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Abstract  

In this work we study the synthesis and properties of copolymers constituted of lauryl methacrylate 

and poly(ethylene glycol) methyl ether methacrylate monomers, prepared by atom transfer radical 

copolymerization in the entire composition range (with low and high monomer conversion). We 

propose a description of the copolymer microstructure, and evaluate the composition drift effect in 

the thermal and solution properties of the obtained copolymers. Nuclear magnetic resonance (NMR) 

was used to determine the chemical composition of the copolymers, while differential scanning 

calorimetry and themogravimetric analysis was employed to understand the thermal chracteristics. 

Rheological studies were conducted to obtain the viscosity and viscoelastic properties that were 

correlated with thermal transitions at different temperatures. Finally, dynamic light scattering (DLS) 

and surface tension measurements were used to evaluate the copolymer solution properties. The 

incorporation of an oil phase in the self-assembled aggregates was evaluated by DLS and 

characterized by atomic force microscopy, diffusion-ordered spectroscopy NMR and nuclear 

Overhauser effect NMR spectroscopy.. Our results suggest a longer sequence of LMA units in the 

copolymer chain and a drift effect in the case of high monomer conversions. A clear dependence on 

copolymer composition and microstructure to disperse an oil phase in water was observed. We 

believe that these results bring valuable knowledge that advances the field of macrosurfactants as 

well as their potential applications in oil recovery and other industrial processes.  

 

Keywords: Amphiphilic copolymers; Microstructural changes; Macrosurfactant; Thermal and 
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INTRODUCTION 

Emulsions, generally formed by the dispersions of an oil phase in water, play a key role in 

many industrial processes. Coatings,
1–3

 cosmetics,
4,5

 food,
6–8

 electronics,
9,10

 and petroleum 

recovery
11–14

 are only some examples of the applications of these compatibility systems. The use of 

amphiphilic copolymers has improved several aspects of low-molecular-weight surfactants.
15–18

 For 

instance, polymeric surfactants have lower critical micelle concentrations and lower diffusion 

coefficients than traditional surfactants do.
19–21

 On the other hand, the use of low-molecular-weight 

surfactants with high amphiphilic properties is limited to ionic entities containing ionic functional 

groups at their head, such as sulfonates, phosphates, or quaternary ammonium salts. 

The need to prepare molecules with two domains exhibiting different polarity has 

traditionally turned block copolymers into the most frequently used amphiphilic systems.
22–25

 This is 

also explained by the fact that their synthetic methods are well-established, and, on the other hand, 

because of their topology, they are tunable and adaptive. 

Some authors have described the preparation and use of statistical copolymers with 

amphiphilic properties. Some of them have used free-radical copolymerization of monomers with 

long polar and nonpolar pendant groups.
26–32

 This type of procedure generates a linear backbone with 

a hydrophilic and hydrophobic polymeric pendant group statistically distributed along the backbone. 

More recently, different research groups have begun to use controlled radical copolymerization 

techniques to attain amphiphilic copolymer with better control over composition, molecular weight, 

and polydispersity.
33–36

 The most relevant difference between the traditional block copolymers and 

the aforementioned statistical copolymers is that block copolymers display well-defined, separated 

hydrophilic and hydrophobic domains. This feature facilitates self-assembly and produces 

dispersions with monodisperse size and morphology.
 
Even though hydrophilic/hydrophobic statistical 

copolymers do not display this topological features, they have demonstrated potential capabilities as 

emulsifying agents to generate disperse systems similar to Pickering emulsions. 

Moreover, variations in composition and copolymer microstructure can produce various 

changes in the final properties, which are of great relevance in terms of material performance and 

function.
37–39

 The preparation of copolymers at low monomer conversions can help in the prediction 

and distribution along the copolymer chain,
40

 and could only be extrapolated to high concentrations 

by setting the monomer composition in the feed for controlled copolymerization methods. In general, 

this extrapolation contains many errors. 

The rheological characteristics of low-molecular-weight surfactants are strongly affected at 

high temperatures. Along these lines, some authors have proposed the combination of some useful 

properties of polymeric materials with those of traditional surfactants.
41–44

 While considerable 
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research efforts have been devoted to the study of the rheological properties of polymer surfactants, 

low surfactant concentrations and their stability have received little attention.
45–47

 

In a previous work,
31

 with the use of free-radical copolymerization, we designed and prepared 

amphiphilic copolymers for use as emulsifying agents with lauryl methacrylate (LMA) and poly 

(ethylene glycol) methyl ether methacrylate (PEGMA) as constituting monomer units. Their 

amphiphilic characteristics allowed us to disperse an organic phase in water and to disperse and 

stabilize carbon nanotubes in aqueous solutions. While, various studies deal mostly with PEGMA-

based copolymers and their thermoresponse characteristics,
48,49

 a systematic study on this monomer 

pair in the entire composition range is still missing. 

Understanding the influence of the microstructure on the properties of amphiphilic copolymer 

remains a key issue in the development of this type of systems. Therefore, the aim of this work was 

to design, prepare and characterize LMA- and PEGMA-based copolymers in their entire composition 

range with low and high monomer conversion. We aim to describe the copolymer microstructure of 

the LMA-PEGMA pair, and to evaluate the composition drift effect in the thermal and solution 

properties of the obtained copolymers. Additionally, we intended to find the best composition and 

copolymer microstructure to emulsify and disperse an oil phase in water. To meet these goals, we 

used atom transfer radical copolymerization under different experimental conditions to attain 

monomer conversions below 25% and above 85% for the entire composition range. Nuclear magnetic 

resonance (NMR) was used to determine the chemical composition of the copolymers obtained. 

