Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uca.edu.ar/handle/123456789/14114
Campo DC Valor Lengua/Idioma
dc.contributor.authorBuena Maizon, Héctores
dc.contributor.authorBarrantes, Francisco Josées
dc.date.accessioned2022-06-07T13:52:38Z-
dc.date.available2022-06-07T13:52:38Z-
dc.date.issued2022-
dc.identifier.citationBuena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114es
dc.identifier.issn1477-4054 (online)-
dc.identifier.urihttps://repositorio.uca.edu.ar/handle/123456789/14114-
dc.description.abstractAbstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherOxford University Presses
dc.rightsAcceso restringido*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceBriefings in Bioinformatics Vol.23, No.1, 2022es
dc.subjectINTELIGENCIA ARTIFICIALes
dc.subjectAPRENDIZAJE AUTOMÁTICOes
dc.subjectAPRENDIZAJE PROFUNDOes
dc.subjectPROTEÍNA DE MEMBRANAes
dc.subjectRECEPTOR DE NEUROTRANSMISORESes
dc.subjectRECEPTOR DE ACETILCOLINAes
dc.subjectCOLESTEROLes
dc.subjectSEGUIMIENTO DE PARTÍCULAS INDIVIDUALESes
dc.subjectMICROSCOPÍA DE SUPERRESOLUCIÓNes
dc.titleA deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptores
dc.typeArtículoes
dc.identifier.doi10.1093/bib/bbab435-
uca.disciplinaMEDICINAes
uca.issnrd1es
uca.affiliationFil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentinaes
uca.affiliationFil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes
uca.affiliationFil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentinaes
uca.affiliationFil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentinaes
uca.versionpublishedVersiones
item.grantfulltextembargo_21000101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.deptInstituto de Investigaciones Biomédicas - BIOMED-
crisitem.author.deptLaboratorio de Neurobiología Molecular-
crisitem.author.deptFacultad de Ciencias Médicas-
crisitem.author.orcid0000-0002-4745-681X-
crisitem.author.parentorgFacultad de Ciencias Médicas-
crisitem.author.parentorgInstituto de Investigaciones Biomédicas - BIOMED-
crisitem.author.parentorgPontificia Universidad Católica Argentina-
Aparece en las colecciones: Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato   Login
deep-learning-based-approach.pdf4,6 MBAdobe PDF    SOLICITAR ACCESO
Mostrar el registro sencillo del ítem

Visualizaciones de página(s)

83
comprobado en 27-abr-2024

Descarga(s)

19
comprobado en 27-abr-2024

Google ScholarTM

Ver en Google Scholar


Altmetric

Altmetric


Este ítem está sujeto a una Licencia Creative Commons Creative Commons