Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uca.edu.ar/handle/123456789/14114
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Buena Maizon, Héctor | es |
dc.contributor.author | Barrantes, Francisco José | es |
dc.date.accessioned | 2022-06-07T13:52:38Z | - |
dc.date.available | 2022-06-07T13:52:38Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Buena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114 | es |
dc.identifier.issn | 1477-4054 (online) | - |
dc.identifier.uri | https://repositorio.uca.edu.ar/handle/123456789/14114 | - |
dc.description.abstract | Abstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model. | es |
dc.format | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Oxford University Press | es |
dc.rights | Acceso restringido | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source | Briefings in Bioinformatics Vol.23, No.1, 2022 | es |
dc.subject | INTELIGENCIA ARTIFICIAL | es |
dc.subject | APRENDIZAJE AUTOMÁTICO | es |
dc.subject | APRENDIZAJE PROFUNDO | es |
dc.subject | PROTEÍNA DE MEMBRANA | es |
dc.subject | RECEPTOR DE NEUROTRANSMISORES | es |
dc.subject | RECEPTOR DE ACETILCOLINA | es |
dc.subject | COLESTEROL | es |
dc.subject | SEGUIMIENTO DE PARTÍCULAS INDIVIDUALES | es |
dc.subject | MICROSCOPÍA DE SUPERRESOLUCIÓN | es |
dc.title | A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor | es |
dc.type | Artículo | es |
dc.identifier.doi | 10.1093/bib/bbab435 | - |
uca.disciplina | MEDICINA | es |
uca.issnrd | 1 | es |
uca.affiliation | Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina | es |
uca.affiliation | Fil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es |
uca.affiliation | Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina | es |
uca.affiliation | Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina | es |
uca.version | publishedVersion | es |
item.grantfulltext | embargo_21000101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Instituto de Investigaciones Biomédicas - BIOMED | - |
crisitem.author.dept | Laboratorio de Neurobiología Molecular | - |
crisitem.author.dept | Facultad de Ciencias Médicas | - |
crisitem.author.orcid | 0000-0002-4745-681X | - |
crisitem.author.parentorg | Facultad de Ciencias Médicas | - |
crisitem.author.parentorg | Instituto de Investigaciones Biomédicas - BIOMED | - |
crisitem.author.parentorg | Pontificia Universidad Católica Argentina | - |
Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | Login |
---|---|---|---|---|
deep-learning-based-approach.pdf | 4,6 MB | Adobe PDF | SOLICITAR ACCESO |
Visualizaciones de página(s)
83
comprobado en 27-abr-2024
Descarga(s)
19
comprobado en 27-abr-2024
Google ScholarTM
Ver en Google Scholar
Altmetric
Altmetric
Este ítem está sujeto a una Licencia Creative Commons