons License Creative Commons