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We develop a general equilibrium framework, based on a specific-factors trade model, to quantify
the medium-term household welfare impacts of global warming in rural India. Using an hedo-
nic approach grounded in the theory combined with detailed microdata, we estimate that three
decades of warming will reduce agricultural productivity in the range of 7%–13%, with the arid
northwest of India especially hard hit. Our analysis shows that the proportional welfare cost of
climate change is likely to be both modest and evenly distributed across percentiles of the per
capita income distribution, but this latter conclusion emerges only when the flexibility of rural
wages is taken into account.
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Despite uncertainties as to how climate
change will unfold over the coming decades,
what does seem clear is that the brunt of its
economic impact will fall on low-latitude
agriculture, the dominant source of liveli-
hood for the world’s poor. Partly based on
this observation, the Stern Review (Stern
2006) concludes that global warming will
exacerbate the poverty of nations. Yet, next
to nothing is known about the implications
for poverty within nations; in particular,
microlevel evidence on the potential distri-
butional consequences of climate change is
lacking. Identifying the biggest losers from
warming is essential for targeting policies
aimed at ameliorating these negative impacts
or promoting adaptation.

At first blush, there is good reason to
expect that the costs of climate change
will not be borne equally across income
groups, even within rural areas of develop-
ing countries. After all, ownership of the
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most climate-vulnerable asset, farmland, is
usually concentrated among the least poor
of the rural population. Yet, insofar as the
agricultural productivity decline is global, cli-
mate change will also raise world food prices,
which, given trade openness, could benefit
farmers; in particular, those that are net sell-
ers of food. More subtly, both productivity
and food price shocks will have repercus-
sions for rural wages, often the sole source
of income for the poor, and these changes, in
turn, will affect other prices in the economy.
In sum, it is not obvious who will lose and
who will gain on balance in this adjustment
process.

This article develops a general equilibrium
comparative statics framework for quan-
titatively assessing how these sometimes
conflicting forces will play out in rural India
over the medium term. We view global warm-
ing as hitting the economy with an exogenous
agricultural productivity shock as well as with
a food price shock, the latter also exogenous
given that India is, to a first approximation, a
price-taker in international agricultural mar-
kets.1 Our model yields precise predictions
for how factor prices, that is, wages and land
rents, will respond to these shocks and what

1 At present, India is only a significant player in the world rice
market, although its 25% share is probably not high enough to
exert much monopoly power.
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changes in household welfare will ensue.2
The first part of the article thus estimates the
climate sensitivity of agricultural productivity
in rural India in a manner consistent with
the general equilibrium framework. With
these estimates and forecasts of future food
price changes in hand, the second part of the
article predicts the welfare consequences of
climate change for rural Indian households at
each point along the distribution of current
welfare, as measured (conventionally) by per
capita household expenditures. Aside from its
sheer size and importance as an agricultural
producer, India provides an ideal setting for
the application of this methodology, our focus
being on rural areas, home to about three-
quarters of the country’s huge population.
With a wide range of agro-ecological zones,
there is considerable variation in agricultural
productivity and climate across the subcon-
tinent. And Indian agriculture is expected
to be especially hard-hit by warming tem-
peratures in the coming decades, though not
necessarily uniformly (World Bank 2009).
While agriculture now contributes only about
a fifth of GDP, it still absorbs almost 70%
of the rural labor force; a figure that, on the
whole, has declined remarkably slowly over
the past two decades (Lanjouw and Murgai
2009). Productivity growth in agriculture has
also been the major driver of rural poverty
reduction, largely through increases in agri-
cultural wages (Datt and Ravallion 1998;
Eswaran et al. 2009; Lanjouw and Murgai
2009). Data for India are relatively abundant
as well, our main source being the nation-
ally representative National Sample Surveys
(NSS). The 2002–2003 NSS round collects
detailed farm-level information and the
2004–2005 round includes both a huge house-
hold expenditure survey and a parallel labor
force survey.

Past empirical literature focuses on pre-
dicting the impact of a changing climate
on national or global agricultural product,
largely ignoring the question of how the
costs will be distributed across the relevant
population.3 Agronomists base crop damage
assessments on temperature responses taken
from controlled agricultural experiments.

2 In a similar spirit,Fullerton and Heutel (2007) use an analytical
(closed economy) general equilibrium model to study the incidence
of environmental taxes in the US.

3 Hertel, Burke, and Lobell (2010) takes a step in this direction
by considering, at a fairly aggregate level, the poverty impacts of
climate-induced agricultural productivity change in 15 developing
countries using computable general equilibrium (CGE) modelling.

More sophisticated crop modelling (e.g.,
Parry et al. 1999) also accounts for certain
adaptations to climate change, such as shifts
in planting dates, increased irrigation, and
changes in crop varieties. However, even this
limited set of adaptations is assumed a priori,
rather than necessarily reflecting how farmers
would behave; economists prefer to use data
that reveal actual behavior. The hedonic, or
so-called Ricardian, approach pioneered by
Mendelsohn, Nordhaus, and Shaw (1994)
infers the impact of climate change on future
agricultural productivity from the present-
day cross-sectional relationship between
climate and land values.4

We adopt a variant of the hedonic
approach in this article, one that emerges
from our general equilibrium model of factor
price determination. The model, in particular,
makes two key assumptions: (1) the rural
Indian economy consists of many separate
(district-level) labor markets across which
labor does not migrate; (2) within a labor
market, workers are perfectly mobile across
production sectors,5 but capital (land, in agri-
culture) is not.6 Specificity of capital and
perfect intersectoral mobility of labor are
the hallmarks of the specific factors trade
model (e.g., Jones 1971), whereas the geo-
graphic immobility of labor across rural India
has been noted by, among others, Topalova
(2007). Given this model-setting, land and
labor prices each only partially capture vari-
ation in agricultural productivity; in other

4 Deschênes and Greenstone (2007) criticize the hedonic
approach on the grounds that, in a cross-section, climate may
be correlated with other variables that influence land values (we
attempt to address this critique below by exploiting within-state
variation). They propose, as an alternative, using panel data on
farm revenue to estimate the response of agricultural productivity
to year-to-year weather fluctuations (see also Guiteras 2009, for
a similar approach applied to India). However, since there is
little scope for adaptation to short-run weather, damage esti-
mates based on shocks can only provide an upper bound on
the long-run productivity impact of climate change; there is no
guarantee, moreover, that this bound will be very informative
(see also Fisher et al. 2012).

5 Jacoby (2013) cannot reject perfect intersectoral mobility of
manual labor in rural India over just a five-year horizon using
data on wages and local food price shocks from 2004 to 2009.

6 Alternatives to the assumption of perfectly immobile capital
are less palatable. At the opposite extreme, if all sector-specific
capital were freely convertible over the horizon in question, then
factor price changes would depend only on differences in factor
intensity across sectors. In this case, predicted wage responses
to climate change, for example, would be extremely sensitive to
sectoral differences in estimated factor intensities (and nothing
else). In between these extremes falls a dynamic model with
adjustment cost functions allowing gradual mobility of different
types of capital. However, even if it proved analytically tractable,
such a model would be difficult to credibly parameterize.
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words, land values alone are insufficient for
hedonic analysis.

Model and data together suggest that, at
least for India, rural wage adjustment will
be the key mechanism for redistributing the
potentially substantial costs of climate change
from (wealthier) landowners to the rest of
the rural economy. Indeed, we show that, in
proportional terms, the household welfare
impacts of a combined fall in agricultural
productivity and a (possible) rise in world
food prices induced by global warming will
be roughly the same across income groups.
This conclusion holds whether geographical
labor mobility in the future is restricted to
rural areas of the same district or is allowed
across rural and urban areas of much broader
regions.7

Our predictions of climate-change impacts
in rural India are subject to three broad
caveats, worth addressing at the outset. First,
our analysis is only valid for a horizon over
which capital (and land) is by and large fixed
in its present uses; that is to say, we abstract
from warming-induced shifts in capital across
economic sectors. Since the process of con-
verting agricultural land to non-agricultural
uses, in particular, is likely to be especially
slow in India for a variety of institutional and
political-economy reasons, we would argue
that this horizon is apposite.

