Please use this identifier to cite or link to this item: https://repositorio.uca.edu.ar/handle/123456789/8794
Título : Dissecting thyroid hormone transport and metabolism in dendritic cells
Autor : Gigena, Nicolás 
Alamino, Vanina A. 
Montesinos, María Del Mar 
Nazar, Magalí 
Louzada, Ruy A. 
Wajner, Simone M. 
Maia, Ana L. 
Masini-Repiso, Ana M. 
Carvalho, Denise P. 
Cremaschi, Graciela A. 
Pellizas, Claudia G. 
Palabras clave : INMUNOLOGIAGLANDULA TIROIDESHORMONASNEURONASMETABOLISMO
Fecha de publicación : 2017
Editorial : BioScientifica
Cita : Gigena N, Alamino VA, Montesinos M del M, et al. Dissecting thyroid hormone transport and metabolism in dendritic cells [en línea]. Journal of Endocrinology. 2017;232(2). doi:10.1530/JOE-16-0423 Registro en: https://repositorio.uca.edu.ar/handle/123456789/8794
Resumen : Abstract: We reported thyroid hormone (TH) receptor expression in murine dendritic cells (DCs) and 3,5,3'-triiodothyronine (T3)-dependent stimulation of DC maturation and ability to develop a Th1-type adaptive response. Moreover, an increased DC capacity to promote antigen-specific cytotoxic T-cell activity, exploited in a DC-based antitumor vaccination protocol, was revealed. However, putative effects of the main circulating TH, l-thyroxine (T4) and the mechanisms of TH transport and metabolism at DC level, crucial events for TH action at target cell level, were not known. Herein, we show that T4 did not reproduce those registered T3-dependent effects, finding that may reflect a homoeostatic control to prevent unspecific systemic activation of DCs. Besides, DCs express MCT10 and LAT2 TH transporters, and these cells mainly transport T3 with a favored involvement of MCT10 as its inhibition almost prevented T3 saturable uptake mechanism and reduced T3-induced IL-12 production. In turn, DCs express iodothyronine deiodonases type 2 and 3 (D2, D3) and exhibit both enzymatic activities with a prevalence towards TH inactivation. Moreover, T3 increased MCT10 and LAT2 expression and T3 efflux from DCs but not T3 uptake, whereas it induced a robust induction of D3 with a parallel slight reduction in D2. These findings disclose pivotal events involved in the mechanism of action of THs on DCs, providing valuable tools for manipulating the immunogenic potential of these cells. Furthermore, they broaden the knowledge of the TH mechanism of action at the immune system network.
URI : https://repositorio.uca.edu.ar/handle/123456789/8794
ISSN : 0022-0795 (impreso)
1479-6805 (online)
Disciplina: MEDICINA
DOI: 10.1530/JOE-16-0423
Derechos: Acceso abierto
Appears in Collections:Artículos

Show full item record

Page view(s)

77
checked on Oct 21, 2020

Google ScholarTM

Check


Altmetric


This item is licensed under a Creative Commons License Creative Commons