Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uca.edu.ar/handle/123456789/17072
Título: | Reduction of the computational cost of tuning methodology of a simulator of a physical system | Autor: | Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
Palabras clave: | SIMULACION PARAMETRICA; METODOLOGIA DE SINTONIZACION; PATRON ORDINAL; BASES DE DATOS; HERRAMIENTAS INFORMATICAS; SOFTWARE | Fecha de publicación: | 2023 | Editorial: | Springer | Cita: | Trigila, M. et al. Reduction of the computational cost of tuning methodology of a simulator of a physical system [en línea]. En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. doi: 10.1007/978-3-031-36024-4_49. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17072 | Resumen: | Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit parameters. We carry out the symbolic representation of the time series using ordinal patterns to classify the series, which allows us to search and compare by similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29% compared with our tuning methodology proposed in previous research. | URI: | https://repositorio.uca.edu.ar/handle/123456789/17072 | ISBN: | 978-3-031-36023-7 (impreso) 978-3-031-36024-4 (online) |
Disciplina: | INFORMATICA | DOI: | 10.1007/978-3-031-36024-4_49 | Derechos: | Acceso restringido | Fuente: | En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. |
Aparece en las colecciones: | Libros/partes de libro |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | Login |
---|---|---|---|---|
reduction-computational-cost.pdf | 637,11 kB | Adobe PDF | SOLICITAR ACCESO |
Visualizaciones de página(s)
43
comprobado en 27-abr-2024
Descarga(s)
6
comprobado en 27-abr-2024
Google ScholarTM
Ver en Google Scholar
Altmetric
Este ítem está sujeto a una Licencia Creative Commons