Please use this identifier to cite or link to this item:
Título : Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
Autor : Quintero Rincón, Antonio 
Chaari, Lotfi 
Batatia, Hadj 
Fecha de publicación : 2022
Editorial : Institute of Electrical and Electronics Engineers
Cita : Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en:
Proyecto: Estimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG) 
Resumen : Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.
ISSN : 2169-3536
Disciplina: INGENIERIA
DOI: 10.1109/ICTIH57289.2022.10111943
Derechos: Acceso restringido
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat Existent users please Login
robust-analysis-spectral-based.pdf759,39 kBAdobe PDF    Request a copy
Show full item record

Page view(s)

checked on Dec 5, 2023


checked on Dec 5, 2023

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons