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Abstract
Alzheimer’s disease (AD) is associated with altered eating 
behavior and metabolic disruption. Amyloid plaques and 
neurofilament tangles are observed in many hypothalamic 
nuclei from AD brains. Some of these areas (suprachiasmatic 
nuclei, lateral hypothalamic area) also play a role in the regu-
lation of the sleep/wake cycle and may explain the comor-
bidity of eating and sleep disorders observed in AD patients. 
Inadequate sleep increases the neurodegenerative process, 
for example, the decrease of slow-wave sleep impairs clear-
ance of β-amyloid peptide (Aβ) and tau protein from cere-
bral interstitial fluid. Cerebrospinal fluid (CSF) melatonin lev-
els decrease even in preclinical stages (Braak-1 stage) when 
patients manifest no cognitive impairment, suggesting that 
reduction of melatonin in CSF may be an early marker (the 
cause for which is still unknown) of oncoming AD. Melatonin 
administration augments glymphatic clearance of Aβ and 
reduces generation and deposition of Aβ in transgenic ani-
mal models of AD. It may also set up a new equilibrium 

among hypothalamic feeding signals. While melatonin trials 
performed in the clinical phase of AD have failed to show or 
showed only modest positive effects on cognition, in the 
preclinical stage of dementia (minimal cognitive impair-
ment) the effect of melatonin is demonstrable with signifi-
cant improvement of sleep and quality of life. In this review, 
we discuss the main aspects of hypothalamic alterations in 
AD, the association between interrupted sleep and neurode-
generation, and the possible therapeutic effect of melatonin 
on these processes. © 2018 S. Karger AG, Basel

Introduction

Neurodegenerative diseases are disorders character-
ized by progressive deterioration of brain structure and 
function. Degeneration of selective neuron populations 
gives rise to prominently cognitive symptoms in Alz-
heimer’s disease (AD) and frontotemporal dementia or  
to predominantly motor symptoms in Parkinson’s dis-
ease, amyotrophic lateral sclerosis, or Huntington’s dis-
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ease. Aside from the habitual existence of neuron loss and 
brain inflammation, neurodegenerative disorders are 
also associated with altered eating behavior (hyporexia/
anorexia) and metabolic changes such as weight loss (hy-
poleptinemia), suggesting the participation of hypotha-
lamic neuroendocrine areas involved in feeding behavior. 
Approximately 50–60% of AD patients manifest eating 
disturbances [1] and 14–80% show poor nutritional sta-
tus [2], weight loss being a clinical feature in 20–45% of 
AD cases [3]. 

The main symptoms of AD are memory loss associ-
ated with language deficiency, personality disorders, and 
alterations in sensory-motor association functions [4]. 
The most common form of AD is late onset AD, a multi-
factorial, heterogeneous disorder associated with genetic 
factors and environmental risk factors, whereas familial 
forms of AD (accounting for less than 2–3% of cases) are 
related to genetic mutations of the amyloid precursor 
proteins, presenilin 1 and presenilin 2. From a neuro-
pathological perspective, AD is defined by extracellular 
accumulation of β-amyloid peptide (Aβ) in amyloid 
plaques and the presence of neurofilament tangles formed 
by fibrillar aggregates of hyperphosphorylated tau pro-
teins [5, 6]. The amounts of Aβ and tau in brain tissue 
depend on clearance mechanisms related to slow-wave 
sleep [7]. In this review, we briefly discuss the main as-
pects of hypothalamic alterations in AD, the association 
between interrupted sleep and neurodegeneration, and 
the possible therapeutic effect of melatonin on these pro-
cesses.

Main Neuroendocrine-Metabolic Dysfunction in AD

The hypothalamus is a key brain structure involved in 
2 major pathways that mediate eating behavior: an appe-
tite-stimulating pathway (orexigenic via), and an appe-
tite-suppressing pathway (anorexigenic via) [8]. Neurons 
located in the hypothalamic arcuate nucleus (ARC) syn-
thesize the orexigenic peptides neuropeptide Y (NPY) and 
agouti-gene related peptide (AgRP). Their axons form 
synapses with second-order neurons located in the lateral 
hypothalamic area (LHA), these cells containing the main 
orexigenic peptides orexin and melanin-concentrating 
hormone. The ARC also contains neurons encoding sati-
ety that produce anorexigenic peptides derived from 
proopiomelanocortin (POMC), which co-exist with co-
caine- and amphetamine-regulated transcript-containing 
neurons. These anorexigenic neurons project to neurons 
in the hypothalamic paraventricular nucleus and increase 

the synthesis of corticotrophin releasing hormone, anoth-
er powerful anorexigenic peptide.

