Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/17073
Título: Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
Autor: Quintero Rincón, Antonio 
Chaari, Lotfi 
Batatia, Hadj 
Palabras clave: CONDUCTORINNOVACION TECNOLOGICAFATIGAELECTROENCEFALOGRAFÍAREDES GENERATIVAS ADVERSARIASAPRENDIZAJE PROFUNDO
Fecha de publicación: 2022
Editorial: Institute of Electrical and Electronics Engineers
Cita: Quintero Rincón, A., Chaari, L., Batatia, H. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals [en línea]. 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022. doi: 10.1109/ICTIH57289.2022.10111943. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17073
Proyecto: Estimación del retardo de tiempo en trenes de espigas en señales electroencefalográficas (EEG) 
Resumen: Abstract: Driver fatigue is a major cause of traffic accidents. Electroencephalogram (EEG) is considered one of the most reliable predictors of fatigue. This paper proposes a novel, simple and fast method for driver fatigue detection that can be implemented in real-time by using a single-channel on the scalp. The study has two objectives. The first consists of determining the single most relevant EEG channel to monitor fatigue. This is done using maximum covariance analysis. The second objective consists in developing a deep learning method to detect fatigue from this single channel. For this purpose, spectral features of the signal are first extracted. The sequence of features is used to train a Long Short Term Memory (LSTM), deep learning model, to detect fatigue states. Experiments with 12 EEG signals were conducted to discriminate the fatigue stage from the alert stage. Results showed that TP7 was the most significant channel, which is located in the left tempo-parietal region. A zone associated with spatial awareness, visual-spatial navigation, and the cautiousness faculty. In addition, despite the small dataset, the proposed method predicts fatigue with 75% accuracy and a 1.4-second delay. These promising results provide new insights into relevant data for monitoring driver fatigue.
URI: https://repositorio.uca.edu.ar/handle/123456789/17073
ISSN: 2169-3536
Disciplina: INGENIERIA
DOI: 10.1109/ICTIH57289.2022.10111943
Derechos: Acceso restringido
Fuente: 2022 International Conference on Technology Innovations for Healthcare (ICTIH) : 14 al 16 de septiembre. Magdeburg ; Alemania, 2022
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   Login
robust-analysis-spectral-based.pdf759,39 kBAdobe PDF   SOLICITAR ACCESO
Mostrar el registro Dublin Core completo del ítem

Visualizaciones de página(s)

49
comprobado en 27-abr-2024

Descarga(s)

17
comprobado en 27-abr-2024

Google ScholarTM

Ver en Google Scholar


Altmetric


Este ítem está sujeto a una Licencia Creative Commons Creative Commons