Differential scanning calorimetry (DSC) and themogravimetric analysis (TGA) helped to explain the 

thermal transition and decomposition profiles. Rheological studies were conducted to obtain the 

viscosity and viscoelastic properties that were compared to thermal transition by variation of 

temperature. Finally, the incorporation of an oil phase in the self-assembled aggregates was evaluated 

by DLS and characterized by Atomic Force Microscopy, Diffusion-Ordered Spectroscopy NMR, 

Nuclear Overhauser Effect NMR spectroscopy, and Atomic Force Microscopy. 

These results contribute to improve our understanding of the microstructure-property 

relationship in amphiphilic copolymers. We believe that they provide fundamental knowledge about 

the capabilities of these emulsifying agents for potential use in oil recovery and other industrial 

applications  
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EXPERIMENTAL 

Materials  

Monomers, lauryl methacrylate (LMA, 96% Aldrich) and poly(ethylene glycol) methyl ether 

methacrylate (PEGMA, average Mn 500 Aldrich) were distilled under reduced pressure before use. 

The initiator, Ethyl α-bromoisobutyrate (EBIB, 98% Aldrich), CuBr (99.995% Aldrich), CuBr2 

(99.995% Aldrich), N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine (PMDETA, 99% Aldrich), and the 

solvents (THF (RPE, Anedra) and methanol (RPE, Anedra)) were used as received. The dialysis 

tubing cellulose membrane with a typical molecular weight cut-off of 14,000 was provided by 

Aldrich. 

Polymerization 

LMAx-PEGMAy copolymers, where x is the LMA molar fraction in the feed and y the 

PEGMA molar fraction in the feed, respectively, were synthesized by Atom Transfer Radical 

Polymerization (ATRP) using EBIB as initiator and Copper/PMDETA as catalyst. To obtain different 

monomer conversions, two synthesis conditions were applied. 

Condition 1. 20 mmol of LMAx-PEGMAy monomer mixture (table S1) was introduced into a 

Schlenk tube. The mixture was purged with N2 bubbles at 0 °C for 30 minutes. Then 0.22 mmol (38.5 

mg) of PMDETA and 0.02 mmol of CuBr2 (4.5 mg) were added and the purge was continued for 15 

minutes. Then 0.2 mmol of CuBr (28.7 mg) was incorporated and the mixture was sonicated under 

N2 in an ice bath for 10 minutes. Afterwards, the tube was heated at 40 ºC and 0.2 mmol of EBIB (39 

mg) was introduced to start the reaction (Monomer/Initiator ratio of 100). After 5 minutes, LMA0.2-

PEGMA0.8, LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4 were added in 20 mL of water and the LMA 

monomer was eliminated by extraction with toluene (3x10mL) without agitation. The aqueous phase, 

along with the copolymers, was purified by dialysis and freeze-dried. LMA0.8-PEGMA0.2 was 

precipitated in methanol and purified with a two-step dissolution process in THF and precipitation in 

methanol, centrifuged, and dried under vacuum. The absence of olefinic protons in the H NMR 

spectra confirmed polymers purity (figure S1). 

Condition 2. 20 mmol of LMAx-PEGMAy monomer mixture (table S1) was introduced into a 

Schlenk tube. The mixture was purged with N2 bubbles at 0 °C for 30 minutes. Then 0.2 mmol (35 

mg) of PMDETA was incorporated and the purge was continued for 15 minutes. Then 0.2 mmol of 

CuBr (28.7 mg) was introduced and the mixture was sonicated under N2 in an ice bath for 10 

minutes. Afterwards, the tube was heated at 70 ºC and 0.2 mmol of EBIB (39 mg) was added to start 

the reaction (Monomer/Initiator ratio of 100). After 20 minutes, LMA0-PEGMA1 (Poly-PEGMA) 
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was introduced in 20 mL of water and purified by dialysis and freeze-dried. LMA0.2-PEGMA0.8, 

LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4 were introduced in 20 mL of water and, as in the 

previous cases, the LMA monomer was eliminated by extraction with toluene (3x10mL) without 

agitation. The aqueous phase, along with the copolymers, was purified by dialysis and freeze-dried. 

Finally, LMA0.8-PEGMA0.2 and LMA1-PEGMA0 (Poly-LMA), were precipitated in methanol and 

purified with a two-step dissolution process in THF and precipitation in methanol, centrifuged, and 

dried under vacuum. The absence of olefinic protons in the H NMR spectra confirmed polymers 

purity (figure S1). 

 

Characterization 

Characterization and copolymer composition were estimated using Proton Nuclear Magnetic 

Resonance (H-NMR). Spectra were recorded on a 600 MHz Bruker Spectrometer. Self-assembled 

aggregates were studied by Diffusion-Ordered Spectroscopy NMR (DOSY-NMR) and Nuclear 

Overhauser Enhancement Spectroscopy (NOESY-NMR). The experiments were carried out on the 

aggregates pre-formed with LMA0.6-co-PEGMA0.4 copolymers from condition 1 and condition 2. For 

this purpose, 2% of toluene were dispersed in deuterated water solutions of 10 mg/mL of each 

LMA0.6-co-PEGMA0.4. 

The average molecular weight and molecular weight distribution were determined by SEC in 

a LKB-2249 instrument at 25 C. A series of four -Styragel columns (10
5
, 10

4
, 10

3
, 100 Å pore size) 

were used with tetrahydrofuran as eluent. Polymer concentration was 5 mg/mL, and flow rate was 0.5 

mL/min. The polymer was detected by infrared (IR) absorption at 5.75 m with a Miram IA 

spectrophotometer detector. Poly methyl methacrylate standards supplied by Polymer Laboratories 

and Polysciences Inc. were used for calibration. 

The thermal properties were evaluated by Differential Scanning Calorimetry (DSC) and 

Thermo Gravimetric Analysis (TGA). DSC measurements were performed using a DSC Q2000 (TA 

Instruments) under a nitrogen atmosphere at 10 °C/min heating and cooling rates, from -70 to 150°C. 

Three heating/cooling cycles were run to eliminate thermal prehistory. TGA analyses were performed 

using a TGA Q500 (TA Instruments). The equipment was kept under a nitrogen atmosphere from 

room temperature to 700 ºC, and a 60 ml/min purge gas was introduced.  

Rheological studies of LMAx-co-PEGMAy copolymers and their homopolymers in neat 

condition (without any solvent) were undertaken in a DHR-3 Rheometer (TA Instruments), using a 

40 mm diameter stainless steel parallel plate and a Peltier system, working in oscillatory shear and 

flow mode. For all samples, the gap between the geometry and the Peltier was 1000 µm. The Linear 
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Viscoelastic Region (LVR) was determined in each type of sample through a strain sweep at 1 Hz. 

As LVR was kept beyond 100 % of strain, 1 % was used in all the oscillatory experiments. 

Temperature ramps at 2 º/min were performed between -5 ºC and around 100 ºC, at a frequency of 1 

Hz. At fixed temperatures, during the first run-up, frequency scans between 0.1 Hz and 100 Hz were 

also conducted. Flow viscosity was obtained at the same temperatures after oscillatory tests. Data 

was further analyzed through the behavior of the storage modulus G’, the loss modulus G’’, and the 

loss tangent, tan δ = G’’/G’. Zero-shear viscosity was obtained by steady-state shear flow at very low 

shear stress and compared to oscillation tests at low angular frequency. The Time Temperature 

Superposition (TTS) principle was applied using the embedded analysis package included in the 

Trios
TM 

software. Master curves using William-Landel-Ferry (WLF) model, were obtained and 

compared to the original data. The activation energy from Arrhenius model was also analyzed.  

Solution properties were evaluated by dynamic light scattering (DLS) (Zetasizer Nano Z, 

laser wavelength 632 nm). The analysis of DLS and size results were carried out through distribution 

fit. The viscosity value used was pure water value at measurement temperatures. Polymer 

concentration was 1g.L
-1

. Some emulsification studies incorporating 2% of toluene to some 

copolymer solutions were performed. 

The surface tensions of aqueous surfactant solutions were determined by the Du Noüy ring 

method using an Attension Sigma 700 (Biolin Scientific) at 25 °C. The surface tensions of several 

solutions were measured at different concentrations. The critical micelle concentration (CMC) of 

surfactants was obtained from log plots of surface tension versus surfactant concentration. 

The atomic force microscopy (AFM) topography images of individual aggregates of the 

copolymers obtained were measured with a Multimode Atomic Force Microscope (Veeco Metrology 

Group) in tapping mode using silicon cantilevers (Bruker) Model TESP-V2. Samples were prepared 

by deposition of a water dispersion drop on a silicon substrate. Then they were frozen with liquid 

nitrogen and freeze-dried. 

 

RESULTS AND DISCUSSION  

Copolymer synthesis and characterization 

We employed two synthetic conditions. Under condition 1, we obtained conversion in less 

than 25% in order to describe the copolymer microstructure. Under Condition 2, we obtained higher 

monomer conversion and achieved more profitable conditions. In this context, both situations 

produced copolymers based on lauryl methacrylate (LMA) and poly(ethylene glycol) methyl ether 

methacrylate (average Mn 500) (PEGMA) (LMAx-PEGMAy). The structure is represented in Figure 
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1. Figure 1 also shows the H NMR spectra (in chloroform) for LMAx-PEGMAy copolymers obtained 

using 20% Cu
II
, 5 min of reaction time, and 40 °C of reaction temperature (condition 1). In the 

spectra, all resonance signals were assigned.  

 

Figure 1. Generic copolymers LMAx-PEGMAy structure and their H NMR spectra (in chloroform) using 20% 

Cu
II
, 5 min of reaction time, and 40 °C of reaction temperature. 

 

Copolymer compositions were estimated form H NMR spectra using the integral ratio of the 

peak at δ=1.27 corresponding to signal “d” of LMA monomer and the signal at δ=3.75 corresponding 

to signal “d’ ” of PEGMA monomer using Equation 1. 

     
  

   

  
       

  
 (1)  

 

FLMA represents the LMA molar fraction of the copolymers. The application of equation 1 to 

calculate FLMA for all copolymers is shown in Table 1. Each copolymer is represented as LMAx-co-

PEGMAy, where x, is the monomer mole fraction in the initial mixture (feed) of LMA monomer and 

y, is the monomer mole fraction in the initial mixture of PEGMA monomer. Table 1 also indicates 

the monomer conversion in each reaction, the weight-average molecular weight (Mw), number-

average molecular weight (Mn), and the polydispersity index (PDI) of the copolymers synthesized. 
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Figure S2 displays the elugrams of all the polymers obtained. The increment of Mw, Mn and PDI 

with LMA content is due to the increase of the hydrodynamic volume of the copolymers in THF. 