Peripheral signals interact at the hypothalamic level 
via receptor-mediated processes to either stimulate or in-
hibit the orexigenic/anorexigenic pathway. For instance, 
enhanced circulating levels of white adipose tissue-de-
rived leptin and pancreatic β cell-derived insulin, as well 
as some gut-derived peptides (e.g., cholecystokinin, glu-
cagon-like peptide 1, peptide YY) inhibit the hypotha-
lamic orexigenic pathway. Conversely, stomach-derived 
Ghrelin, the only gut-derived orexigenic hormone, closes 
a feedback mechanism with hypothalamic orexigenic 
neurons [8]. This mechanism underlies the complexity of 
individual eating behavior; indeed, most hypothalamic 
alterations result in undesirable metabolic consequences 
(Fig. 1).

Several studies support significant hypothalamic atro-
phy in AD patients [9]. Amyloid plaques and neurofila-
ment tangles are observed in many hypothalamic nuclei 
from AD brains including paraventricular nucleus, LHA, 
and tuberomammillary, supraoptic, and suprachiasmatic 
nuclei (SCN) [10] (Fig.  1). Some of these areas (SCN, 
LHA) play a role in the regulation of the sleep-wake cycle 
and may explain the comorbidity of eating and sleep dis-
orders seen in AD patients. Adrenal, thyroid, and gonad-
al secretion are also dysfunctional in AD patients, dys-
functions that have been claimed to participate in AD 
physiopathology [10].

However, in AD patients, a dysfunctional hypothala-
mus induces energy homeostasis derangements and con-
sequent dysmetabolism [11]. Among the altered meta-
bolic pathways, obesity (body mass index higher than 30), 
insulin resistance (IR; a defective, downstream insulin re-
ceptor, insulin-signaling system), type 2 diabetes (fasting 
glycemia equal to/higher than 7 mM and/or impaired glu-
cose tolerance) and virus infection [12] enhance the risk 
of AD development [13]. Weight loss in AD patients ap-
pears to be associated with both amyloid burden and dis-
ease progression [3]. Importantly, weight loss precedes, 
by approximately 10 years, onset of AD symptomatology 
[14]. The consensus is that hypothalamic plaques and 
tangles are present at the early-moderate stage in AD and 
that weight loss often occurs prior to cognitive derange-
ments. Furthermore, a body mass index decline in older 
age could indicate a high risk of AD development and a 
higher rate of AD progression [3].

Although dysmetabolism seems to be related to hypo-
thalamic dysfunction, the signaling pathways involved 
are not fully understood. A number of factors other than 
tau and Aβ hypothalamic accumulation could contribute 
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to dysmetabolism in AD patients. Studies support the in-
volvement of leptin-signaling in energy homeostasis 
changes in AD [10], for example, Aβ peptide alters ARC 
NPY neuron response to leptin [15]. Indeed, although not 
altered, ARC leptin-receptor (leptin-R) gene expression 
was noticed in transgenic AD mice, the hypoleptinemia 
characterizing individuals coexists with decreased ARC 
POMC and cocaine- and amphetamine-regulated tran-
script mRNA levels, thus indicating a normal function of 
the anorexigenic pathway; conversely, ARC NPY and 
AgRP genes expressions are similar in wild-type and AD 
mice, thus indicating that dysfunctional ARC is limited to 
NPY-AgRP neurons [15]. This fact was similarly noticed 
after fasting AD mice and strongly supported by electro-
physiological studies [15].

Specifically, ARC lesion favors AD-like lesion devel-
opment in different experimental models of AD [16, 17]. 
Weight loss in AD patients could also result from defec-
tive sensory (e.g., taste/olfaction) integration or process-
ing [18].