Second, first-order welfare analysis, which
ignores substitution effects, may not be accu-
rate for nonmarginal changes. Based on 30-
year climate projections, we estimate a total
factor productivity (TFP) decline in Indian
agriculture on the order of 10% and we con-
sider, as a worst-case scenario, an agricultural
price shock of around 25%. Whether these
constitute “nonmarginal” changes is a matter
of judgment; Banks, Blundell, and Lewbel
(1996) find that first-order approximations
of the welfare effects of price changes on the
order of 20% work reasonably well (i.e., with
a relative error of around 10%).

Third, we do not take into account the
future dynamics of river basin flows and
groundwater due to, among other things,

7 Timmins (2007) specifies an econometric model of labor
mobility as a function of climate identified off of permanent
migration decisions of household heads in Brazil. The limitation
of this approach, for our purposes, is twofold: First, climate is
assumed to have only amenity, and no productive, value, and,
second, household asset endowments are largely irrelevant. In
our view, such a model, especially applied to a rural setting where
landownership differences are salient, would not yield a realistic
distribution of economic costs of climate change.

changes in Himalayan glacier melt, nor do we
consider the effects of changes in precipita-
tion and the frequency of extreme weather.
Although potentially important, the long-
run evolution of each of these features is
extremely uncertain and their productivity
impacts—with the possible exception of those
of precipitation8—are hard to quantify. Our
focus is on the direct impacts of higher tem-
peratures, the most predictable consequence
of rising atmospheric CO2 levels. A final
agronomic caveat concerns carbon fertil-
ization effects. While elevated CO2 levels
tend to increase plant growth under certain
controlled conditions, how significant this
boost will be in reality remains unclear (e.g.,
Parry et al. 2004; Cline 2007). For this rea-
son, we zero out carbon fertilization effects
throughout our analysis; in this sense, our
productivity impacts can be viewed as worst-
case scenarios of global warming as far as
agriculture is concerned.

General Equilibrium Framework

Consider each district as a separate econ-
omy with three sectors: agriculture (A) and
manufacturing (M), both of which produce
tradable goods, and services (S), which pro-
duces a nontradable. Output Yi in each
sector i = A, M, S is produced with specific
capital Ki (land, in the case of agriculture),
manual labor Li, and a tradable interme-
diate input Ii (e.g., fertilizer in agriculture),
using sector-specific production functions
Yi = �iFi(Li, Ii, Ki), where �i is sector-
specific TFP. Since we are abstracting from
changes in TFP in manufacturing and ser-
vices, we set �M = �S = 1 and �A = � for
convenience.

In India, as in most developing countries,
agricultural production largely takes place
on household farms using family and hired
labor. Moreover, in a given year, these farms
typically produce several crops on the same
land (contemporaneously via multicropping
and/or sequentially in multiple cropping
seasons) with largely the same workers

8 Quoting from the 2009 World Bank report “…the magnitude
and precise timing of [changes in monsoon patterns] is unknown, as
global circulation models lack accuracy at finer spatial resolutions
and there remain large uncertainties in projecting local changes in
climate” (p. 67). See also Sanghi, Mendelsohn, and Dinar (1998)
and the review of Gornall et al. (2010) for a similar conclusion.
We discuss the effect of precipitation on agricultural productivity
further below.
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and intermediate inputs. Hence, following,
for example, Strauss (1986), we treat the
representative farm in a given district as a
multiproduct firm that chooses among a fixed
set of c crops {Y1, . . . , Yc} to grow, trans-
forming output between crops according to
the function YA = G(Y1, . . . , Yc), where G is
assumed to be homogeneous of degree one.
To account for the huge agroclimatic varia-
tion across India, one should think of the set
of feasible crops as varying across districts.

The quantities Yj are chosen to maxi-
mize total revenue,

∑c
j=1 PjYj, where Pj

is the price of crop j, subject to the con-
straint that G(Y1, . . . , Yc) = YA for any
given YA. Thus, in this set-up, production
value shares sk = PkYk/

∑c
j=1 PjYj are deter-

mined by both agroclimatic conditions and
by relative crop prices. Given the homo-
geneity of G, there exists a price index PA
such that PAYA = ∑c

j=1 PjYj, which upon
differentiation yields

(1) P̂A =
∑

j

sjP̂j

where the circumflex denotes propor-
tional changes; in other words, x̂ = d log x.
This establishes our production value
share-weighted agricultural price index.

Now, we may write the return per acre in
agriculture as �A = (PAFA(LA, IA, KA) −
PI IA − WLA)/KA, with analogous expres-
sions for average return per unit capital in
manufacturing, �M , and in services, �S, given
respective output prices in these sectors, PM
and PS. We assume that manual labor is per-
fectly mobile across the three sectors but its
overall supply is fixed at L = LA + LM + LS
within each district. Thus, in each district
economy, there is one type of labor with
a single nominal wage, W . The purpose of
assuming a fixed district labor supply (i.e., no
interdistrict mobility) is to allow for a more
general empirical specification of the hedonic
price function incorporating cross-district
wage variation. In predicting the impacts
of climate change, however, we are free to
allow for labor markets with much broader
geographic scope.

Because this is a general equilibrium
framework, income effects of changes in fac-
tor prices are fully accounted for. Thus, total
income y consists of the sum of value-added
(revenue net input expenditures) across

sectors i = A, M, S

(2) y =
∑

i

PiYi − PI Ii + E

with an additional exogenous component, E.
Though a technical nuisance, the presence of
E suits an important empirical purpose: A
significant portion of household income in
rural India comes from (salaried) nonmanual
labor, for example, teachers, police/army, and
other civil servants. Not accounting for E
would severely distort the share of income
derived from manual labor, especially for
households in the upper tail of the income
distribution. The exogeneity assumption on
this income can be motivated by thinking
about entry into these professions as requir-
ing an advanced level of education (relative
to unskilled labor), which cannot be acquired
in the short run. We may further suppose
that these salaries are paid out of a central or
state government budget financed by urban
taxpayers and that such labor does not con-
tribute directly to output in any of the three
rural sectors.

Given perfect competition, the condition
that price equals unit cost implies

(3) αLAŴ + αKA�̂A = �̂ + P̂A

where, under constant returns to scale, the
input cost shares in agriculture, the αlA,
l = K, L, I , are such that αKA + αLA + αIA = 1.
Similar equations hold for the other sectors
as shown in appendix A, which lays out the
model solution for the case of sector-specific
costs shares and Cobb-Douglas production
functions. However, for the sake of clarity,
and because it will make no appreciable
empirical difference, we henceforth assume
equal input cost shares across sectors, drop-
ping the corresponding sector subscript (i.e.,
αli = αl).

The relationship between wages and exoge-
nous shocks to the economy in this case is

Ŵ = ψ(�̂ + P̂A)(4)

where ψ = βA

αL + αK − RβS
.

The βi = Li/L are the sectoral labor shares
and R = αL + αK(αK + αL)(1 − E/y).

We can gain some intuition for the
mechanics of the model by considering
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the special case αI = βS = 0; a two-input,
two-sector economy (without nontradables).
According to equation (4), ψ = βA, where βA
is the share of the rural (district) labor force
in agriculture. Thus, as either agricultural TFP
or output prices increase, the marginal value
product of labor rises in agriculture, drawing
labor into farm work from the other sec-
tors (in this case, only manufacturing) until
equality of marginal value products across
sectors is restored. The larger agriculture is
in relation to nonagriculture, the less elas-
tic is the supply of labor to agriculture and
hence the more responsive is the wage to the
exogenous shock.

If we now let αI > 0, then we have
ψ = βA/(αL + αK) > βA. The source of this
amplification effect is the increase in interme-
diate input use induced by higher agricultural
prices, which boosts the marginal product of
labor in agriculture. Because of a greater
exodus of labor from manufacturing in
response to agriculture’s improved terms
of trade, there must be an even larger wage
increase than was the case in the absence of
intermediates.

Finally, suppose that βS > 0. The term RβS

enters equation (4) after solving out for P̂S,
the change in the endogenous price of ser-
vices. We do so, in appendix A, by equating
the supply of services to the demand under
the assumption of a unitary income elasticity
of demand.9 Return to the case αI = 0 and
suppose that E = 0, so that there is no exoge-
nous source of income outside of the three
sectors. Here we have ψ = βA/(1 − βS) > βA,
which shows that the introduction of a non-
tradable sector also has an amplification
effect. A climate-induced rise in the wage
reduces the supply of services and increases
the demand for services through an income
effect. Both forces put upward pressure on
the price of services, drawing labor into that
sector. The supply curve of labor to agricul-
ture, in turn, becomes more inelastic, making
the rural wage respond even more to the
exogenous shocks.