 

Table 1. Monomer conversion, mole fraction in the feed (fLMA), molar fraction in the copolymer (FLMA), 

weight-average molecular weight (Mw), number-average molecular weight (Mn), and polydispersity index 

(PDI) for the copolymers synthesized under condition 1 (20% CuII, 40 °C of reaction temperature and 5 

minutes of reaction time) and condition 2 (0% CuII, 70 °C of reaction temperature and 20 minutes of reaction 

time). 

Conditions Copolymer Conv (%)* fLMA FLMA
**

 
Mw 

(g/mol) 

Mn 

(g/mol) 
PDI 

20%CuII 

40°C 

5 min 

LMA0.2-PEGMA0.8 23 0.2 0.28±0.03 10,300 8,400 1.22 

LMA0.4-PEGMA0.6 22 0.4 0.52±0.02 18,200 13,500 1.35 

LMA0.6-PEGMA0.4 25 0.6 0.70±0.02 30,850 18,600 1.66 

LMA0.8-PEGMA0.2 19 0.8 0.85±0.01 19,650 16,000 1.23 

0%CuII 

70°C 

20 min 

LMA0-PEGMA1 93 0 0±0 11,900 9,700 1.23 

LMA0.2-PEGMA0.8 89 0.2 0.20±0.02 70,650 34,450 2.05 

LMA0.4-PEGMA0.6 91 0.4 0.37±0.02 23,650 17,050 1.38 

LMA0.6-PEGMA0.4 93 0.6 0.53±0.01 27,600 17,400 1.58 

LMA0.8-PEGMA0.2 87 0.8 0.78±0.01 66,450 33,950 1.95 

LMA1-PEGMA0 88 1 1±0 90,650 68,450 1.32 

* Conversions were determined by gravimetry as weight of polymer obtained /weight of monomer in the feed. 

** Errors were estimated by integrating 5 times the selected signals in the NMR spectra.  

 

The comonomer-copolymer composition curve for condition 1 is illustrated in Figure 2. The 

plot shows that LMA composition in the copolymer is always higher than in the feed. Following a 

general description, this plot would suggest a longer sequence of LMA units in the copolymer chain, 

as it has already been reported 
40,50,51

 and is evidenced by DSC. Based on the previous suggestion for 

the copolymers prepared under condition 2, 0% of Cu
II
, 70 °C and 20 minutes of reaction time, a drift 

effect should be observed, especially for LMA0.2-PEGMA0.8 and LMA0.8-PEGMA0.2 copolymers. 

This is explained by the fact that, even though, in the early stages of copolymerization, LMA is the 

most reactive monomer, in these early stages, the monomer with the lowest yield becomes depleted 

sooner. LMA monomer is incorporated faster, and the copolymer is richer in the LMA monomer. 

When the LMA monomer is depleted, more PEGMA monomer segments are added.  
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Figure 2. Comonomer-copolymer composition curve corresponding to 20% Cu
II
, 5 min and 40 °C of reaction 

conditions.  

 

Thermal Characterization 

The thermal decomposition of the synthesized copolymers is shown in Figure 3. As it can be 

noticed, only one thermal event is observed for all samples. Depending on the initial temperature of 

degradation, the copolymers synthesized under condition 1 showed the following thermal stability 

order, LMA0.8-PEGMA0.2 > LMA0.2-PEGMA0.8 > LMA0.4-PEGMA0.6 > LMA0.6-PEGMA0.4. As 

regards copolymers under condition 2, despite presenting higher initial degradation temperature than 

their analogues under condition 1, the thermal stability order remained the same, LMA0.8-PEGMA0.2 

(similar to the LMA homopolymer) > LMA0.2-PEGMA0.8 (similar to the PEGMA homopolymer)> 

LMA0.4-PEGMA0.6 > LMA0.6-PEGMA0.4.  

 

Figure 3. TGA curves for LMA-PEGMA systems at 20% Cu
II
 5 min and 40 °C (left), and 0% Cu

II
, 20 min, 70 

°C (right). LMA0-PEGMA1 (flour green, ⁃ •⁃ ), LMA0.2-PEGMA0.8 (black, ⁃ •⁃ ), LMA0.4-PEGMA0.6 (red, 

⁃ •⁃ ), LMA0.6-PEGMA0.4 (blue, ⁃ •⁃ ), LMA0.8-PEGMA0.2 (light blue, ⁃ •⁃ ), LMA1-PEGMA0 (brown, ⁃ •⁃ ). 
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The pair of monomers used presented complex thermal characteristics. As already known, the 

glass transition temperature of the PEGMA homopolymer is around -60 °C, and its melting 

temperature around -5 °C (Figure S3). On the other hand, the LMA homopolymer showed a glass 

transition temperature close to -45 °C and no melting peaks related to side-chain crystallinity due to 

the presence of lauryl groups (Figure S3). The copolymerization of these monomers resulted in 

systems with unpredictable thermal properties, shown in Figure 4. As regards condition 1 (figure 4, 

left), systems without composition drift, the copolymers did not present melting peaks and, except for 

LMA0.2-PEGMA0.8, which showed only one glass transition temperature, two glass transition 

temperatures were observed. The values of these transition temperatures were close to the glass 

transition temperature of PEGMA at -65 °C and the glass transition temperature of LMA at -30 °C. 

