
1

Computação Musical
Simpósio Brasileiro de

12th Brazilian Symposium on Computer Music

NUCOM – Comissão Especial de Computação Musical da SBC
Sociedade Brasileira de Computação

http://compmus.ime.usp.br/sbcm/

7-9 September , 2009
Recife – PE – Brazil

Proceedings of the 12th Brazilian
Symposium on Computer Music
Anais do 12º Simpósio Brasileiro de Computação Musical

III

Computação Musical
Simpósio Brasileiro de

12th Brazilian Symposium on Computer Music

Promoção / Promotion:

Organização / Organization:

Suporte / Sponsorship:

Apoio / Institutional support:

NUCOM/CECM Comissão Especial de Computação Musical da SBC

Simpósio Brasileiro de Computação Musical (12. : 2009 : Recife)
 Proceedings of the 12th Brazilian Symposium on Computer Music,
September 7-9, 2009, Recife, Brazil / eds. Marcelo Pimenta, Damián Keller,
Regis Faria, Marcelo Queiroz, Geber Ramalho, Giordano Cabral ; org. tec. Mar-
celo Pimenta ; org. mus. Damián Keller ; org. local Geber Ramalho e Giordano
Cabral ; org. geral Regis Faria e Marcelo Queiroz. – São Paulo : USP : SBC,
2009.
 on-line + CD-ROM

 ISSN 2175-6759
 http://compmus.ime.usp.br/sbcm/

 1. Computação musical (Congressos) 2. Computação aplicada
(Congressos) 3. Música computacional (Congressos) I. Sociedade Brasileira de
Computação II. Universidade de São Paulo III. Universidade Federal do Rio
Grande do Sul IV. Universidade Federal do Acre V. Universidade Federal de
Pernambuco VI. t.

CDD 004
786.76

 1

Pitch-class composition in the pd environment

Pablo Cetta
1
, Oscar Pablo Di Liscia

2

1
 Universidad Católica Argentina, Facultad de Artes y Ciencias Musicales, Buenos Aires,

Argentina.

2
Universidad Nacional de Quilmes, Carrera de Composición con Medios Electroacústicos, Bernal,

Argentina.

Pablo_cetta@uca.edu.ar , odiliscia@unq.edu.ar

Abstract. This paper presents research on composition-assisted software using the Pitch-

Class Sets technique [Babbitt, 1961] [Forte, 1974]. In order to use the mentioned

techique on music composition and analysis, a Library of External Objects for the

program Pure Data [Puckette, 2009] was developed. The Pitch-Class Set technique uses

both the combinatorial and set theory to organize the twelve Pitch-Classes of the tempered

system in Sets in order to exploit their structural properties on atonal music composition

and analysis. A latter projection of this system explores the possibilities of disposition of

the Pitch-Class Sets in the musical space producing Combinatorial Matrices [Morris,

1984, 1987].

1. Presentation

The Pitch-Class Set technique uses both the combinatorial and set theory to organize the twelve

Pitch-Classes of the tempered system in Sets (Pitch-Class Set will be from here on abbreviated as

PCS) in order to exploit their structural properties on atonal music composition and analysis.

Although it is clearly granted that this system was inspired on the European pre and post serial

atonal music, it was initially developed by American composers and theorists [Babbitt, 1961]

[Forte, 1974].

1.1 Pitch Class Sets.

Generally speaking, the PCSs technique covers three aspects: Taxonomy, Properties and Relations.

The first aspect deals with the concept of the PCS as a subset of the Universal Superset formed by

the twelve pitch-classes(also called ―aggregate‖) and the concepts of equivalence by inversion-

transposition that generate the 224 different Set-Classes(Set-Class will be from here abbreviated as

SC). The second defines, encodes, analyzes and classifies the structural features of each SC (as is,

for example, its Interval Class Vector). The third deals with the possible relations between PCSs

and SCs and their significance in the musical context (see, [Forte, 1974], [Morris, 1980], [Isaacson,

1990], [Rahn, 1980], among others).