9 This is tantamount to assuming Cobb-Douglas preferences
for the representative consumer, which, as we shall see below, can
only be an approximation. At any rate, estimation of an Engel
curve for services based on NSS household budget survey data
for 2004–2005 (i.e., a regression of log expenditure share on log
per capita expenditures, a vector of demographic characteristics,
and district dummies) gives an income elasticity of 1.19, only
slightly higher than unity.

Finally, combining (3) and (4), gives

(5) �̂A = 1
αK

(1 − αLψ)
(
�̂ + P̂A

)
.

The response of land values to warming-
induced productivity and price shocks differs
from that of wages (cf. equation 4) because
of the indirect (factor price) effect of wages
operating through agricultural profitability.

Households and welfare

Drilling down from the representative
consumer-producer, which we invoked
above to determine factor prices, consider
an individual household h embedded within
this rural economy. It has an endowment of
farmland, KAh, that earns a per unit return of
�A and an endowment of manual labor, Lh,
returning W , which it can supply to its own
farm (insofar as KAh > 0) or to other farms,
or to firms in the services or manufacturing
sectors.10 As a concession to data availability,
we will have to ignore the returns to service
or manufacturing sector capital held by rural
households (Jacoby (2013) shows that this
omission is inconsequential).11 Thus, income
of household h is

(6) yh = �AKAh + WLh + Eh.

Household indirect utility is a function of
income and prices, PM , PS, and Pj, j = 1, . . . , c.
Following the conventional derivation, the
percent change in money-metric utility for
household h, mh, is

(7) m̂h = λ�h�̂A + λWhŴ − νShP̂S −
∑

j

νjhP̂j

where λ�h and λWh represent, respectively,
the proportion of income the household
derives from owned land and manual labor
and νjh and νSh are, respectively, the crop
j and services shares of total consumption

10 Given constant returns to scale, gross returns to farming at
the household level aggregate up to gross returns at the economy
level, �AKA, with each household’s contribution to the aggregate
proportional to its share in total landholdings.

11 In particular, using a data set that includes information on net
income from household enterprises, Jacoby (2013) obtains very
similar distributional patterns of welfare gains from agricultural
price increases in rural India. The drawback of this alternative
data set for the present study, however, is that the spatial coverage
is much more limited than that of the NSS surveys.

 at Joint B
ank-Fund L

ibrary on Septem
ber 18, 2014

http://ajae.oxfordjournals.org/
D

ow
nloaded from

 

http://ajae.oxfordjournals.org/


6 Amer. J. Agr. Econ.

expenditures.12 Note that, while the last term
in equation (7) is standard in the literature,
the penultimate term is typically overlooked
(Porto (2006) is a notable exception). Even
if climate change has no impact on domestic
crop prices through international trade, a
decline in agricultural TFP will still lower
the price of services (along with wages)
and thereby raise welfare (holding income
constant).

Substituting (1), (4), (5), and P̂S = RŴ into
(7), leads to

m̂h = �h�̂ +
∑

j

(�hsj − νjh)P̂j(8)

where �h = λ�h(1 − αLψ)/αK + ψλWh − Rψ
νSh is the elasticity of welfare with respect to
agricultural productivity. This is the formula
we implement to illustrate distributional
implications of climate change. The term
�hsj − νjh is reminiscent of Deaton’s (1989)
well-known “net consumption ratio” (pro-
duction value minus expenditures on good j
divided by total consumption expenditures).
Deaton’s term measures the money-metric
utility impact of a change in the price of good
j in partial equilibrium, whereas ours mea-
sures its impact in general equilibrium, in
other words, fully accounting for the induced
changes in factor income. In particular, �h
depends on the βj, the relative importance
of each of the sectors in the relevant labor
market.

Shutting down wage adjustment com-
pletely so that Ŵ = 0, we get �̂A =
(�̂ + P̂A)/αK from equation (3), which,
combined with P̂S = 0 in equation (7),
gives �h|Ŵ=0 = λ�h/αK . Since λ�h = 0 for
households that own no land, the partial
equilibrium approach has two strong distribu-
tional implications: First, landless households
are unaffected by the TFP shock, and second,
they are affected by the crop price shock
only in proportion to the quantities of the
crops they consume. Thus, accounting for
general equilibrium effects operating through

12 Household-specific expenditure shares that vary by income
level are, strictly speaking, inconsistent with the representative
consumer having Cobb-Douglas preferences (i.e., a unitary income
elasticity of demand for services), an assumption we need to obtain
a tractable analytical model of factor price determination. Hence,
this is another concession we make to the data; expenditure
shares do, in fact, vary by income level.

rural wages can, at least in principle, substan-
tially alter the distributional story of climate
change.

Agricultural productivity and climate

Our goal is to estimate the impact of climate
on agricultural TFP, which allows us to pre-
dict the warming-induced productivity shock,
�̂. The regression is

(9) θd = γ′Zd + ξd,

where θd is log agricultural TFP for district d
and Zd is a vector of district-specific climatic
and agro-ecological factors. The slope of this
hedonic function incorporates the myriad
of adaptations (crop choices, planting dates,
labor intensity, etc.) that Indian farmers have
made over time to local variation in climate.
Provided that adaptation to climate change
takes place along this same technological
envelope, the marginal effect of, say, temper-
ature from equation (9) delivers the percent
change in agricultural TFP implied by any
future warming. (see, e.g., Mendelsohn,
Nordhaus, and Shaw 1994).

Even though we do not directly observe it,
θd can be constructed based on equation (3),
which provides the link between climate and
agricultural TFP. Setting P̂A = 0, since we can
ignore price variation in the cross-section,
and integrating both sides of that equation
yields

(10) αLw + αKπ = θ + κ,

where lower-case letters denote logs. Thus,
up to the constant of integration κ, log of
TFP is the input cost-share weighted sum
of the (log) factor prices. The reason why
land values alone do not reflect agricultural
productivity (i.e., π �= θ + κ) in our setting is
simple: When labor is geographically immo-
bile, spatial variation in θ induces spatial
variation in wages. Since labor is necessarily
an input into agricultural production, higher
wages in more productive districts attenu-
ate the increase in land values that would
otherwise occur.

To compute θd, we regress log-wages on
individual characteristics and district fixed
effects and log of land values on plot char-
acteristics and district fixed effect (FE). The
first of these regressions yields estimated
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district fixed effects, w̄d, and correspond-
ing standard errors, σ(w̄d), computed
using the Haisken-DeNew and Schmidt
(1997) procedure; similarly, the second
regression gives π̄d and σ(π̄d). Combining
these elements with calibrated input cost
shares in agriculture by region r delivers
θ̄d = αLrw̄d + αKrπ̄d along with regression
weights 1/(α2

Lrσ
2(w̄d) + α2

Krσ
2(π̄d)). Weighting

corrects for the heteroskedasticity induced in
ξd by the sampling variance of the two sets of
estimated fixed effects underlying θd.13

Data and Estimation

Our analysis covers 465 districts in 18 geo-
graphically contiguous states of India,
containing the vast bulk of its rural pop-
ulation and agricultural potential as well
as encompassing tremendous variation in
climate, ranging from the desert-like west-
ern Rajasthan to the moist eastern foothills
of the Himalaya to the tropical south (see
appendix figure C.1).14

Climate variables

Gridded weather data are available from the
India Meteorological Department (IMD) on
296 1◦ × 1◦ lat./long. cells based on daily
records from 395 temperature stations
and more than 1800 rainfall stations (see
Rajeevan et al. 2006; Srivastava, Rajeevan,
and Kshirsagar 2009). Given data incom-
pleteness and the timing of NSS surveys
(see below), we interpolate normal annual
temperature for the 1969–1999 period and
precipitation for 1960–1999 using the pro-
portion of the district’s area in each grid-cell
as weights.15 Similarly, we compute normal
annual degree days (cumulative temperature
between 8 and 32◦C) and harmful degree

13 As we discuss below, the error term ξd is also unlikely to be
independent and identically distributed given spatial correlation
across districts.