The presence of two thermal transitions could be indicative of microphase separation in the 

copolymer. 

As far as condition 2 is concerned (figure 4, right), the situation is even more complex and 

interesting, except for LMA0.8-PEGMA0.2, with a glass transition temperature of approximately -33 

°C, LMA0.6-PEGMA0.4 and LMA0.4-PEGMA0.6 showed a glass transition temperature of -65°C, 

corresponding to PEGMA glass transition temperature. On the other hand, melting peaks at around  

-32°C were observed. These melting peaks, corresponding to PEGMA segments, did not allow to see 

the glass transition temperature of LMA entities in the copolymer chains. Lastly, LMA0.2-PEGMA0.8 

showed all transition temperatures: PEGMA glass transition temperature at -65°C, LMA glass 

transition temperature at -33°C, and PEGMA melting at -9°C. 

The presence of two Tg values could be an indication of microphases separation in the 

copolymer, these transitions being dependent on the composition of the copolymers. In the case of 

condition 2, the composition drift helped in the melting process due to the closeness of PEGMA 

chains.  

 



  

11 
 

Figure 4. DSC curves of third heating cycle for LMA-PEGMA systems at 20% Cu
II
 5 min and 40 °C (left), 

and 0% Cu
II
, 20 min, 70 °C (right). LMA0.2-PEGMA0.8 (black, ⁃ •⁃ ), LMA0.4-PEGMA0.6 (red, ⁃ •⁃ ), LMA0.6-

PEGMA0.4 (blue, ⁃ •⁃ ), LMA0.8-PEGMA0.2 (light blue, ⁃ •⁃ ). 

Rheological Behavior  

Rheometry is one of the most important methods to describe the viscous and viscoelastic 

properties of polymers. In order to better understand and clarify the complex transition determined by 

DSC, the samples obtained under condition 2 were analyzed with this technique. The oscillatory tests 

allowed us to compare the different dynamics of PEGMA and LMA homopolymers, as well as their 

fingerprints in the different copolymer fractions. As temperature sweeps were restricted to 0-100 ºC, 

the Time-Temperature Superposition (TTS) principle was a great value tool to spread both the 

minimum and maximum of temperature and frequency. As an example, Figure 5, left, shows the 

application of TTS to the PEGMA homopolymer, by performing frequency sweeps at different 

temperatures and obtaining the shift factors. The WLF model was applied to assemble a master curve 

that spanned in a wider range (see the modelled curve at 20 ºC and its perfect matching with the 

original one). In addition, measured temperature sweeps (G’, G’’, and tan δ) were compared to the 

predicted responses for all the samples using the TTS-WLF model, yielding excellent results (e.g., 

Figure 5, right), mainly at lower temperatures where Tg < T < Tg+100K, even for both 

homopolymers: PEGMA or LMA.  

Figure 5. PEGMA homopolymer (fLMA = 0). Left: Frequency sweeps at different temperatures and 1 % strain, 

with a superimposed master curve at 20 ºC generated by the TTS, modeling with a WLF and Arrhenius 

equation (see insert). Right: Temperature ramp at 2 º/min, 1 Hz and 1 %. G’, G’’ and tan () in the original 

range between 5 ºC and 90 ºC and the extended range through the predicted curve by TTS and WLF. 

 

Figure 6 displays a tan () comparison for all samples synthesized under condition 2. As it 

can be observed (see also Figure 5, right), PEGMA homopolymer has a low temperature peak in tan 

() associated with the melting of its crystalline zones as measured by DSC (see Figure S3). 
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On the other hand, the pure LMA homopolymer, mainly amorphous, has a huge damping 

peak around 70 ºC with a tan () value close to 100 (i.e., G’’ is two orders higher than G’). This 

relaxation has not been previously reported for the LMA monomer polymerized by ATRP. This 

could be ascribed to high temperature rearrangements and cooperative movements of lauryl side 

chains assisting a local flow of the main chain. On the contrary, DSC did not show any change in the 

baselines around this temperature (not shown in Figure 4), nor any sign of melting at lower 

temperatures, related to the side-chain crystallinity of these lauryl groups. Moreover, for the pure 

LMA homopolymer, the absence of a visible side chain crystallinity could also be related to the 

tacticity of the obtained polymer. For copolymers, this behavior could be even more hindered by 

PEGMA units, thereby preventing lauryl packing. These unexpected features could be the platform 

for further research.  

The copolymers of condition 2 with a higher LMA fraction (LMA0.8-PEGMA0.2 and LMA0.6-

PEGMA0.4) showed mixed and transitional behavior within LMA and PEGMA. The pattern of 

LMA0.4-PEGMA0.6 and LMA0.2-PEGMA0.8 was similar to that of PEGMA homopolymer, as also 

predicted and identified by DSC (Figure 4, right, and Figure S3). 

 

 

Figure 6. TTS temperature modeled patterns in tan () for both homopolymers (PEGMA, black filled circles; 

and LMA: black open circles) and copolymers fractions of LMA of condition 2 (fLMA= 0.2: blue filled squares; 

fLMA= 0.4: red filled diamonds; fLMA= 0.6: red open diamonds; and fLMA= 0.8: blue open squares). 

