Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/18415
Título: Segmentation of the human gait cycle using hidden Markov Models (HMM)
Autor: Molina, Diego Edwards 
Miralles, Mónica Teresita 
Florentin, Raúl 
Palabras clave: CICLO DE LA MARCHAMODELOS OCULTOS DE MARKOV
Fecha de publicación: 2024
Editorial: Springer Nature Switzerland
Cita: Molina, D. E., Miralles, M. T., Florentin, R. Segmentation of the human gait cycle using hidden Markov Models (HMM) [et al.]. En: Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024. doi: 10.1007/978-3-031-61973-1_8. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/18415
Resumen: Abstract: This paper provides a supervised Hidden Markov Model (HMM) for the segmentation of the human gait cycle. The model arises, in turn, from the combination of two HMM models, each with three hidden states, making use of the DepmixS4 and RcppHMM libraries of the free software R. The validation of the model was carried out with the cross-validation method in two different ways. The three accelerometer signals provided by the sensor located in the left ankle and in the right ankle, respectively, were processed in the 20 healthy young subjects (33.4 ± 7 years, height 172.6 ± 9.5 cm, muscle mass 73.2 ± 10.9 kg), the open base MAREA. The base has different tests in indoor and outdoor environment, allowing a variety of walking situations, even the combination of walking and running. In this way the model provides a new validation for the base. The results were expressed from the statistics derived from the confusion matrix: Accuracy, Sensitivity and Specificity. In the tests of walking for 3 min on the flat surface in close environment, the model reached: 99%, 84.1% and 93.2% respectively (sensor on left ankle).With the signals obtained from the right ankle, the valueswere 93%, 73% and 86.4%, respectively. In both cases, the acceleration signals were filtered with the Butterworth filter. The results are discussed with other authors who have used the same base with different algorithms.
URI: https://repositorio.uca.edu.ar/handle/123456789/18415
ISBN: 978-3-031-61972-4
Disciplina: INGENIERIA INDUSTRIAL
DOI: 10.1007/978-3-031-61973-1_8
Derechos: Atribución-NoComercial-CompartirIgual 4.0 Internacional
Fuente: Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024
Aparece en las colecciones: Libros/partes de libro

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   Login
segmentation-human-gait.pdf2,55 MBAdobe PDF   SOLICITAR ACCESO
Mostrar el registro Dublin Core completo del ítem

Google ScholarTM

Ver en Google Scholar



Este ítem está sujeto a una Licencia Creative Commons Creative Commons