14 Excluded are the peripheral states of Jammu/Kashmir in the
far north and Assam and its smaller neighbors to the north and
east of Bangladesh. Included states, organized into five regions,
are North: Harayana, Himachal Pradesh, Punjab, Uttar Pradesh,
and Uttaranchal; Northwest: Gujarat and Rajastan; Center: Chhat-
tisgarh, Madhya Pradesh, Maharashtra, and Orissa; East: Bihar,
Jharkhand, and West Bengal; South: Andhra Pradesh, Karnataka,
Kerala, and Tamil Nadu.

15 Although the NSS household surveys were collected using
clustered sampling, the precise location of primary sampling units
(villages in rural areas) has not been publicly released. Thus, the
district is the lowest level of geographic disaggregation at which
we can link household and climate variables.

days (cumulative temperature above 34◦C)
for 1969–1999.

Most of India’s precipitation falls during
the southwestern monsoon, extending from
June through September. The monsoon plays
a critical role in determining the success of
the kharif (summer season) harvest; rabi
(winter) season production is not only less
subject to temperature extremes but relies to
a much greater extent on irrigation, mostly
from groundwater. Indeed, in much of India,
the availability of groundwater in rabi itself
depends on aquifer recharge from the mon-
soon rains. Because of such complexities and
because the timing and extent of the grow-
ing seasons are so variable across India,16

we avoid creating monthly or seasonal tem-
perature and precipitation variables as in
other hedonic studies. Aside from problems
of interpretability, a proliferation of climate
variables may also lead to multicollinearity
(see, e.g., Kaufman 1998).

Recent climate impact studies (e.g.,
Deschênes and Greenstone 2007) advocate
using degree-days instead of temperature.
For India, however, annual degree days and
temperature normals are almost perfectly
correlated across the 465 districts covered
by our data, so nothing is gained by abjuring
the convenience of temperature. By contrast,
harmful degree days, a measure of extreme
heat detrimental to plant growth, is only
weakly correlated with normal annual tem-
perature, hence we will experiment with this
variable below.

Finally, in a departure from standard
hedonic regressions, we allow weather
variability, in the form of the standard
deviation of annual rainfall, to influence
agricultural productivity. Although it is dif-
ficult to incorporate uncertainty directly
into our theoretical framework, land values
would plausibly reflect a risk premium that is
increasing in rainfall variability.

Land values

We use plot value data reported in the
most recent nationally representative farm
household survey of India, round 59 of the
National Sample Survey (NSS59) collected

16 To take a well-known example, kharif season planting is
timed to the onset of the summer monsoon, which varies by
about a month between the southern and northern extremities
of India.
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in 2002–2003. Although these land valua-
tions are self-assessed, rather than based
on records of actual market transactions,
farmers generally know the worth of this,
their primary asset. Indeed, evidence from
elsewhere in south Asia (Jacoby 2000) indi-
cates that self-assessed plot values accurately
capture the rental income flow from land.
Idiosyncratic biases, moreover, would tend to
wash out when averaging over a vast number
of observations on individual plot values
collected from tens of thousands of farmers.

From the eighteen major states, we have
value, area, and irrigation status for 91,684
plots (reported by 41,703 households) across
468 districts.17 More than half of the plots are
irrigated, although the data do not identify
the main source (i.e., canals or groundwa-
ter). At any rate, irrigation is most prevalent
across the Indo-Gangetic plain in the north
and east of the country, where surface water
is most abundant; not coincidentally, this is
also the region with the highest reported land
values. In the first-stage regression of log plot
value per hectare, we control for the plot’s
irrigation status along with the district fixed
effects. The results show that, on average, an
irrigated plot is 38.9% more valuable (with
a robust standard error of 1.7 percentage
points) than a rainfed plot within the same
district. Given that access to irrigation is
typically a sine qua non for dry-season culti-
vation in India, this magnitude does not seem
unreasonable.18

Wages

For the second component of our agricul-
tural TFP index, θd, we draw upon wage data
from two rounds of the NSS Employment-
Unemployment Survey (EUS), the 55th
(1999–2000) and the 61st (2004–2005), which
straddle the 59th round, from which we

17 Aside from irrigated and unirrigated land devoted to seasonal
crops, the only other category of agricultural land specified in the
survey is “orchards and plantations (including forests),” which
constitutes 4% of agricultural land area. Due to its heterogeneous
nature, we exclude this category from our analysis. Privately held
grassland dedicated exclusively to pasture also appears to be rare
in India, as livestock are typically fed fodder or grazed in fallow
fields or in village common areas.

18 Since we have many multi-plot households in the data,
we also estimate a household fixed effects model to clean out
unobserved variation in land quality (a household’s plots are
typically located in close proximity and thus should be much
more similar to each other than to other plots in the same
district). The resulting return on irrigation is 37.5%, also very
precisely estimated, suggesting that omitted variable bias is not
important at this stage of the estimation.

obtain land values. In the spirit of the theo-
retical model, we focus on “manual labor,”
which constitutes nearly 80% of wage or
salaried employment. Combined, the two
surveys yield a sample of 74,659 rural wage
earners from 496 districts in the major states
of India. We take individual log daily wages
in the last week as the dependent variable
in our first-stage regression. Aside from dis-
trict fixed effects, the first-stage model is
standard (and hence coefficient estimates
are not reported here), including a quadratic
in age, literacy, and education dummies, an
agricultural employment dummy, gender
interactions with all of the previous variables,
and an NSS round dummy interacted with all
of the above.

Productivity results

The TFP index θd is an input cost share
weighted sum of the district fixed effects
extracted from the land values and wage
regressions just described, for which there
are 465 districts in common. The cost shares
are calculated from NSS59 data by five broad
regions as defined in note 14 (see table 3 and
appendix B for details).19 As discussed above,
hedonic regressions based on equation (9)
are weighted by the inverse estimated stan-
dard error of θd. Since the error term, ξd, is
likely to be spatially autocorrelated, we cal-
culate standard errors using Conley’s (1999)
spatial GMM estimator with bandwidth of 8
degrees latitude-longitude (≈ 800 km).

Table 1 reports estimates of equation (9),
starting with simple linear specifications in
three baseline climate variables: temperature,
precipitation, and the standard deviation
of precipitation. All regressions include
district-level agro-ecological controls: ele-
vation, topography, soil texture, and type,20

as well as distance to nearest large city, an
indicator of transport cost to markets (see
table C.1). From the estimates in column 1,
we conclude that a 1◦C increase in average
annual temperature would lead to a nearly

19 We could, in principle, estimate αl for each district. However,
given the sample size of NSS59, these estimates would tend to
be quite noisy.

20 The three latter variables are derived from the Food and
Agriculture Organization’s Soil Map of the World (SMW). We use
dummies for five dominant soil types in India (acrisols, cambisols,
luvisols, nitosols, and vertisols), three textural classes (coarse,
medium, and fine) reflecting the relative proportions of clay, silt,
and sand in the soil, and three slopes classes: flat (0–8% slope),
undulating (8–30% slope), and hilly (>30% slope).
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Jacoby, Rabassa, and Skoufias Distributional Implications of Climate Change 9

Table 1. Climate Effects on Agricultural Productivity across Indian Districts

(1) (2) (3) (4) (5) (6)

T (temp., ◦C) −0.0977∗∗∗ −0.0398∗
(0.0154) (0.0223)

T−2 −3.835 −5.138∗ −4.081 −4.890∗
(3.278) (2.752) (3.273) (2.655)

T−2log(T) 28.73∗∗∗ 21.12∗∗ 29.18∗∗∗ 20.12∗∗
(10.31) (9.090) (10.29) (9.083)

Harmful deg. days −0.000790 −0.000944
(0.00117) (0.00166)

P (precip., meters) 0.250∗∗∗ 0.396∗∗∗ 0.269∗∗∗ 0.423∗∗∗ 0.233∗∗ 0.401∗∗
(0.0782) (0.144) (0.0793) (0.149) (0.105) (0.166)

Std. Dev. of P −0.233∗∗∗ −0.274∗∗∗ −0.245∗∗∗ −0.290∗∗∗ −0.224∗∗∗ −0.277∗∗∗
(0.0543) (0.0928) (0.0566) (0.0966) (0.0679) (0.105)

State fixed effects No Yes No Yes No Yes
Adj. R2 0.595 0.675 0.597 0.675 0.597 0.676

Note: Spatially robust standard errors in parentheses (∗∗∗p < .01, ∗∗p < .05, ∗p < .1) based on Conley (1999) with 8 degree bandwidth (N = 465
districts). Dependent variable for all regressions is θ̄d = αLr w̄d + αKr π̄d , all are weighted by 1/(α2

Lrσ
2(w̄d) + α2

Krσ
2(π̄d)), and all include a constant

term and controls for soil type and texture, terrain, elevation, and distance to nearest major city.

