Please use this identifier to cite or link to this item: https://repositorio.uca.edu.ar/handle/123456789/14612
Título : Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells
Autor : Delmont, Ignacio 
Buena Maizon, Héctor 
Mosqueira, Alejo 
Barrantes, Francisco José 
Palabras clave : INTELIGENCIA ARTIFICIALPROTEINASNEUROTRANSMISORESNANOSCOPIABIOMEDICINA
Fecha de publicación : 2020
Editorial : Cambridge University Press
Cita : Delmont, I. et al. Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells [en línea]. Microscopy and Microanalysis. 2020, 26 (sup. 1). doi: 10.1017/S143192762000032X. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14612
Resumen : Abstract: Storm (stochastical optical reconstruction microscopy), a form of single-molecule nanoscopy, calls for a variety of statistical and mathematical operations to reconstruct the original objects from their noisy wide-field point spread functions [1]. We are interested in understanding the dynamics of the nicotinic acetylcholine receptor (nAChR) protein, a cell-surface neurotransmitter receptor. Analyzing the translational motion of nAChR molecules by single-particle tracking in living cells is a complex task. In order to understand how nAChR molecules associate/dissociate into/from nanometer-sized clusters over time, and to characterize their trajectories according to different mathematical models, we are developing analytical procedures based on artificial intelligence. Due to their speed of calculation and accuracy, deep learning models are clearly an improvement on classical models in biological image analysis and biomedical science.
URI : https://repositorio.uca.edu.ar/handle/123456789/14612
ISSN : 1431-9276
Disciplina: MEDICINA
DOI: 10.1017/S143192762000032X
Derechos: Acceso abierto
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat
application-artificial-intelligence.pdf347,81 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

14
checked on Aug 9, 2022

Download(s)

1
checked on Aug 9, 2022

Google ScholarTM

Check


Altmetric


This item is licensed under a Creative Commons License Creative Commons