 

Figure 7 shows the behavior of the zero-shear viscosity (related to Mw, see Table 1) and the 

activation energy of both relaxation processes from Figure 6 obtained through Arrhenius modeling 

(see, for example, inset in Figure 5, left), as a function of the LMA fraction. Homopolymer and 

copolymer viscosities ranged from 100 to 5000 Pa.s at 20 ºC, a consistency similar to that of 

molasses and polymer melts. Their values remained constant up to fLMA around 0.6, from which an 
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abrupt increase was observed. In addition, these samples with higher LMA content showed a 

Newtonian behavior up to 10 /s of shear rate; and an increasing shear-thinning effect in viscosity was 

detected as the PEGMA fraction dominated.  

Finally, the activation energy from the relaxation processes observed in Figure 6 showed the 

transition between pure PEGMA and pure LMA homopolymers. As a reference, the activation energy 

for viscous flow for many linear polymers is around 25-30kJ/mol. The introduction of high pendant 

groups or chain branching seems to almost double this value. 
52

 

 

Figure 7. Zero-shear viscosity at 20 ºC and H Arrhenius vs. fLMA for condition 2. 

 

Solution Properties 

Surface Tension Analysis 

The hydrophilic-lipophilic balance (HLB) is an estimation of the hydrophilic degree of an 

amphiphilic molecule. This value is determined by calculating values for the different regions of the 

entity. Several methods are used to determine HLB. According to Griffin's method, the HLB value is 

dependent on the molecular mass of the hydrophilic portion of the molecule (Mh) with respect to the 

molecular mass of the whole molecule (M), according to equation 2.
53,54
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C groups of the main chain and terminal CH3 of pendant group). Table 2 lists the HLB values of all 

the synthesized copolymers. According to Griffin's method, HLB values less than 10 correspond to 

water-insoluble systems (experimentally observed for LMA0.8-PEGMA0.2). HLB values between 8 

and 16 correspond to oil/water emulsifying agents. In fact, a water phase can introduce parts of an oil 

phase. Moreover, if the HLB value is close to 12.5-15, the surfactant could show detergent capability. 

In this case, we selected three copolymers with HLB values in the aforementioned range (LMA0.4-

PEGA0.6 with and without composition drift and LMA0.6-PEGAM0.4 with composition drift) one 

copolymer below the range (LMA0.6-PEGAM0.4 without composition drift), and one copolymer above 

the aforementioned range (LMA0.2-PEGAM0.8 with composition drift). The surface tension as a 

function of the concentration was determined for the five systems. Figure 8 illustrates the plots 

obtained.  

 

Table 2. Hydrophilic-lipophilic balance (HLB) estimation for the copolymers synthesized under condition 1 

(without composition drift) and condition 2 (with composition drift). 

Copolymer HLB 

20% Cu
II
 

Condition 1 

HLB 

0% Cu
II
 

Condition 2 

LMA0.2-PEGMA0.8 15.4 16.1 
 

LMA0.4-PEGMA0.6 12.7 14.5 

LMA0.6-PEGMA0.4 10.0 12.5 

LMA0.8-PEGMA0.2 7.1 8.6 
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Figure 8. Surface tension values as a function of sample concentration for LMA0.2-PEGMA0.8 (•), LMA0.4-

PEGMA0.6 (•) and LMA0.6-PEGMA0.4 (•) in water. Left corresponds to a copolymer without composition drift 

(condition 1) and right corresponds to a copolymer with composition drift (condition 2). 

 

Figure 8 shows that for all the selected copolymers, the surface tension decreased as the 

sample concentration increased. This context highlights the surfactant capability of all the 

copolymers obtained. LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4 with composition drift (condition 

2) showed a clear critical micelle concentration (CMC). CMC is an important characteristic of a 

surfactant and, before reaching the CMC, the surface tension changes significantly when the 

surfactant concentration does. After reaching the CMC, the surface tension remains relatively 

constant or changes with a lower slope. LMA0.2-PEGMA0.8 did not show major surface 

tension changes before CMC, probably due to its high solubility in water, as indicated by its 

HLB.
55,56 

As illustrated in figure 8, LMA0.4-PEGMA0.6 displayed a CMC close to 1.5E-3 wt% and the 

surface tension value at this concentration was 40 mN/m. On the other hand, LMA0.6-PEGMA0.4 

showed higher CMC than LMA0.4-PEGMA0.6 (5E-3 wt%), though lower surface tension CMC (33 

mN/m). In order to evaluate the surfactants performance, the amount of surfactant adsorbed per unit 

area of liquid-gas interface was evaluated. This amount was indirectly calculated from the interfacial 

tension measurements. The concentration of surfactants at the water–air interface can be calculated as 

the surface excess concentration, ??max (equation 3).
57,58 

??γ/??lnC is the slope of the γ plot versus lnC at constant temperature (T), and R is the gas 

constant. The surface excess concentration at surface saturation is a useful tool to measure the 

effectiveness of the surfactant adsorption at the liquid–gas or liquid–liquid interface, since it is the 

maximum value attainable by adsorption. The area per molecule at the interface provides information 

on the degree of packing and the orientation of the adsorbed surfactant molecules. From the surface 

excess concentration, the area per molecule at the interface (Amin) is calculated using Equation 4, 

where N is Avogadro’s number.  