10% fall in agricultural productivity in India;
wetter districts and those with less variable
precipitation are, meanwhile, significantly
more productive.

To address the critique of Deschênes and
Greenstone (2007) concerning omitted vari-
able bias in hedonic regressions, we include
state fixed effects in column 2. Relative to
column 1, there is a roughly 60% attenuation
of the temperature coefficient. There are two
possible, not necessarily mutually exclusive,
explanations for this difference: On the one
hand, since state dummies (state dummies
+ controls) explain 77% (85%) of the vari-
ation in temperature across districts, the
within-state estimator will tend to accentuate
any effects of measurement error, biasing
the temperature coefficient toward zero.21

On the other hand, there may indeed be an
omitted variable bias affecting the column 1
estimates. Indian states, for example, set their
own agricultural policies independent of the
national government, and these policies may
be correlated with climate (e.g., hotter and
drier states might provide greater subsidies
to electricity for pumping groundwater).
The true average productivity impact of 1◦C
higher temperatures, at any rate, probably lies
somewhere in between −4% and −10%.22

21 Measurement error is not due solely to inaccuracy of tem-
perature records and the like, but, more broadly, to the fact that
average annual temperature is inevitably just a proxy for the
‘true’ measure of temperature affecting agricultural productivity.

22 Guiteras (2009) estimates the effect of weather shocks on
gross agricultural productivity in India from 1960–99, which he
takes as an upper bound on the long-run impacts of climate
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Figure 1. Nonlinearities in Temperature

Note: Alternative estimates of the relationship between agricultural TFP
(θ) and mean temperature (T).

Figure 1 illustrates the estimated nonlinear
relationship between the agricultural TFP
index, θd, and temperature in the correspond-
ing district, based on (1) a partially linear
nonparametric (in temperature) regression,
and (2) the best-fitting fractional polyno-
mial parametric regression (see columns 3
and 4 of table 1). The two sets of estimates
track each other very closely, both indicat-
ing that over most of range of district-level
temperatures (5th–95th percentiles), the

change. If we double his estimated effect of a 0.5◦C temperature
shock in the kharif season, we obtain a nearly 10% decline in
productivity per 1◦C warming. Thus, our results seem sensible
using this admittedly crude metric.
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Table 2. Temperature-Precipitation Interaction Effects on Productivity

(1) (2) (3) (4)

T (temperature, ◦C) −0.152∗∗∗ −0.116∗∗∗ −0.191∗∗∗ −0.186∗∗∗
(0.0248) (0.0225) (0.0407) (0.0319)

P (precipitation, meters) −1.017∗∗∗ −1.150∗∗∗ −2.705∗ −4.261∗∗
(0.389) (0.235) (1.621) (1.813)

P2 0.505 1.043∗
(0.487) (0.574)

T × P 0.0514∗∗∗ 0.0640∗∗∗ 0.113∗ 0.186∗∗∗
(0.0164) (0.0116) (0.0655) (0.0697)

T × P2 −0.0174 −0.0421∗
(0.0201) (0.0230)

Std. Dev. of P −0.234∗∗∗ −0.289∗∗∗ −0.260∗∗∗ −0.238∗∗
(0.0540) (0.0939) (0.0654) (0.0949)

State fixed effects No Yes No Yes
Adj. R2 0.606 0.688 0.609 0.690

Notes: See notes to Table 1.

productivity-temperature relationship is prac-
tically linear. Figure 1 also shows a flatter
gradient with state fixed effects than with-
out, confirming the finding from the linear
regression. Columns 5 and 6 add harmful
degree days, our measure of daily temper-
ature extremes, but its coefficient falls well
short of attaining significance, and we drop
the variable in the sequel.

Maintaining, for the sake of parsimony,
linearity in temperature, we next explore
interactions between temperature and pre-
cipitation with results reported in table 2. As
seen in columns 1 and 2, the negative temper-
ature impact on agricultural productivity is
strongly attenuated in wetter districts, even
more so after including state fixed effects.
Figure 2 traces out the marginal effect of
temperature as a function of annual rain-
fall, allowing for quadratic terms in rainfall
(columns 3 and 4 of table 2). Interestingly,
for districts at the 5th percentile of precip-
itation, the impacts of a 1◦C temperature
rise are quite similar whether state fixed
effects are included (−12%) or excluded
(−15%); by contrast, at the 95th percentile
of precipitation, the marginal temperature
effect is +2% with state fixed effects and
−5% without. Thus, both within and between
state evidence suggests that the driest dis-
tricts of India, those in the arid northwest
(Rajastan, Haryana, and Punjab), will suffer
the greatest productivity losses from global
warming. As we will see, this finding in itself
has distributional implications.

Regarding precipitation, we have already
noted a positive and statistically significant
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Figure 2. Marginal Effect of Temp. by
Precip. Level (P)

Note: Marginal effects of mean temperature (T) on agricultural TFP (θ)
evaluated at different values of mean precipitation (P).

productivity impact of rainfall. Putting aside
the enormous uncertainty involved in fore-
casting precipitation patterns over the Indian
subcontinent mentioned earlier, whatever
consensus has emerged points to a slight
rise in rainfall over the next three decades.
The 2007 Intergovernmental Panel on Cli-
mate Change (IPCC) projection suggests a
4% increase, which, based on our estimates,
would increase agricultural productivity by
no more than about 1% on average. How-
ever, even this small positive impact would
be counterbalanced, according to the find-
ings in table 1, by the probable increase in
inter-annual rainfall variability.23

23 Results in Guiteras (2009) and Sanghi, Mendelsohn, and
Dinar (1998) further support the view that climate change will
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Jacoby, Rabassa, and Skoufias Distributional Implications of Climate Change 11

Assembling the Components

We use the mean monthly change in surface
temperature between the baseline period
1961–1990 and the near future 2010–2039
as predicted by the HadCM3-A1FI (high
emissions path) scenario from the Hadley
Centre for Climate Prediction and Research
as part of the Third Assessment Report of
the United Nation’s IPCC. Most other widely
used climate models forecast similar temper-
ature increases over this timeframe and only
begin diverging significantly toward the end
of the century. On average, India is predicted
to warm by about 1.25 degrees Celsius, but
temperature increases are generally greater
in the North (appendix figure C.1).

Although India’s government presently
pursues a policy of on-again-off-again trade
insulation vis á vis agricultural staples, this
may not be sustainable indefinitely. If not,
the question arises: How will international
food prices be affected by warming? Only a
calibrated general equilibrium global trade
model can provide an answer. Using GTAP, a
multiregion, multisector, comparative static,
computable general equilibrium model of the
world economy, Hertel, Burke, and Lobell
(2010) forecast changes in the prices of major
agricultural commodities after 30 years of
climate change (2000–2030). Results are
available for three scenarios based on the
distribution of potential yield impacts taken
from the empirical literature for each region
and crop: low, medium, and high productivity,
with the medium case representing the most
likely set of outcomes of warming.

For consistency, any productivity scenario
for India embedded in these global projec-
tions should lie roughly in the range of our
own estimates of agricultural TFP change
(−7% to −13%). But this is not the case
for Hertel et al.’s high productivity scenario,
in which yields of most crops are predicted
to rise worldwide by 4%, leading to price
declines on the order of 20%; therefore, we
do not emphasize this scenario. While the
low-productivity scenario represents the
other extreme, in which global temperature
change is rapid, crops are highly sensitive to
warming worldwide, and CO2 fertilization is
minimal, the assumed yield declines for India
of between −10% and −15% are not out of

affect agricultural productivity in India primarily through higher
temperatures.

line with our own Ricardian assessment.24

Thus, based on sj calculated separately for
each of the five regions,25 we obtain produc-
tion value share weighted price changes, P̂A,
ranging from −5% to −2% in the medium
productivity scenario and from 18% to
27% in the low-productivity scenario (see
table 3).

Our sample of just over 60,000 rural house-
holds in 18 major states is drawn from the
nationally representative consumer expendi-
ture survey (CES) collected as part of NSS61
in 2004–2005. We use these data, along with
the corresponding round of the NSS-EUS,
to calculate the various components of m̂h as
given in equation (8).