Compelling evidence supports an interrelationship 
between modified glucose homeostasis and AD physio-
pathology, obesity, IR, and diabetes being strong risk fac-
tors for AD [13, 19]. Obesity and IR development worsen 
amyloidogenesis or tau pathology in AD transgenic mod-
els [20–22] (Fig. 2). Several studies indicate that brain IR 
can be enough to promote tau pathology and amyloido-
genesis [23]. Interestingly, increased risk of developing 
diabetes has been reported in AD patients [24], thus sup-
porting the interrelationship between brain lesions and 
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Fig. 1. Possible factors implicated in eating behavior and food in-
take in AD. Eating behavior is regulated by hedonic, homeostatic 
and peripheral signals. This scheme represents the main mecha-
nisms, which are disturbed in AD (stars) and may affect eating 
behavior. The possible role of melatonin on feeding behavior is 
discussed in the text. VTA, ventral-tegmental area; ARC, arcuate 
nucleus; DS, dorsal striatum; RN, raphe nuclei; LC, locus coeru-

leus; PVN, paraventricular nucleus; LHA, lateral hypothalamic 
area; AgRP, agouti-gene related peptide; NPY, neuropeptide Y; 
MCH, melanin-concentration hormone; POMC, proopiomelano-
cortin; CART, cocaine- and amphetamine-regulated transcript; 
CRH, corticotropin-releasing hormone; GLP-1, glucagon-like 
peptide-1; CCK, cholecystokinin; PP, pancreatic polypeptide; 
PYY, peptide YY; FFA, free fatty acids.
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metabolic disturbances in AD. The AD brain has been 
claimed as IR, a state correlating with the individual’s 
cognitive score [25]. This observation is in line with the 
known ability of insulin signaling to promote plasticity 
and memory that may be relevant for changes in the ce-
rebral cortex or the improved memory observed in hu-
mans treated with intranasal insulin [26].

The potential involvement of brain IR in impaired glu-
cose homeostasis development in AD patients is also sup-
ported by the known role of insulin signaling in energy 
metabolism regulation [27]. The origin of IR in the AD 
brain seems to be related to both Aβ and tau pathologies 
[28]. The intracerebroventricular infusion of Aβ oligo-

mers in mice triggers a pre-diabetic state (impaired glu-
cose tolerance) by a hypothalamic-based mechanism 
[28], and loss of function of tau impairs insulin respon-
siveness and is associated with altered glucose homeosta-
sis [29]. This is in line with increased brain insulin recep-
tor substrate-1 (IRS-1) inhibition in patients with pure 
taupathies [30]. Although the underlying mechanisms re-
main unclear, Aβ oligomers have been shown to promote 
insulin receptor internalization [31] as well as activation 
of c-Jun N-terminal kinase, Protein kinase R, and tumor 
necrosis factor-α (TNF-α) pathways, in turn resulting in 
IRS-1 function inhibition [28, 32]. These statements are 
also supported by studies indicating that peripheral glu-
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Fig. 2. Disrupted brain insulin-signaling in AD. Amyloid-β (Aβ) 
accumulation enhances tumor necrosis factor-alpha (TNFα) levels 
and activates c-Jun N-terminal kinase (JNK). As a consequence, 
serine phosphorylation of insulin substrate receptor-1 (IRS-1) is 
inhibited. Insulin resistance decreases insulin degrading enzyme 
(IDE) expression, thus diminishing IDE-induced Aβ degradation. 
Moreover, reduced brain insulin signaling decreases the inhibition 
of glycogen synthase kinase-3β (GSK-3β) activity on tau protein 