1.2 Combinatorial Matrices.

A latter projection of this system explores the possibilities of disposition of PCSs in the musical

space producing Combinatorial Matrices (Combinatorial Matrix will be from here on abbreviated

as CM) and creating abstract compositional designs [Morris, 1984, 1987]. Such approach is based,

of course, on the assumption that it is possible to extend some of the properties and relations of the

PCSs to successions and combinations of them, a fact that is –in the opinion of the authors- proven

by both the music and the theory of atonal music. In the theoretical works of Morris [Morris, 1984,

1987], the CMs are two-dimensional combinations of PCSs where the constancy of one or two SCs

 2

is regarded as a cohesive factor, as it may provide some sonic uniformity. The extension of this

criterion to more than two PCSs is also possible, being the easiest way of accomplishing it the

combination (by juxtaposition or superposition) of the ―simple‖ CMs. This possibility will be

shown and explained in the final section of this paper.

1.3 And what about music?

An outstanding number of significant relations of the PCSs theory with the organizations of other

sound or music properties (such as register, duration, intensity and timbre, among others) have been

already developed in serial music and its derivations (See, among other, [Stockhausen, 1959],

[Babbitt, 1961, 1962], [Mead, 1987], [Roming, 2000]). These relations provide an important basis

for the production of meaningful music, as they may allow the production of a truly multi-

dimensional musical space.

2-Computer applications of the theory

The complexity of the atonal theory makes its practical application almost impossible without the

aid of computer applications. As a matter of fact, the PCSs technique and its extensions seem to be

developed in synergy with the software for musical composition and analysis. This research and

development approach was followed in the project ―Desarrollo de aplicaciones informáticas para

la organización de la altura temperada en la composición y análisis musical‖ (Area Trans

Departamental de Artes Multimediales, Instituto Universitario Nacional del Arte, 2007-2008). The

results of the projects are several computer applications, publications, documentation and data that

may be obtained at: http://www.iuna.edu.ar/departamentos/multimedia/investiga/sitio_analisis/

 One of the computer applications developed in this project is the pcslib library to be used in

the pd environment (Pure Data, [Puckette, 2009]). pcslib is a set of ―external objects‖ that allows

the work with PCSs and CMs in the pd environment. Generally speaking, the developed objects are

software units that work with high level data types. The pcslib library is fully documented and some

examples of the use of each object are provided as well. pcslib is an open source, and of free use,

copy, and distribution. Among other factors, the pd environment was selected because it allows

structured programming and because of its capability of handling Audio, MIDI and Graphic data in

real and non-real time. The first feature ensures the possibility of working with different levels of

data abstractions, which is especially useful in the applications of the PCSs and CMs theory to

composition.

2.1 PCS and CM numerical representation in pcslib.

Because of both computing requirements and theoretical conventions, pcslib uses a numerical

representation of the attributes of the PCSs and CMs which will be briefly described in this section.

Since the code of pcslib is available, a user who is experienced in c programming language can

find further details easily, if necessary.

A PCS is a set of Pitch Classes(PCs), each one of these being represented by one

integer(from 0 to 11). Usually, a PCS is considered as non-ordered, meaning that 0,1,2,3 is

equivalent to 0,2,1,3 and also to 0,1,3,2 and so on. However, in order to work properly with Chains

and CMs it is necessary to consider the PCSs as partially ordered, in the sense that a PCS may have

different groupings of its PCs referred to as positions. Such partially ordered PCS is referred to as a

chain. A position of a chain may have more than one PC as well.