Figure 3 shows how the relevant expendi-
ture shares are distributed across per capita
expenditure percentiles in 2004–2005. Both
curves in this figure, as well as all of those
in figures 4, 6, 7, and 8, represent nonpara-
metric regressions of the variable of interest,
averaged across households within each of
the 100 expenditure-percentile groups, on
the per capita expenditure percentile itself
(henceforth, simply percentile). As is typ-
ical, the share of household expenditures
devoted to food crop products declines
steadily with income. The percentile pro-
file of the services (nontradable) share,26

by contrast, is rather flat, increasing only
within the top two quintiles of the per capita
expenditure distribution. The remainder of
household consumption expenditures con-
sist of clothing, durables, and miscellaneous
items, all of which can be considered man-
ufactured goods, as well as some non-crop
food categories (e.g., meat and dairy).

Appendix B details the steps in the con-
struction of household income shares λ�h
and λWh. As seen in table 3, the mean of λ�h
(λWh) varies from 0.19 (0.48) in the North
region to 0.07 (0.57) in the South (see also
appendix figure C.2 for a more detailed pic-
ture); among landowning households, the
corresponding figures are 0.29 (0.45) and 0.15

24 Since it is not at all straightforward to associate any of Hertel
et al.’s price scenarios with a particular temperature scenario, we
maintain the assumptions of HadCM3-A1FI throughout.

25 Specifically, we use farm-level data from NSS59 covering the
kharif and rabi seasons of 2002–2003 to compute srj as the ratio
of the (population weighted) mean production value in region r
of crop j to the corresponding mean of total production value.

26 Nontraded goods expenditure categories include: firewood
and other local fuel, transport and travel, tailoring expenses,
house rental and related expenses, medical treatment expenses,
education expenses, remittances and gifts, recreation and leisure
expenses, and taxes and fees.
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Table 3. Data for Distributional Analysis by Region

North Northwest Central East South

Region-level
αL 0.331 0.304 0.258 0.317 0.260
αI 0.264 0.325 0.258 0.250 0.238
Revenue Shares (sj)
Rice 0.234 0.028 0.226 0.527 0.315
Wheat 0.377 0.195 0.141 0.199 0.004
Maize 0.015 0.054 0.023 0.021 0.036
Oilseeds 0.028 0.284 0.115 0.021 0.184
Sugarcane 0.125 0.042 0.082 0.006 0.072
Cotton 0.016 0.137 0.098 0.000 0.035
Other crops 0.206 0.260 0.314 0.226 0.354
P̂A : Medium Global

Productivity
−3.8 −2.2 −3.2 −4.7 −3.1

P̂A : Low Global
Productivity

18.0 25.2 24.0 23.2 27.3

District-level
βA 0.691 0.755 0.805 0.722 0.688

(0.145) (0.103) (0.113) (0.143) (0.188)
βS 0.213 0.160 0.125 0.187 0.187

(0.099) (0.082) (0.083) (0.108) (0.125)

�̂ : without state fixed
effects

−0.162 −0.164 −0.122 −0.111 −0.121

(0.043) (0.046) (0.033) (0.028) (0.053)

�̂ : with state fixed
effects

−0.099 −0.118 −0.058 −0.042 −0.068

(0.051) (0.051) (0.033) (0.024) (0.048)
Household-level
λ� 0.193 0.145 0.117 0.107 0.070

(0.221) (0.172) (0.147) (0.161) (0.117)
λW 0.479 0.554 0.567 0.524 0.573

(0.187) (0.183) (0.192) (0.182) (0.181)
Expenditure shares (νj)
Rice 0.060 0.018 0.128 0.201 0.147

(0.052) (0.027) (0.134) (0.089) (0.077)
Wheat 0.107 0.076 0.053 0.057 0.009

(0.052) (0.066) (0.061) (0.056) (0.011)
Maize 0.002 0.015 0.004 0.003 0.000

(0.008) (0.043) (0.026) (0.014) (0.004)
Oilseeds 0.045 0.055 0.051 0.054 0.046

(0.020) (0.026) (0.022) (0.020) (0.021)
Sugar 0.031 0.032 0.027 0.016 0.017

(0.017) (0.013) (0.016) (0.008) (0.012)
Other crops 0.119 0.137 0.151 0.126 0.141

(0.042) (0.066) (0.064) (0.038) (0.053)
Nontradables (νS) 0.182 0.169 0.170 0.162 0.178

(0.076) (0.072) (0.071) (0.067) (0.082)

Note: Means (standard deviations) of district and household level variables, using household sampling weights in latter case. Input cost shares (αl )
and revenue shares from NSS59 (see Appendix B); crop-specific price scenarios underlying P̂A from Hertel et al. (2010); �̂ based on col. 3 or 4 of
Table 2; sectoral labor shares (βi) from NSS61-EUS; expenditure shares from NSS61-CES (cotton share set to zero).

(0.59). Note that about a third of income for
the average household comes from exoge-
nous nonmanual labor, or E in terms of our
notation.

The final elements in the computation
of �h are the sectoral labor shares, the βi,

which we calculate for each district using
NSS61-EUS data on the industry of work-
ers’ primary occupation. According to
equation (4), βA, βS, and the αl (the input
cost shares) also pin down ψ, the elasticity
of the rural wage with respect to food prices
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Figure 3. Distribution of Expenditure
Shares

Note: Smoothed relationship between mean (within-percentile)
expenditure share and per capita expenditure percentile.

(or agricultural TFP) for each district.27 It is
important to note that particularly large or
small values for ψ are not preordained by the
model; in particular, βS = 1 ⇒ ψ = 0 whereas
βA = 1 ⇒ ψ = 1

αK+αL
> 1. As it happens, the

elasticity is large, with a median value of 1.16
and exceeding unity for 80% of districts. The
reason for this is the importance of agricul-
tural employment in rural India; more than
90% of districts have βA > 0.5, and more than
half have βA > 0.75. Later on, however, when
we consider a broader labor market than the
rural district, the relevant agricultural labor
share will typically be lower.

Figure 4 displays the per capita expendi-
ture percentile profile of �h —the elasticity
of welfare with respect to agricultural
productivity—as well as the correspond-
ing profile of �h|Ŵ=0 = λ�h/αK , the value
of �h that would obtain in a (hypothetical)
fixed-wage economy. First, note that �h|Ŵ=0
(or λ�h) is strongly increasing in household
income (proxied by per capita expenditures),
as landownership in India is concentrated
among the better off. By contrast, in a flex-
ible wage economy, the distribution of �h
across percentiles is remarkably flat. Three
forces combine to produce this result. First,
�h is increasing in λ�h (recall that land
income is more sensitive to warming than
wage income) and, as we have just seen, λ�h
is increasing in income. Hence, for this rea-
son, �h is increasing in income. Second, since

27 In computing R, we use an estimate of E/y at the district
rather than household level, since this income ratio enters R
through the aggregate demand for services.
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Figure 4. Distribution of Welfare-
Productivity Elasticity (�h)

Note: Smoothed relationship between mean (within-percentile) �h
(elasticity of welfare w.r.t. agricultural productivity) and per capita
expenditure percentile under alternative assumptions about rural wage
flexibility.

a higher price of services is welfare-reducing,
�h is decreasing in the expenditure share
of services, νSh, and, as already noted, νSh is
increasing in income, albeit weakly. For this
reason, �h is decreasing in income. Third,
districts with a large share of labor deployed
in agriculture tend to be poorer ones, and,
as it turns out, �h is increasing in βA. This
also means that �h is decreasing in income.
Thus, the second and third forces together
counteract the first. What figure 4 shows is
that the counterbalance is nearly perfect.