(TP) phosphorylation resulting in hyperphosphorylated TP (PP-
TP) production and microtubule depolymerization (MTDP), re-
sulting in augmented neurofilament tangles (NFTs) deposition. 
Therefore, impaired insulin signaling results in neuron degenera-
tion and modifies learning and memory. Additionally, IRS-1 defi-
ciency reduces nitric oxide (NO) production and augmented en-
dothelin-1 production, thus decreasing brain blood flow and in-
creasing neuroinflammation.
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cose dysmetabolism appeared hours (12 h) later than the 
rapid increase (4 h) in hypothalamic inflammation mark-
ers observed after icv administration of Aβ oligomers in 
mice [28], thus indicating that glucose dysmetabolism is 
a consequence of the central effects induced by icv ad-
ministration of Aβ oligomers in mice [28]. Moreover, it 
has also been demonstrated that Aβ oligomers-induced 
hypothalamic inflammation in mice, characterized by en-
hanced brain oxidative stress and TNF-α can be overrid-
den by both antioxidant treatment [28] and when func-
tional TNF-α receptor is absent [33]. Moreover, recent 
data suggest that apolipoprotein E4 overproduction con-
tributes to intra-endosomic trapping of insulin receptor 
during late-onset, diabetes-associated AD [34]. Collec-
tively, the data emphasize that glucose homeostasis im-
pairments found in AD patients likely result from hypo-
thalamic damage responsible for abnormal insulin signal-
ing (Fig. 2). 

Sleep Disturbances in AD

AD neurodegeneration extends beyond cognitive 
function to involve key physiological processes, including 
eating and sleep. The processes involved could serve as 
biomarkers to aid in the early diagnosis of disease [35]. In 
the elderly, sleep efficiency decreases to approximately 
80% with an increase in sleep onset latency and in per-
centage of time elapsed in stages N1 and N2 (light slow 
sleep) and of waking after sleep onset. Other age-related 
declines are reductions in deep slow-wave sleep (stage 
N3) and in rapid eye movement (REM) sleep. The elec-
troencephalographic spectral power analysis of polysom-
nographic data have confirmed that the elderly have re-
ductions in non-REM and REM sleep and a marked de-
crease in delta activity [36].

The incidence of sleep disorders in patients with AD is 
close to 70%, and they very often arise before the onset of 
cognitive deterioration [37]. In relation to non-demented 
individuals of the same age [38], the sleep architecture of 
patients with AD indicates a quantitative reduction of 
both slow-wave sleep and REM and a significant degree 
of sleep fragmentation that decreases daytime alertness 
and increases napping. Approximately half of the patients 
with AD show exacerbation of neuropsychiatric symp-
toms in the late afternoon/early evening, with agitation, 
restlessness, and confusion (“sundowning”) [37, 39]. 
Both sleep disorders and “sundowning” are among the 
main reasons for institutionalization of these patients 
[37].

The relation between sleep and neurodegenerative dis-
eases is bidirectional [40]. Neurodegeneration is accom-
panied by sleep difficulties due to reduction of amplitude 
and phase changes of circadian rhythms such as that of 
melatonin secretion, as well as the disturbing influences 
of neurodegenerative processes on sleep. Conversely, in-
adequate sleep, in terms of both duration and quality, in-
creases the neurodegenerative process and aggravates the 
underlying clinical picture [40].

Several studies have shown that sleep disruption is a 
major contributor to neuropathology. Sleep deprivation 
for one night [41] or interruption of non-REM sleep [42] 
in healthy subjects has been shown to increase levels of 
Aβ1–42 and Aβ1–40 in cerebrospinal fluid (CSF). In mice, 
sleep deprivation caused increases in Aβ peptides in brain 
interstitial fluid [43], and a direct relationship was estab-
lished between Aβ and wakefulness. Injections of orexin, 
the major neuropeptide related to wakefulness, led to in-
creases in Aβ, whereas the orexin antagonist almorexant 
decreased Aβ levels [43]. A significant relationship be-
tween sleep disruption and tau pathology may also occur, 
as shown by the impaired memory, tau metabolism, and 
synaptic integrity found in a sleep-deprived mouse mod-
el of AD [44]. 

The feasible link between sleep disruption and im-
paired Aβ and tau clearance is a dysfunctional glymphat-
ic system (Fig.  3). The glymphatic hypothesis [45, 46] 
holds that the movements of solutes in brain extracellular 
space (ECS) occur by exchange of water driven by peri-
vascular astrocytes through aquaporin-4 (AQP4) chan-
nels and by changes in vascular lumen. AQP4 is expressed 
predominantly in the feet of astrocytes and the passage of 
water through AQP4 is responsible for an exchange of 
fluids actively driven between para-arterial and para-
venous spaces via a convective flow of interstitial fluid. It 
has been assumed that arteriolar pulsations, as well as 
venular collapse dependent on respiration contribute to 
this convective flow [47]. Exchange of solutes between 
CSF and interstitial fluid occurs mainly during slow-wave 
sleep when the cortical interstitial space increases by over 
60%, providing a low resistance route for the movement 
of CSF and interstitial fluid in the brain parenchyma [45, 
46].

