Please use this identifier to cite or link to this item:
https://repositorio.uca.edu.ar/handle/123456789/5423
Título : | Biomechanics and biotensegrity : study method and frequency response of the simplex and 3- bar-SVD tensegrity configurations | Autor : | Castro Arenas, Cristhian Ghersi, Ignacio Miralles, Mónica Teresita |
Palabras clave : | BIOMECANICA; BIOTENSEGRIDAD; INGENIERIA PARA LA SALUD | Fecha de publicación : | 2016 | Editorial : | IOP Publishing | Cita : | Castro Arenas C., Ghersi I., Miralles MT. Biomechanics and biotensegrity : study method and frequency response of the simplex and 3-bar-SVD tensegrity configurations [en línea]. Journal of physics : conference series 705 2016. DOI: 10.1088/1742-6596/705/1/012018 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/5423 | Resumen : | Abstract: The purpose of this work is to study the frequency response of 3D tensegrity structures. These are structures that have been used, since the 80’s, to model biological systems of different scales. This fact led to the origin of the field of biotensegrity, which includes biomechanics as a natural field of application. In this work: a) A simple method for the analysis of frequency response of different nodes in 3D tensegrity structures was set up and tuned. This method is based on a video-analysis algorithm, which was applied to the structures, as they were vibrated along their axis of symmetry, at frequencies from 1 Hz to 60 Hz. b) Frequency-response analyses were performed, for the simplest 3D structure, the Simplex module, as well as for two towers, formed by stacking two and three Simplex modules, respectively. Resonant frequencies were detected for the Simplex module at (19.2± 0.1) Hz and (50.2±0.1) Hz (the latter being an average of frequencies between homologous nodes). For the towers with two and three modules, each selected node presented a characteristic frequency response, modulated by their spatial placement in each model. Resonances for the two-stage tower were found at: (12 ±0.1) Hz; (16.2±0.1) Hz; (29.4±0.1) Hz and (37.2 ± 0.1) Hz. For the tower with three Simplex modules, the main resonant frequencies were found at (12.0± 0.1) Hz and (21.0± 0.1) Hz. Results show that the proposed method is adequate for the study (2D) of any 3D tensegrity structure, with the potential of being generalized to the study of oscillations in three dimensions. A growing complexity and variability in the frequency response of the nodes was observed, as modules were added to the structures. These findings were compared to those found in the available literature | URI : | https://repositorio.uca.edu.ar/handle/123456789/5423 | Disciplina: | INGENIERIA | Derechos: | Acceso Abierto |
Appears in Collections: | Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
biomechanics-biotensegrity-study.jpg | 2,23 kB | JPEG | ![]() View/Open | |
biomechanics-biotensegrity-study.pdf | 1,38 MB | Adobe PDF | ![]() View/Open |
Page view(s)
143
checked on Aug 9, 2022
Download(s)
143
checked on Aug 9, 2022
Google ScholarTM
Check
This item is licensed under a Creative Commons License