Finally, we examine the distribution of
the predicted shock to agricultural TFP. The
hedonic estimate is �̂d = γTd�Td, where γTd

is the marginal effect of temperature in dis-
trict d and �Td is the predicted temperature
change for the district based on HadCM3-
A1FI. Thus, �̂d varies across districts with
the extent of predicted warming and, because
we base γTd on the last two interactive spec-
ifications in table 2, it also varies with the
current precipitation level. Both of these
factors, greater predicted temperature rise
and lower rainfall, conspire to accentuate the
agricultural TFP decline in the North and
Northwest relative to the rest of India, as
seen in the first two maps of figure 5. Since
rural areas of northern India are relatively
well off (third map of figure 5), we obtain the
falling percentile profiles observed in figure 6;
that is, when we assign each rural household
in the NSS61-CES the estimated �̂d for their
district of residence. Note that these profiles
are nearly identical whether we base γTd on
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Figure 5. TFP Shock (̂�) and Mean Per-Capita Household Expenditures across 18 Major
States of India
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Figure 6. Distribution of ̂�

Note: Smoothed relationship between mean (within-percentile) predicted
agricultural TFP shock (�̂) and per capita expenditure percentile. Each
household assigned shock corresponding to district of residence.

the hedonic estimates with state fixed effects
or on those without; only the levels differ.

Distributional Implications of Climate
Change

We calculate the money-metric utility change
for each household from equation (8) based
on the components discussed in the previous
section. Figure 7 illustrates climate change
incidence curves (CCIC), showing how the
welfare costs of warming are distributed
across per capita expenditure percentiles.28

28 Implicit throughout is the assumption that future economic
growth will be neutral with respect to current income ranking;

The left-hand side panels depict the medium
global productivity scenario for food prices
and the right-hand side panels the low global
productivity. Bear in mind that these alterna-
tive productivity scenarios refer to the rest of
the world, not to India in particular. For India
itself, we use our own TFP change predictions
based on the hedonic estimates with and
without state fixed effects.

Focusing on the flexible wage scenarios
(panels a and b), we find that the propor-
tional welfare impacts of climate change
fall within a fairly narrow range. At no per-
centile would the welfare shock be much
worse than around a 10% annual consump-
tion loss (of course, this is an ongoing rather
than a one-time cost).29 Indeed, if global
food prices rise substantially (panel b) richer
households might even experience a slight
welfare gain. The distribution of the shock is
also practically neutral; in other words, the
CCIC is essentially flat. In the low global
productivity scenario, the poor gain from
higher rural wages and, given the impor-
tance of wage income, this gain can offset
the consumption-side loss from higher food

in other words, in the absence of warming, households of a
given type would remain locked in their per capita expenditure
percentile circa 2004–2005.

29 By contrast, welfare losses are generally greater than 10%
in the (unreported for reasons already discussed) high global
productivity scenario in which most agricultural commodity prices
fall sharply. However,even in this case,the welfare costs of warming
are quite evenly distributed across percentiles.
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Figure 7. Climate Change Incidence Curves

Note: Smoothed relationship between mean (within-percentile) predicted welfare change (m̂h) and per capita expenditure percentile.

prices.30 Our results thus imply that an osten-
sibly “pro-poor” policy of insulating the
domestic economy from rising food prices
may, over the medium run, be self-defeating
(see also Jacoby 2013).31

It is illuminating to compare these findings
to the partial equilibrium case of no wage
adjustment, as shown in the lower panels of
figure 7. The contrast, in terms of distribu-
tional implications, is stark. When food prices
are stable or even declining (panel c), the
poorest households are hardly touched by
climate change. After all, neither the cost of

30 Figure C.2 in the Appendix separates welfare effects due
to changes in agricultural TFP from those due to changes in
international commodity prices, showing how they roughly coun-
terbalance in the low global productivity scenario. Also in that
figure is a decomposition of welfare effects into consumption-side
changes (due to higher prices of food and services) and income-
side changes (due to higher wages and agricultural profits), which
are also approximately off-setting.

31 Of course, this ignores the urban poor who may not benefit
as much from higher rural wages. A full analysis of distributional
impacts in urban areas, however, would require careful modeling
of rural-urban labor market linkages, which is beyond the scope
of the present investigation.
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Figure 8. Robustness to Labor Mobility

Note: Smoothed relationship between mean (within-percentile) predicted
welfare change (m̂h) and per capita expenditure percentile under
alternative assumptions about geographic labor mobility.

their consumption bundle nor their income
has changed much. Since better off (largely
landowning) households bear the brunt of
the productivity decline in this scenario,
climate change looks like a steeply progres-
sive consumption tax. When food prices rise
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Figure 9. Distribution of Welfare Changes (m̂h) across 18 Major States of India

(panel d), however, the situation is reversed;
climate change acts like a regressive tax.
The poor lose out from higher food prices
without the countervailing wage income gain,
whereas the blow to the rich is softened, or
even eliminated, by higher producer prices.
In this counterfactual setting, trade insulation
policies are indeed pro-poor.

How important for these results is the
assumption that each rural district will, over

the three-decade horizon, remain a her-
metically sealed labor market? Figure 8
compares our baseline predicted welfare
changes under each price scenario (solid
curves) to those based on an alternative cal-
culation of �h, which assumes an integrated
rural-urban labor market in each of the five
regions (dashed curves). In other words,
instead of computing βj for each rural district,
we do so for rural and urban areas of each
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region.32 Yet, as is evident from the figure, the
differences are negligible.

Returning to the baseline flexible wage
case, figure 9 shows how welfare changes
are distributed across rural Indian districts.
Under the medium global productivity sce-
nario, harder hit (darker colored) districts
lie primarily in the northwest and, to a lesser
extent, in the southern interior. This pattern
largely reflects the geographical distribu-
tion of estimated TFP changes noted in
figure 5 as well as greater values of �h.33 Sub-
stantially higher food prices (coupled with
trade-openness) under the low global pro-
ductivity scenario noticeably alter the picture.
Aside from the more modest welfare losses
(larger gains) across districts, the geographic
disparities are also more muted.

Conclusions

Guided by a simple general equilibrium
model, we have sketched the potential dis-
tributional consequences of warming on the
vast canvas that is rural India. As with all
such exercises, we had to narrow our purview
for the sake of empirical implementation.
Nevertheless, our focus on the multifarious
effects of higher temperatures operating
through rural incomes and food prices has
yielded several important insights. First, we
estimate that the warming of about 1.25
degrees Celsius expected to occur in India
over the next three decades will reduce over-
all agricultural productivity in the range
of 7%–13%—once, that is, farmers have
adapted their production methods to the new
climate. However, in the arid wheat-belt of
northwest India, a region now comparatively
well-off, average productivity losses will be in
the 10%–16% range.

Second, we have shown that rural wage
adjustment is likely to be a quantitatively
important part of the distributional story
of climate change. Wages adjust to the
productivity shock induced by warmer tem-
peratures, which in turn lowers the price of
services. Wages also respond to any rise in
international agricultural commodity prices
transmitted to domestic markets. Moreover,

32 The share of employment in agricultural in these broader
labor markets ranges from 58–68%.

33 Figure C.3 in the Appendix displays the geographic pattern
of both λ�h and �h, showing that households in the northwest
derive a relatively large fraction of income from land (high λ�h).

according to our model and the parameters
calculated from micro-data, these responses
are elastic. On balance, wage adjustment
helps the poorest households when food
prices rise substantially. Indeed, if the price
increases predicted by a low global produc-
tivity scenario do eventually materialize, poor
(as well as rich) rural households may even
stand to gain from climate change.

Third, whatever the outlook for global
food prices, the welfare gains and losses
from climate change will be distributed fairly
evenly across income groups in rural India.
One might think that wealthier landowners
would lose out as long as the agricultural
prices they face are stable but would gain (in
relative terms) if these prices rise enough.
However, the robust rural wage response
overturns this superficial intuition. For the
same reason, government intervention that
aims to insulate poor rural consumers from
higher food prices, but which has the side-
effect of insulating producers, is likely to be
counter-productive.
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Appendix

A Model Solution

We assume Cobb-Douglas production func-
tions with input cost shares αLi + αIi + αKi = 1
in each sector i = A, M, S.34 The first step is to
solve the following system of four equations

αLAŴ + αKA�̂A = �̂ + P̂A(A.1)

αLMŴ + αKM�̂M = 0

αLSŴ + αKS�̂S = P̂S

βA�̂A + βM�̂M + βS�̂S = Ŵ

for Ŵ and the �̂i (recall, P̂M = P̂I = 0 by
assumption). The first three equations are
the sectoral price-equals-unit-cost conditions,
whereas the last equation is derived from the
labor constraint (which implies

∑
i βiL̂i = 0)

and the fact that L̂i = �̂i − Ŵ in the Cobb-
Douglas case. Solving the equation system
(A.1) leads to

Ŵ = (βA/αKAD)(�̂ + P̂A)(A.2)

+ (βSαKS/D)P̂S,

34 Elasticity formulae can also be obtained using more general
production functions (see e.g., Corden and Neary 1982; Kovak
2011), but these do not lend themselves to empirical implemen-
tation in our setting. For example, elasticities of substitution
between inputs are hard to estimate; the Cobb-Douglas restricts
all of these to unity.

where D = 1 + ∑
i βiαLi/αKi.