The concept of Aβ clearance by the glymphatic system 
received support from the observation that elimination of 
radiolabeled Aβ peptide injected is strongly reduced in 
knockout mice for AQP4 channels [45]. In fact, the loca-
tion of AQP4 in the feet of perivascular astrocytes is 
known to be highly altered in AD [48], and from this 
point of view, AD development and progression may be 
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due to failure of Aβ clearance, which is aggravated by 
sleep disturbance [49]. Another aspect related to AD re-
fers to the clearance of apolipoprotein E from the ECS, 
since sleep deprivation was found to suppress this process 
[50] as well as elimination of tau protein from ECS [51]. 
Although the glymphatic hypothesis remains a matter of 
controversy [52], the role of normal sleep for correct ce-
rebral clearance of toxic products can be considered well 
established (Fig. 3). 

Melatonin in AD

Severe disruption of the circadian system occurs in 
AD, indicated by alterations in numerous body rhythms, 
such as body temperature, plasma glucocorticoids and 
plasma melatonin. An emerging symptom of this circa-
dian disruption is “sundowning,” a chronobiological 
phenomenon observed in patients with AD along with 
sleep and wakefulness disorder. Chronotherapeutic in-
terventions such as exposure to bright light and timed 
melatonin administration in selected circadian phases al-
leviated “sundowning” and improved sleep-wake pat-
terns in patients with AD [53, 54].

The pineal methoxyindole melatonin is a synchronizer 
of the SCN clockwork [55]. In mammals, melatonin is 

synthesized in the pineal gland in a rhythmic manner, 
with high levels during nighttime and low levels during 
daytime. Melatonin phase-shifts circadian rhythms in the 
SCN by acting on MT1 and MT2 melatonin receptors ex-
pressed in SCN neurons, thus creating a reciprocal inter-
action between the SCN and the pineal gland. The circa-
dian rhythm in the secretion of melatonin has been shown 
to be responsible for the sleep/wake rhythm in both nor-
mal and blind subjects (i.e., in the absence of the synchro-
nizing effect of light) [56].

Melatonin exhibits an amazing phylogenetic conser-
vation from unicellular organisms to higher vertebrates 
that strongly suggests a cytoprotective function. Experi-
mental treatment with melatonin has been demonstrated 
to be neuroprotective in aging and AD animal models, as 
its administration decreased the accumulation of Aβ and 
hyperphosphorylated tau, improved neuroplasticity and 
neuron survival, prevented learning and memory impair-
ment, and ameliorated anxiety and depression-like be-
havior (see [57, 58]).

Early work of Pappolla et al. indicated that melatonin 
efficiently reduces the generation and deposition of Aβ 
[59–62] (Fig. 3). Melatonin administration also increases 
Aβ glymphatic clearance [63]. Since melatonin inhibits 
only the first stages of Aβ aggregation (nucleation phase) 
but does not revert oligomers or fibrils once they are 
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Fig. 3. Sleep disruption, particularly of 
slow-wave sleep, and altered feeding be-
havior, are frequent features in AD. Re-
duced slow-wave activity impairs glym-
phatic amyloid-β (Aβ) clearance, which is 
greatest in the sleeping brain. Metabolic 
demand increases with loss of slow-wave 
sleep, augmenting Aβ formation. Astrogli-
osis associated with aging, small vessel dis-
ease, traumatic brain injury, or amyloid 
plaques is associated with impaired glym-
phatic pathway function, possibly via im-
pairment of perivascular aquaporin-4 lo-
calization. The presence of Aβ aggregates 
specifically inhibits slow-wave activity. 
Melatonin counteracts most of the dys-
functions observed and may improve feed-
ing behavior signaling at the hypothalamic 
level.
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formed, its therapeutic application in AD prevention 
should be considered [64]. Concerning tau, melatonin 
was effective to inhibit Aβ-induced tau protein hyper-
phosphorylation via PI3K/Akt/GSK3β signaling in mu-
rine hipoccampus [65]. 

