Please use this identifier to cite or link to this item: https://repositorio.uca.edu.ar/handle/123456789/7970
Título : Anomalous behavior identification using statistical analysis of large scale user interaction data
Autor : Urbano, Paulo 
Cruz, Rodrigo 
Dallegrave, Támara 
Otros colaboradores: Interaction Design Association ; Asociación de Profesionales en Experiencia de Usuario ; Internet Society ; Universidad Católica Argentina
Palabras clave : USABILIDADANALISIS ESTADISTICOUSUARIOSINTERACCIONTECNOLOGIA DE LA INFORMACIONCOMUNICACIONISA14
Fecha de publicación : 2014
Cita : Urbano, P., Cruz, R., Dallegrave, T. Anomalous behavior identification using statistical analysis of large scale user interaction data [en línea]. En: Interaction South America (ISA14) : 6ta. Conferencia Lationamericana de Diseño de Interacción; 2014 nov 19-22; Buenos Aires : Interaction Design Association ; Asociación de Profesionales en Experiencia de Usuario ; Internet Society ; Universidad Católica Argentina. Disponible en: http://bibliotecadigital.uca.edu.ar/repositorio/ponencias/anomalous-user-interaction-data.pdf
Resumen : Abstract: The challenge of identifying usability problems in interactive applications has been dealt with by companies for decades, but the amount of issues found in production systems illustrates how far we are from a widely usable solution. The integration of statistical analysis of large scale user interaction data into a user centered design process, presented by the authors in an earlier work [1], can significantly improve the chance of identifying usability problems in certain classes of applications. In this article, an expansion of the approach is proposed, leveraging the concept of ‘task’ as defined in the ISO 9241-11 [2] to create the basis for the automatic identification of anomalous interaction behavior. Here, ‘anomalous’ is understood as any statistically significant deviation from the expected interaction behavior, as defined in the implemented information architecture and navigation flow, or from the most often observed interaction pattern. With that, we argue, a relevant new tool to support the process of usability evaluation is created, uncovering interaction patterns not easily identifiable by other means
URI : https://repositorio.uca.edu.ar/handle/123456789/7970
Disciplina: COMUNICACION
Derechos: Acceso Abierto
Appears in Collections:Ponencias

Files in This Item:
File Description SizeFormat
anomalous-user-interaction-data.pdf271,88 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

28
checked on Mar 7, 2021

Download(s)

21
checked on Mar 7, 2021

Google ScholarTM

Check



This item is licensed under a Creative Commons License Creative Commons