     
 

   
 

  

    
     3)        

    

 
     (eq 4)  

 

The plot for LMA0.4-PEGMA0.6 yielded an Amin value of 0.586 nm
2
/molecule of surface area 

per polymer molecule with an R
2
 value of 0.94. On the other hand, the plot for LMA0.6-PEGMA0.4 

revealed an Amin value of 0.499 nm
2
/molecule of surface area per polymer molecule with an R

2
 

value of 0.99. Even though Amin values are quite similar, they reveal the dependence of the 

adsorption effectiveness on surfactants structure in the aqueous solution–air interfaces. The higher 

https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Surface_tension
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amount of lipophilic entity in the LMA0.6-PEGMA0.4 copolymer produced a higher packing in this 

copolymer. On the other hand, LMA0.4-PEGMA0.6 featured a more expanded structure due to its 

higher hydrophilic monomer content.  

LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4, without composition drift (condition 1), did not 

show a plateau in the surface tension. Despite the surfactant capability of these copolymers, their 

performance was far from satisfactory, and probably they would not be optimal for use in the 

surfactant field, as demonstrated below. LMA0.4-PEGMA0.6 showed an increase in surface tension at 

low concentrations, due to its high solubility in water at said concentrations. Then, it displayed a 

continuous decrease in surface tension as a function of its concentration. This second behavior, 

observed along all the concentration range of LMA0.6-PEGMA0.4, is common for compounds with a 

noticeable nonpolar contribution, as indicated by the HLB; and the continuous decrease in surface 

tension is explained by the continuous accumulation of molecules on the surface.
59

  

 

Emulsification studies and characterization of aggregates 

In order to evaluate the nonionic-emulsifying properties, toluene was incorporated into 

aqueous solutions of LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4 copolymers. Table 3 lists the 

different DLS sizes (in number and distribution fit) of the aqueous solutions of the aforementioned 

copolymers (with and without composition drift), and of these solutions with 2% of toluene. Size 

evolution shows a clear difference with respect to copolymer composition and microstructure. 

Copolymers without composition drift (condition 1) featured particle sizes of 55 and 99 nm for 

LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4, respectively. In this case, toluene incorporation produced 

an increase in particle size to 106 and 126 nm, for LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4, 

respectively. On the contrary, copolymers with composition drift (condition 2), showed smaller sizes 

of 10 and 15 nm for LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4, respectively, and toluene 

incorporation led to the formation of particles with sizes of 154 and 42 nm, for LMA0.4-PEGMA0.6 

and LMA0.6-PEGMA0.4, respectively. The different aggregate sizes revealed interesting observations 

about the effect of copolymer microstructure. Regarding the size of aggregates in water, the system 

without composition drift showed larger sizes than the system with drift. The homopolymer domain 

in the copolymer microstructure (copolymers with drift) produced a decrease in particle size due to 

an increase in the monomer-monomer interaction. Comparisons between aggregate sizes of statistical 

and block copolymers support this suggestion.
60 

Both microstructures displayed an increase in 

particle size in water when the LMA content increased. Reasonably, the content of the hydrophobic 

monomer expanded the particle size due to the increase in the amount of LMA inside the aggregates. 

The incorporation of toluene in the copolymer solutions led to particle size expansion in all cases due 
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to the toluene load inside the particle. The copolymers with lowest LMA content (LMA0.4-

PEGMA0.6) produced greater size expansion due to the incorporation of toluene when composition 

drift was present. According to the HBL value, a greater hydrophilic content presumed a larger 

particle size. The LMA0.6-PEGMA0.4 system with composition drift produced an expansion of three 

times its size, as compared to LMA0.4-PEGMA0.6 without drift, with similar HBL values. The 

LMA0.6-PEGMA0.4 system without composition drift was the system with the lowest particle growth 

due to toluene addition, a behavior opposite to that of LMA0.4-PEGMA0.6 with drift and in line with 

its HLB values. 

 

Table 3. DLS aggregate sizes based on LMA0.4-PEGMA0.6 and LMA0.6-PEGMA0.4 with different 

microstructure. Size modification due to toluene incorporation. Polymer concentration was 1g.L
-1

 and the 

emulsification studies incorporate 2% of toluene. 

Copolymer Condition Aggregate 

sizes in water 

(nm) 

Aggregate sizes 

with toluene 

(nm) 

LMA0.4-PEGMA0.6 

20% Cu
II  

(Condition 1) 
55±18 106±39 

0% Cu
II 

(Condition 2) 
10±2 154±43 

LMA0.6-PEGMA0.4 

20% Cu
II 

(Condition 1) 
99±33 126±55 

0% Cu
II 

(Condition 2) 
15±3 42±8 

 

The comparison of CMC values and DLS sizes for copolymers with compositional drift (condition 

2), showed correlated results: LMA0.4-PEGMA0.6 showed a CMC close to 1.5E-3 wt% with an 

aggregate size average of 10 nm. On the other hand, LMA0.6-PEGMA0.4 showed a higher CMC (5E-3 

wt%) value and higher aggregate sizes (average of 15 nm) than LMA0.4-PEGMA0.6. For condition 1, 

copolymers without compositional drift, the systems did not show CMC and the aggregates evaluated 

by DLS were larger because they were not hierarchically formed, and their hydrodynamic size was 

greater than that of copolymers under condition 2, with a high standard deviation (monomodal 

profile). 