The imbalance between inflammatory and anti-in-
flammatory signals is a hallmark of the neurodegenera-
tive process that contributes to AD progression. The term 
“inflammaging” was introduced to underscore the im-
portance of inflammation in senescence and its role in the 
development of age-related diseases [66]. Reversal of in-
flammation by melatonin occurs at different levels. Mela-
tonin is effective in suppressing IR, a hallmark of the met-
abolic syndrome, by reversing the blockade of a key step 
in transduction of insulin signals, that is, reduced phos-
phorylation of IRS-1 [67]. Another important aspect of 
anti-inflammaging activity of melatonin is its role as an 
immunological buffer, comprising both proinflammato-
ry and anti-inflammatory effects. In several conditions 
such as senescence and cancer, the anti-inflammatory as-
pects of melatonin prevail [68].

As for appetite regulation, the possible involvement of 
melatonin has been studied for years. Melatonin regulates 
food intake in rats [69], mice [70], hamsters [71], pigs 
[72], and several submammalian species such as goldfish 
[73], rainbow trout [74], and zebrafish [75]. In rat, con-
flicting responses include reduction, increase, or no effect 
on food consumption [76, 77]. A decrease in fat mass and 
body weight has been reported in rats [77–79], whereas 
melatonin increases fat mass in gray mouse lemurs [80], 
Syrian hamster [71], raccoon dog [81], and garden dor-
mouse [82].

In a study evaluating gene expression of NPY, leptin-
R, POMC, prolactin-releasing peptide (PrRP), insulin re-
ceptor, IRS-1, and IRS-2 in the medial basal hypothala-
mus of obese rats, we reported that treatment for 10 weeks 
with 2.3 mg/kg melatonin, suppressed augmented medial 
basal hypothalamus mRNA levels of NPY, leptin-R, PrRP, 
insulin-R, IRS-1, and IRS-2 [83]. These results suggested 
that melatonin administration might be able to set up a 
new equilibrium among hypothalamic feeding signals 
(Fig. 1, 3). Remarkably, melatonin reduced gene expres-
sion of both the strong orexinergic signal NPY and the 
anorexinergic signal PrRP, as well as that of receptors for 
anorexigenic signals such as leptin and insulin, and of in-
sulin intracellular signaling (IRS-1, IRS-2) [83]. Whether 
this effect is relevant for clinically demonstrated activity 
of melatonin in AD patients deserves further exploration.

Melatonin trials performed in the clinical phase of AD 
have failed to show [84] or show only modest positive ef-

fects on cognition [85, 86]. Based on preclinical data, mel-
atonin is more likely to prevent the aggregation of Aβ 
rather than to reverse neuropathology in the clinically 
manifest phases of the disease. Normal aging is character-
ized by a decline in cognitive abilities which includes rea-
soning, memory, and semantic fluency, already detect-
able in the 5th decade of life. There is evidence of a pre-
clinical stage in dementia in which cognitive performance 
is limited compared to normal aging (minimal cognitive 
impairment [MCI]) [87]. In community-based studies, 
close to 30% of a sample of older people living in the com-
munity showed performance deficits not explained by 
changes related to age, education level, mood, or health 
condition [88]. This finding strongly suggests the exis-
tence of early pathological changes: a state of transition 
that occurs between normal aging and early AD. Analysis 
of published data on melatonin administration in the ear-
ly stages of cognitive decline consistently showed that 
melatonin, taken every night before retiring, improves 
quality of sleep and cognitive performance in this phase 
of the disease (see [89]). In MCI patients, the effect of 
melatonin is demonstrable, with significant improve-
ment of sleep and quality of life and reduction of cogni-
tive impairment [90].