For example, the same PCS {0,2,4,5} may be distributed forming different chains with

different number of positions(separated by spaces in what follows):

 3

0245 (just one position with the four PCs)

02 45 (two positions with two PCs each)

024 5 (two positions with three and one PCs each respectively)

0 245 (two positions with one and three PCs each respectively)

0 24 5 (three positions with one, two, and one PCs each respectively)

In order to reflect numerically this ordering, pcslib represent an end of position with a -1 and

each end of chain with a -2. Thus, the former examples of chains will be internally represented in

pcslib as:

0245 -2

02 -1 45 -2

024 -1 5 -2

0 -1 245 -2

0 -1 24 -1 5 -2

A CM (Combinatorial Matrix) is a bi-dimensional array of PCs. X being a CM, the content

of each of its positions may be accessed at Xrow,column. The PCS content of each column and row of a

CM must belong to the same SC or either to two different SCs[See Morris, 1984, 1987]. The

simplest of the CMs is the one called roman square. An example of this CM is shown below:

0 1 3 4

1 3 4 0

3 4 0 1

4 0 1 3

Here we have a CM with 4 rows and 4 columns(4*4=16 positions) and only one PC in each

position(which is, of course, not always the case).

A CM is represented by pcslib having as many vectors of 9 positions each as positions the

CM have. Any position of each vector which is empty (i.e., with no PC in it) will be filled with a -4.

For example, the former roman square CM shown above will be represented internally by pcslib as:

[0 -4 -4 -4 -4 -4 -4 -4 -4] [1 -4 -4 -4 -4 -4 -4 -4 -4] [3 -4 -4 -4 -4 -4 -4 -4 -4] [4 -4 -4 -4 -4 -4 -4 -4 -4]

[1 -4 -4 -4 -4 -4 -4 -4 -4] [3 -4 -4 -4 -4 -4 -4 -4 -4] [4 -4 -4 -4 -4 -4 -4 -4 -4] [0 -4 -4 -4 -4 -4 -4 -4 -4]

[3 -4 -4 -4 -4 -4 -4 -4 -4] [4 -4 -4 -4 -4 -4 -4 -4 -4] [0 -4 -4 -4 -4 -4 -4 -4 -4] [1 -4 -4 -4 -4 -4 -4 -4 -4]

[4 -4 -4 -4 -4 -4 -4 -4 -4] [0 -4 -4 -4 -4 -4 -4 -4 -4] [1 -4 -4 -4 -4 -4 -4 -4 -4] [3 -4 -4 -4 -4 -4 -4 -4 -4]

(PCs are marked boldface, and each [...] enclose the data representing a position of the CM)

A CM may have one or more positions with more than one PC in it, and/or one or more empty

positions as well. For example, the 6X6 CM which follows combines positions of 3 and 2 PCs each.

The CM shown below have several empty positions as well (positions [1][0], or [0][2], for

example). An empty position is represented by pcslib as one -3 followed by eight -4 values. Note

also that, in order to use only one character for each integer, an ―A‖ replacing the integer 10 and a

―B‖ replacing the integer 11 are used, but this is only for ―printing neatness‖, not for the internal

representation of the data.

 4

01 376 - - - -

- 23 589 - - -

- - 45 7AB - -

- - - 67 019 -

- - - - 89 23B

145 - - - - AB

2.2 Special data types used by pcslib under pd:

In order to perform an efficient data transfer between its different objects, in addition to the pd usual

data types(like floats, lists, symbols, etc.), pcslib uses two special data types.

 1-Pointers to structures of the PCS type.

 2-Pointers to structures of the CM type.

Details of each type of structure can be found in the pcslib code. Of course, the data of each

one of these structures cannot be accessed directly, but there are objects especially dedicated to

create, read and modify them.

2.3 Summary of pcslib externals:

Due to the extension limitations of this paper, a detailed description of each of the 17 externals

objects of pcslib will not be done. Therefore, this section will only present a summary of them. Two

brief examples of use are provided in the next section.

Pitch-class sets(PCS) objects:

pcs_write: The pcs_write object generates a PCS using data delivered by the user. The PCS

is scanned at the PCS table and transposed and/or inverted, if required.

pcs_read: The pcs_read object reads and classifies the data in a PCS structure.

pcs_pf: The pcs_pf object finds the prime form of a PCS and stores all its associated data in

a PCS structure.

pcs_ttos: The pcs_ttos object performs the Transposition, Inversion followed by

transposition or Multiplication operations on a PCS.

pcs_subs: The pcs_subs object gets the all the subsets of cardinal n out of a given PCS.

pcs_sim: The pcs_sim object evaluates the similarity degree of two SCs according to either

Forte, Morris or Isaacson´s criteria(See [Forte, 1974], [Morris, 1980], [Isaacson, 1990]). In addition

it also checks if the two PCSs belong to the same Kh complex(See [Forte, 1978]).

pcs_invar: The pcs_invar object finds the shared PCs between two or more PCSs.

pcs_parts: The pcs_parts object gets all the binary partitions out of a given PCS.

