Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/19929
Título: Advances in diagnosis, classification, and management of pain in Parkinson’s disease
Autor: Tinazzi, Michele 
Gandolfi, Marialuisa 
Artusi, Carlo Alberto 
Bannister, Kirsty 
Rukavina, Katarina 
Brefel-Courbon, Christine 
Ciampi de Andrade, Daniel 
Pérez Lloret, Santiago 
Mylius, Veit 
Palabras clave: ENFERMEDAD DE PARKINSONDIAGNOSTICOCLASIFICACIONMANEJO DEL DOLOR
Fecha de publicación: 2025
Editorial: Pontificia Universidad Católica Argentina
Resumen: With over 10 million people affected worldwide, Parkinson’s disease is the fastest-growing neurological disorder. More than two-thirds of people with Parkinson’s disease live with chronic pain, which can manifest in various stages of the disease, substantially affecting daily activities and quality of life. The Parkinson’s disease Pain Classification System overcomes the limitations of previous classification systems by distinguishing between pain related to Parkinson’s disease and unrelated pain, while also incorporating clinical and pathophysiological (mechanistic) descriptors such as nociceptive, neuropathic, and nociplastic pain. This system provides a framework for accurate diagnosis and mechanism-based therapy. Alongside the appropriate classification of pain, consideration of treatment approaches that include non-invasive (pharmacological and non-pharmacological) and invasive strategies tailored to specific types of pain will refine and inform research trials and clinical practice when it comes to treating pain in Parkinson’s disease.
URI: https://repositorio.uca.edu.ar/handle/123456789/19929
ISSN: 1474-4422
DOI: 10.1016/S1474-4422(25)00033-X
Derechos: Atribución-NoComercial-CompartirIgual 4.0 Internacional
Fuente: The Lancet Neurology. 24, 2025.
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   Login
advances-diagnosis-classification.pdf744,91 kBAdobe PDF   SOLICITAR ACCESO
advances-diagnosis-classification.jpg662,82 kBJPEGVista previa
Visualizar/Abrir
Mostrar el registro Dublin Core completo del ítem

Google ScholarTM

Ver en Google Scholar


Altmetric

Altmetric


Este ítem está sujeto a una Licencia Creative Commons Creative Commons