Next, we need to solve for P̂S by equat-
ing changes in service sector supply ŶS and
demand X̂S. As discussed in the text, we
assume a Marshallian aggregate demand
function for services of the form XS = ηy/PS,
where η is the share parameter (i.e., Cobb-
Douglas preferences). Differentiating, we
obtain

X̂S = ŷ − P̂S(A.3)

= (1 − E/y)(ωAP̂A + ωSP̂S) − P̂S

where ωj = (1 + αKj/αLj)βj/(1 + ∑
i βiαKi/αLi).

Note that the second line uses aggregate
income equation (2) and the fact that with
Cobb-Douglas production functions, sec-
toral labor shares are equivalent to sectoral
value-added shares (another advantage of
our functional form assumption from the
point of view of empirical implementation).

On the supply side, from the services pro-
duction function and the specificity of capital,
we have

(A.4) ŶS = αLSL̂S + αISÎS.

Meanwhile, the condition that input prices
equal respective marginal value products
delivers Ŵ = P̂S + F̂LS = P̂S − L̂S + ŶS and
P̂S = −F̂IS = ÎS − ŶS, where the second
equality in each case follows from the
total differentiation of the marginal prod-
uct functions FLS and FIS . Solving these two
equations, after first substituting out ÎS from
the second using (A.4), yields

(A.5) ŶS = αLS + αIS

αKS
P̂S − αLS

αKS
Ŵ .

Substituting equation (A.2) into (A.5),
equating the result to (A.3), and solving gives

(A.6)

P̂S = αKS(1 − E/y)ωAD + αLSβA/αKA

D(1 − αKS(1 − E/y)ωS) − αLSβS/αKS

(�̂ + P̂A),

which, inserted into equation (A.2), deliv-
ers a general expression for ψ. For the case
of equal input cost shares across sectors,
D = 1 + αL/αK and equation (A.6) simplifies
to P̂S = (�̂ + P̂A)RβA/(αK + αL − RβS) where
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R = αL + αK(αK + αL)(1 − E/y). Substituting
this expression for P̂S into (A.2) delivers the
ψ in equation (4).

To assess the validity of the equal cost
shares assumption, we took cost shares of
value-added for Indian manufacturing and
service sectors based on national accounts
(from Narayan, Aguiar, and McDougall
2012) and computed ψ according to the more
general formula. The results are virtually
identical to those of the equal cost shares
case described in the text. While the labor
cost share in manufacturing is, to be sure,
much lower than that in agriculture (and in
services), so is the capital share. Hence, the
ratio of capital to labor shares, which is what
is most relevant to our calculations, is very
similar across sectors.

B Computation Details

Production function parameters

To compute the labor cost share,
WLA/

∑
j Pj Yj, note that LA = H + �, where

H is hired labor in agriculture and � is family
labor. Note also that WLA = WH(1 + f ),
where f = �/H is the ratio of family to hired
farm labor. For a labor market in equilib-
rium, f should equal the ratio of the number
of agricultural laborers working on their own
farm to the number working for wages on
other farms. Thus, we can calculate f for each
of the five regions from individual employ-
ment data in NSS61-EUS. Comparable data
on hired labor expenses (for regular and
casual farm workers), WH , and on total crop
revenues are available at the farm-level by
season from NSS59. Summing up WH across
seasons and households within each region
(using sampling weights) multiplying by
(1 + f ) and dividing by a similarly computed
sum of crop revenues gives the labor share
for each region as reported in table 3. A sim-
ilar calculation gives the intermediate input
share PI IA/

∑
j PjYj, where the numerator

is the total expenditures on non-labor vari-
able inputs (seed, fertilizer, pesticide, and
irrigation).

Household income shares

To get household labor income, we need
employment information on household

members, which is only available in the
NSS61-EUS. Since households in NSS61-
CES are not the same as those covered by
NSS61-EUS, we must impute the requisite
variables based on common characteristics
available in both data sets. Thus, let nh be the
proportion of economically active household
members (age 15–60) in NSS61-EUS. We
first run a regression of nh on the following
explanatory variables: linear splines in the
amount of land the household cultivates,
household demographic composition and age
of head, proportion of household members
with different education levels, social cate-
gory of household (scheduled caste/tribe),
and district dummies. Using these regression
coefficients, we impute a value of n∗

h for each
household in NSS61-CES (conditional on
having members in the age range) based on
the same set of explanatory variables, drop-
ping the small percentage of households for
whom n∗

h ≤ 0.
Daily wage income per worker is the

weighted sum of (exponentiated) state fixed
effects from a log-wage regression based
on NSS-EUS and controlling for sector of
employment (agricultural/nonagricultural),
type of labor (manual/nonmanual), and NSS
survey round. Weights are the imputed pro-
portion of household days worked (in last
week) in agricultural manual labor, nona-
gricultural manual labor, and non-manual
labor using the same imputation procedure
as for n∗

h. Thus, we have adjusted state mean
daily wages Ws,m, for m = MAL (manual ag.
labor), MNL (manual nonag. labor), NML
(non-manual), and the corresponding house-
hold weights d∗

h,m. Annual per capita income
from manual labor is then WL∗

h = 365n∗
h

(d∗
h,MALWs,MAL + d∗

h,MNLWs,MNL) and from
non-manual labor is E∗

h = 365n∗
hd∗

h,NML

Ws,NML.
An analogous approach is used to gen-

erate state-specific prices for irrigated and
unirrigated land, whose sum, weighted by,
respectively, hectares of irrigated and unir-
rigated land owned per household member,
constitutes the total value of land per capita.
To get land income per capita, �AKAh, we
multiply this latter figure by a discount
rate of 0.05 (as in, e.g., Deschênes and
Greenstone 2007). Finally, we compute
λ�h = �AKAh/(�AKAh + WL∗

h + E∗
h) and

λWh = WL∗
h/(�AKAh + WL∗

h + E∗
h).
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C Appendix Figures and Tables

Figure C.1. Climate and Predicted Temperature Change across 18 Major States of India
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Figure C.2. Alternative Decompositions of Welfare Changes

Note: Smoothed relationship between mean (within-percentile) predicted welfare change, separated by source, and per-capita expenditure percentile.
All decompositions are based on Low Global Productivity scenario and state fixed effects specification of hedonic model. Panel (a) decomposition
separates welfare effects due to agricultural TFP changes (�̂) and world price changes (P̂A). Panel (b) decomposition separates welfare effects due
to changes in household consumption (including of nontradables) and changes in household income.
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Figure C.3. Distribution of Key Parameters across 18 Major States of India

Table C.1. Data for Hedonic Regressions

Variable Mean Std. Dev. Min Max

Agricultural TFP index (θ̄d) −0.0142 0.387 −0.978 1.127
Mean annual temperature (◦C) 25.33 1.800 18.24 28.85
Mean harmful degree days 13.18 16.53 0 71.47
Mean annual precipitation (meters) 0.941 0.473 0.150 3.571
Std. Dev. of mean annual precip. 1.289 0.595 0.299 4.595
Proportion area at elevation 250–1500 m 0.410 0.419 0 1
Proportion area at elevation >1500 m 0.0246 0.128 0 0.999
Dominant topography: Hilly 0.0581 0.234 0 1
Dominant topography: Undulating 0.432 0.496 0 1
Dominant soil texture: Fine 0.217 0.413 0 1
Dominant soil texture: Medium 0.634 0.482 0 1
Dominant soil type: Acrisols 0.0172 0.130 0 1
Dominant soil type: Cambisols 0.213 0.410 0 1
Dominant soil type: Luvisols 0.320 0.467 0 1
Dominant soil type: Nitosols 0.0925 0.290 0 1
Dominant soil type: Vertisols 0.181 0.385 0 1
Distance to nearest city of >106 pop. (km) 170.6 105.9 3.687 575.1

Note: Summary statistics for 465 districts. Source for city populations is the 2001 Census of India. All other sources mentioned in the text.
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