Combinatorial Matrix(CM) objects

cm_roman: The cm_roman object creates a roman square type of CM(see [Morris, 1984,

1987]).

cm_t1a: The cm_t1a object creates a t1a type of CM(see [Morris, 1984, 1987]).

cm_t1b: The cm_t1b object creates a t1b type of CM(see [Morris, 1984, 1987]).

cm_t2: The cm_t2 object creates a t2 type of CM(see [Morris, 1984, 1987]).

cm_opcy: The cm_opcy object creates a CM using cycles of operators(see [Morris, 1984,

1987]).

 5

cm_2txt: The cm_2txt object has no output, only post to the pd prompt a "clean" i.e., not

raw, version of a CM.

cm_read: The cm_read object gets the ―raw‖ data in a CM. -3 and -4 are spaces and empty

positions, respectively.

cm_2pcs: The cm_2pcs object gets a PCS from a CM.

cm_trans: The cm_trans object performs several transformations on a given CM. The

transformations that may be performed by this object are: transposing, inverting, rotating by the

diagonal, rotating by 90 degrees, exchange of rows or columns content and swapping elements to

decrease density.

2.4 Two examples

In order to show some of the pcslib potential, two examples are presented in this section. Although

the output of the pd patches shown is numerical and highly abstract, the readers must keep in mind

that the goal of pcslib is to provide a toolkit for generating a control-signal flow which may be

useful to drive a digital musical system. The design of such musical systems, however, implies large

patches using the MIDI and Audio capabilities of pd and is not the subject of this paper.

First, a simple pd patch using the pcs_pf and pcs_read externals is shown on Figure 1. This

simple patch intends to show just one way in which the PCS data type may be created, transmitted

and read in order to access its data members, as well as introduces the reader in some of the basic

concepts of the PCSs theory. In the patch, a list containing Pitch-Classes is passed to the pcs_pf

object, which creates a PCS whose pointer is passed to the pcs_read object. The latter object

outputs the following data by its seven outlets (ordered from left to right):

outlet1: The original PCs of the PCS as delivered (floats list).

outlet2: The cardinal number (float), i.e., the number of different PCs that the PCS have.

outlet3: The ordinal number (float) of the PCS. A number indicating the SC to which the PCS

belongs. The Atonal Theory uses the cardinal and the ordinal numbers separated by a hyphen to

define the name of the PCS and its SC (See [Forte, 1974]). In the example shown, the PCS name is

―5-17‖.

outlet4: The status (T/I) (symbol). The transposition and/or inversion status of the PCS.

outlet5: The prime form of the PCS (floats list). The prime form of a PCS is a version of it

determined by convention (See [Forte, 1974]).

outlet6: The interval-class vector (floats list). The six floats delivered represent the interval contents

(interval-class content) of the PCS. The data is to be interpreted as a six-position numerical vector.

Thus, the first number is the amount of members of the interval-class 1 (minor second, or SC 2-1),

the second one is the amount of members of the interval-class 2 (major second, or SC 2-2), and so

on.

outlet7: The literal complement of the PCS, i.e., the PCs that are not included in it (floats list).

 It is important to note that, once a PCS structure is created, all its data may be useful to

perform more complex operations in a signal flow which may drive a musical system. Just as an

example, a patch could be done in which a minimal number of members of any interval-class of a

PCS is required to take an action. Another possibility could be to compare two or more PCSs (using

the pcs_sim object) in order to check whether a certain kind of relation stands.

 6

Figure 1: A pd patch using the pcs_pf and pcs_read objects.