CSF melatonin levels decrease even in preclinical stag-
es of AD when patients manifest no cognitive impair-
ment, suggesting that reduction in CSF melatonin may be 
an early trigger and marker for AD [91, 92]. Although it 
is not known whether the relative melatonin deficiency is 
a consequence or a cause of neurodegeneration, it seems 
clear that loss of melatonin aggravates the disease and 
that early circadian disruption may be an important defi-
cit to be considered. A recent study observed significant 
differences in melatonin levels between MCI and AD pa-
tients, with a negative correlation between neuropsycho-
logical assessment of dementia and melatonin levels [93]. 
Two meta-analyses endorsed the view that melatonin 
therapy is effective in improving sleep in patients with 
dementia [94, 95]. Moreover, the melatoninergic agonist 
ramelteon was reported to be effective to treat delirium, 
an acute state of mental confusion that may lead to many 
adverse sequelae in intensive care unit elderly patients 
[96].

Conclusions and Remarks

Evidence discussed here supports a significant hypotha-
lamic alteration in AD patients resulting in energy homeo-
stasis disorders and dysmetabolism, weight loss being as-
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sociated with disease progression. In fact, obesity, IR, and 
type 2 diabetes are important risk factors for AD develop-
ment. In addition, the incidence of sleep disorders in pa-
tients with AD is close to 70%, about 50 % of patients with 
AD showing exacerbation of neuropsychiatric symptoms 
in the late afternoon- early evening (“sundowning”). This 
disruption of the sleep-wake cycle affects normal cerebral 
perivascular and non-perivascular removal of toxic waste 
by affecting directional and nondirectional CSF flow.

Melatonin combines 2 properties for application in 
human medicine: chronobiotic and cytoprotection. Many 
published studies support a significant chronobiologic 
regulatory effect of melatonin on sleep. In a meta-analysis 
including 19 studies involving 1683 subjects, melatonin 
showed significant efficacy in reducing sleep latency and 
also increased total sleep time [97]. Trials of longer dura-
tion and the use of higher doses of melatonin demon-
strated greater effects. Several consensus statements also 
support this role of melatonin. For example, the British 
Association for Psychopharmacology consensus state-
ment on evidence-based treatment of insomnia, para-
somnias, and circadian rhythm disorders concluded that 
“melatonin should be the choice hypnotic for insomniacs 
over 55 years of age” [98]. In 2007, a sustained release 
form of 2-mg melatonin (Circadin®, Neurim, Tel-Aviv) 
was approved by the European Medicines Agency (EMA) 
for treatment of insomnia in elderly people. The fact that 
melatonin does not show evidence of dependency, isola-
tion, rebound insomnia, or negative influence on alert-
ness during the day was emphasized by the EMA and also 
the US Food and Drug Administration, for the melatonin 
analogs ramelteon (Rozerem®, Takeda) and tasimelteon 
(Hetlioz®, Vanda).

Concerning cytoprotection, almost every cell in the 
human body contains melatonin in quantities much 
higher than those circulating in blood derived from the 
pineal gland. To modify intracellular melatonin levels 
doses much higher than those utilized as a chronobiotic 
are required (i.e., in the 40–100 mg/day range) [99]. In 
view of studies in animal models of AD, it has become ap-

parent that several potentially useful effects of melatonin 
such as prevention of Aβ formation of tau phosphoryla-
tion require doses of melatonin in the order of > 100 mg/
day as the equivalent human dose. If we expect melatonin 
to be effective in improving health, especially in elderly 
people, it is likely that the low doses of melatonin com-
monly administered up to the present (under 10 mg/day) 
are not beneficial. Published reports indicate that melato-
nin is a safe drug with low toxicity (for references see 
[67]). In 2 dose-escalation studies of melatonin in healthy 
volunteers, tolerability and pharmacokinetics of up to 
100 mg oral doses of melatonin were assessed with no ad-
verse effects detected [100, 101]. However, the safety of 
melatonin in long-term treatment remains to be settled.

Melatonin enrichment of food could offer a strategy to 
reach amounts providing effective cytoprotection in AD. 
Therefore, one area of interest is the development of func-
tional foods containing high levels of melatonin. Melato-
nin is widely used as a food supplement, dietetic product, 
and drug in many countries worldwide. The European 
Food Safety Authority has admitted the health claim that 
melatonin reduces sleep onset latency [102]. Melatonin-
rich food and bioextracts can therefore now be developed 
to serve as nutritional supplements, dietetic products, 
and drugs.
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