In order to corroborate the encapsulation of toluene into the copolymer aggregates, Diffusion-

Ordered Spectroscopy NMR (DOSY-NMR) measurements were carried out in copolymer samples 
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with 2% of toluene (figure 9). Figure 9a corresponds to LMA0.6-PEGMA0.4 without composition drift 

(20% Cu
II
 – Condition 1), and figure 9b to that same copolymer with composition drift (0% Cu

II
 – 

Condition 2). Toluene spectra were superimposed for comparison (red signals). The value of the 

diffusion constants of toluene associated with the copolymers was more similar to that of the 

copolymers for LMA0.6-PEGMA0.4 with composition drift (figure 9b). The diffusion constants of both 

signals, the aromatic around 7 ppm and the methyl group at 2 ppm were in the range of copolymer 

values of -10 m
2
/s. In the case of LMA0.6-PEGMA0.4 without composition drift (figure 9a), the 

similarity in diffusion constants is not that clear. These differences are in agreement with the 

emulsion aspect (figure 10a). Finally, and in order to clarify and better understand the interactions 

between toluene molecules within copolymer aggregates, Nuclear Overhauser Effect NMR 

spectroscopy (NOESY-NMR) measurements were taken. Figures 9c and 9d illustrate the spectra of 

LMA0.6-PEGMA0.4 without (20% Cu
II
 – Condition 1) and with (0% Cu

II
 – Condition 2) composition 

drift, respectively. The cross-correlation peaks of the aromatic signals of toluene and methylene 

groups of LMA monomer (signal d in figure 1) at 1.25 ppm assume the interaction between 

copolymers and toluene, and the interaction is more clear in the case of LMA0.6-PEGMA0.4 with 

composition drift (0% Cu
II
 – Condition 2, figure 9d). According to DOSY results, in the case of 

LMA0.6-PEGMA0.4 without composition drift (figure 9c), cross-correlation peaks were not that clear. 

This context assumes a better capacity of LMA0.6-PEGMA0.4 with composition drift than of LMA0.6-

PEGMA0.4 without composition drift to encapsulate toluene in the aggregate structures.  

As shown in Figure 9, the diffusion coefficient of toluene in the presence of the copolymer lies 

between the free toluene without copolymer and the copolymer itself. This is probably due to the fact 

that toluene is partitioned between water and the polymer, and so the value measured corresponds to 

the average of the extreme values of the diffusion coefficient. 
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Figure 9. DOSY NMR spectra of solution in presence of toluene of LMA0.6-PEGMA0.4 without composition 

drift (a) and with composition drift (b). c and d are the NOESY-NMR spectra corresponding to a and b 

systems, respectively. 

 

Finally, figure 10a shows a photograph of LMA0.6-PEGMA0.4 dispersion with and without 

composition drift. The image displays the better capacity that LMA0.6-PEGMA0.4 with composition 

drift (0% Cu
II
 – Condition 2) has to stabilize toluene. LMA0.6-PEGMA0.4 without composition (20% 

Cu
II
 – Condition 1) showed greater turbidity, due to the greater hydrophobic nature of the system 

(copolymer + toluene) and larger particle size as was observed by DLS. Figure 10b illustrates an 

AFM micrograph of LMA0.6-PEGMA0.4 with composition drift, the selected candidate with the best 

conditions to emulsify toluene. The figure confirms that the aggregate size is around 40 nm. As 

expected, the aggregate sizes obtained by AFM are lower than the values obtained by DLS due to the 

measurement conditions, DLS determinations were performed in water dispersions and AFM 

determinations were performed in dry conditions.  

a b 

c d 
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Figure 10. (a) Dispersion of LMA0.6-PEGMA0.4 with (left) and without (right) composition drift and (b) AFM 

micrograph of LMA0.6-PEGMA0.4 with composition drift. 

 

The present work describes a complete and thorough synthesis and thermal and rheological 

characterization of copolymers based on lauryl methacrylate and poly(ethylene glycol) methyl ether 

methacrylate. The obtained results show a clear amphiphilic capacity of a limited range of these 

copolymers with different compositions and microstructures. The aggregate sizes showed remarkable 

differences and the copolymer LMA0.6-co-PEGMA0.4 with composition drift was the best copolymer 

to incorporate toluene and produce aggregates of approximately 45 nm in size. Composition and 

microstructure are crucial factors to better understand the physical-chemistry of emulsifying systems. 

 

CONCLUSIONS 

The of copolymers based on lauryl methacrylate and poly(ethylene glycol) methyl ether 

methacrylate was described. Thermal and rheological properties showed a clear effect on transitions 

when composition drift was present. The emulsifying properties of the prepared systems depend both 

on their copolymer composition and on their microstructure. Copolymers in a intermediate 

composition range displayed adequate hydrophilic-lipophilic balance as emulsifying agents and, 

particularly, some of them showed detergency properties. The surface tension analysis revealed better 

emulsifying properties in the systems with composition drift; and dynamic light scattering showed 

smaller sizes for aggregates in these systems. Self-assembled aggregates characterization using 

Diffusion-Ordered Spectroscopy NMR, Nuclear Overhauser Effect NMR spectroscopy, and Atomic 

Force Microscopy showed that LMA0.6-co-PEGMA0.4 with composition drift is the best candidate to 

emulsify an organic phase in water.  

 

With CD Without CD 

a 

 

b 
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HIGHLIGHTS 

 Controlled synthesis of non-ionic amphiphilic copolymer based on lauryl methacrylate and 

Poly(ethylene glycol) methyl ether methacrylate. 

 

 Effect of compositional drift in thermal and emulsifier properties. 

 

 Interesting bulk rheological properties.  

 

 Incorporation of toluene in formed micelles. Evaluation of loading capacity using 2D NMR 
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