The second patch presented uses the combination of PCSs in order to generate a CM, and

performs several transformations of it. Here, a list containing Pitch Classes is passed to the pcs_pf

object, which creates a PCS whose pointer is passed to the cm_opcy object. The latter object creates

a CM and passes its pointer to the cm_trans object which will perform the transformations that are

requested by the messages that are allowed to process. The cm_2txt shows the resulting CM and its

successive transformations on the pd prompt. The patch is shown in Figure 2.

Figure 2: A pd patch using the cm_opcy and cm_trans objects.

 7

Figure 3: Plot of successive swapping operations on a CM.

In this case, a series of swapping operations was selected to get different variations of the

original CM. The CMs resulting from the successive swapping operations are shown in Figure 3. It

can be easily seen that the swapping operation is produced by the object cm_trans without changing

the PCS content of the CM, thus producing a decrease in density(the amount of PCs in each position

of the CM) while preserving the sonic uniformity.

The latter structures can be presented in different ways in order to generate a meaningful

music sequence. Just to show one of them, the same time-interval is assigned to each PC in the CM,

each one of its rows is assigned to a pitch register, and the beginning of each CM row is marked

with an accent. The sequence shows an increasing density in simultaneity of notes and accents.

Also, it can be seen that the time pattern of the accents is homogeneous at the beginning and the end

of the sequence whilst it is non-homogeneous at its middle. The musical sequence is scored in two

staffs only to keep it easier for reading and is shown in Figure 4.

 8

Figure 4: A musical sequence using the output of the patch shown in Figure 2.

3-Conclusions

Though pcslib is at present still under development, an important number of external objects that

are capable to perform operations of significant complexity have already been developed. The CM

generation algorithms are effective and capable of generating a great number of them, but many of

these are trivial and/or tautological. This does not mean that they are not useful, as it was shown by

the examples that they constitute a strong base for creating pitch-organised music. It was also

shown that, in order of having music and not merely PCSs and/or CMs, still higher level (i.e., more

―close to music‖) programming is needed. Some of the directions to be further explored in the latter

approach may include the development and implementation of criteria for the selection and

combination of CMs.

 9

4-References

Babbit, Milton (1961) ―Set Structure as Composicional Determinant‖, Journal of Music Theory 5,

no.1, USA.

Babbit, Milton (1962) ―Twelve-Tone Rhythmic Structure and the Electronic Medium‖, Perspectives

of New Music, no.1, USA, pp. 49-79.

Forte, Allen (1974) ―The Structure of Atonal Music‖, Yale University Press, England.

Isaacson, Eric (1990) ―Similarity of Interval-Class Content between Pitch-Class Sets: The IcVSIM

Relation‖, Journal of Music Theory, Vol. 34 N° 1, USA, pags. 1/28.

Mead, Andrew (1987) About Time's Time: A Survey of Milton Babbitt's Recent Rhythmic Practice,

Perspectives of New Music, Vol. 25 N°s 1/2, USA, pags. 182-235.

Morris, Robert (1980) ―A similarity Index for Pitch-Class Sets‖, Perspectives of New Music, Vol.

18 N°s 1/2, USA, pags. 445/460

Morris, Robert (1984) ―Combinatorialty without the aggregate‖, Perspectives of new Music, USA.

Morris, Robert (1987) ―Composition with Pitch-Classes: A Theory of Compositional Design‖, Yale

University Press, USA.

Puckette, Miller(2009), ―PD Documentation‖, http://crca.ucsd.edu/~msp/Pd_documentation/

Rahn, John (1980) ―Basic Atonal Theory‖, Schirmer Books, USA.

Roming, James, (2000) ―Twelve-tone rhythmic structure and its application to form: time-point

nesting and rotation in spin‖, Doctoral Thesis, Graduate School—New Brunswick Rutgers,

The State University of New Jersey, USA.

Karlheinz Stockhausen, (1959) "...how time passes...", Die Reihe, Vol.III, Theodore Presser co.,

Pensylvania, 1959, USA.

http://puredata.info/

