Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/14751
Campo DC Valor Lengua/Idioma
dc.contributor.authorOuret, Javier A.es
dc.contributor.authorParravicini, Ignacioes
dc.date.accessioned2022-08-23T18:49:54Z-
dc.date.available2022-08-23T18:49:54Z-
dc.date.issued2018-
dc.identifier.citationOuret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751es
dc.identifier.isbn978-1-5386-5447-7-
dc.identifier.urihttps://repositorio.uca.edu.ar/handle/123456789/14751-
dc.description.abstractAbstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherIEE Explorees
dc.rightsinfo:eu-repo/semantics/closedAccess*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceII Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018es
dc.subjectPROTOCOLOSes
dc.subjectAPRENDIZAJE AUTOMÁTICOes
dc.subjectMODELO DE DATOSes
dc.subjectREDESes
dc.titleQuality of service assesment using machine learning techniques for the NETCONF protocoles
dc.typeDocumento de conferenciaes
dc.identifier.doi10.1109/CACIDI.2018.8584342-
uca.disciplinaINFORMATICAes
uca.issnrd1es
uca.affiliationFil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentinaes
uca.affiliationFil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentinaes
uca.versionpublishedVersiones
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextreserved-
crisitem.author.deptFacultad de Ingeniería y Ciencias Agrarias-
crisitem.author.parentorgPontificia Universidad Católica Argentina-
Aparece en las colecciones: Ponencias
Ficheros en este ítem:
Fichero Descripción Tamaño Formato   Login
quality-service-assesment.pdf445,88 kBAdobe PDFVista previa
   SOLICITAR ACCESO
Mostrar el registro sencillo del ítem

Visualizaciones de página(s)

145
comprobado en 27-abr-2024

Descarga(s)

17
comprobado en 27-abr-2024

Google ScholarTM

Ver en Google Scholar


Altmetric


Este ítem está sujeto a una Licencia Creative Commons Creative Commons