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21 Abstract

22

23 The protection and restoration of water-related ecosystems is one of the goals to be achieved 

24 by the United Nations’ 2030 Agenda for Sustainable Development. In this framework and requested 

25 by government Argentine institutions concerned with water, biodiversity and territorial management, 

26 this study analyzes the evolution of the flooded area within the Dulce River wetlands and Mar 

27 Chiquita Lake Nature Reserve (centered around 30.6ºS, 62.6ºW, 70 m above sea level) in Argentina 

28 since  2003, when the historical maximum extent was reached, until 2017. The Modified Normalized 

29 Difference Water Index (MNDWI) was calculated on atmospherically corrected NASA Landsat 5 

30 Thematic Mapper (L5-TM) and Landsat 8 Operational Land Imager (L8-OLI) reflectance data over 

31 two-scene cloudless-sky mosaics to cover the whole Reserve. Mixed-water pixels constituted an 

32 important fraction of the total-water covered area, particularly during years of minimum water level 

33 in Mar Chiquita Lake. So, MNDWI values were analyzed along transects crossing two stable 

34 regional water bodies to determine precise thresholds for detection of non-water (MNDWI < -0.15 

35 for L5-TM, MNDWI < -0.35 for L8-OLI), mixed-water (-0.15 < MNDWI < 0.4 for L5-TM, -0.35 < 

36 MNDWI < 0.5 for L8-OLI) and open-water (0.4 < MNDWI for L5-TM, 0.5 < MNDWI for L8-OLI) 

37 pixels. A higher spatial resolution image, SPOT5-HGR2, was used to validate the classification 

38 method. A confusion matrix was built which resulted in an overall accuracy of 99.2 % and a Kappa 

39 coefficient of 0.98. In-situ Geo-referenced photographic registers were also taken simultaneously to a 

40 Landsat 8 overpass to confirm the classification thresholds. The analysis of simulated MNDWI 

41 response, by using the assumption of the linear mixture model, showed that mixed pixels should 

42 present from 9 % to 76 % of detectable open-water area. Maximum total flooded area extensions of 

43 about 3600 km2 by 2003-2005 and a minimum one of 2050 km2 by the end of 2011 were established, 

44 followed by a recent trend to the recovering with a total flooded area of about 3400 km2 in the period 

45 2015-2017. Open-water covered area follows closely the behavior of in-situ water level 
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46 measurements of Mar Chiquita Lake, showing a maximum in year 2003 and a minimum towards the 

47 end of 2013, in a significant linear relation from which a topographical slope of the terrain of about 

48 0.012 % is inferred that agrees with previous bathymetric studies. Results show the powerful 

49 complement between a reliable water satellite monitoring tool and locally-measured parameters in so 

50 dynamic wetland regions. 

51

52 Keywords: wetland; Landsat; MNDWI; mixed water
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53 1. Introduction

54

55 The changes in the extent of water over time on wetlands are an important indicator to be 

56 followed, as proposed by the Statistical Commission of the United Nations’ 2030 Agenda for 

57 Sustainable Development, and remote sensing techniques appear as the best choice to be 

58 implemented (UN, 2017). Satellite sensors measurements become a crucial tool in the last decades 

59 for tracking different aspects of our planet. Measurements from a variety of wavelength channels, 

60 many of which are common to different satellite instruments, have been combined to define a series 

61 of specific indices characterizing parameters of interest. Referred to water bodies and particularly to 

62 the monitoring of wetlands, they were applied to a variety of subjects such as environmental 

63 assessment (e.g., Mozumder et al. 2014), water volume (Crétaux et al. 2016), hydrological dynamics 

64 and flooding (Chen et al. 2013; Sharma et al. 2014; Li et al. 2015; Wang et al. 2015). Since 1972, the 

65 National Aeronautics and Space Administration (NASA) Landsat satellite series have produced the 

66 longest continuous global record of the Earth’s surface. Landsat 8, launched in February 2013, meant 

67 a success to assure continuity with Landsat 5 data which was decommissioned in June 2013. In this 

68 work, reflectance measurements from both Landsat 5 Thematic Mapper (L5-TM) and Landsat 8 

69 Operational Land Imager (L8-OLI) sensors are used. The Modified Normalized Difference Water 

70 Index (MNDWI) (Xu 2006) is extensively employed from Landsat multispectral radiometers data for 

71 the identification of water bodies (e.g., Ji et al. 2009; Xu-kai et al. 2012; Chen et al. 2013; Sharma et 

72 al. 2014; Li et al. 2015; Wang et al. 2015). Particularly, Ferral et al. (2013) made one of the first 

73 adaptations of the MNDWI to the specific radiometric bands of L8-OLI. The identification of open 

74 water bodies from satellite imagery is at present a relatively simple task. However, the accurate 

75 delineation of lake shorelines or the determination of mixed pixels within wetlands is definitely more 

76 challenging, particularly if imagery from only one satellite is used for, and emphasis on this subject 

77 is made in the present work.
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78 The Dulce River wetlands and Mar Chiquita Lake in Argentina were declared Nature 

79 Reserve by Córdoba Province in 1994, and was incorporated in 2002 to the List of Wetlands of 

80 International Importance by the Ramsar Convention on Wetlands (http://www.ramsar.org/). Mar 

81 Chiquita is the biggest salt lake in Latin America. Studying their isotopic changes, Piovano et al. 

82 (2004) found that low water height levels prevailed during the 200 years previous to the 1970’s 

83 decade. Earlier registers around year 1900 allude to areas of about 1000 km2 (Bucher 2006, and 

84 references therein). In contrast, a predominantly positive hydrological balance has given a notable 

85 dynamics to the Mar Chiquita Lake water level during the last four decades (Piovano et al. 2002, 

86 2004; Troin et al. 2010), reaching total open-water covered areas over 6000 km2. Several studies 

87 addressed different aspects on this system, about its geography (Reati et al. 1996), geochemical 

88 composition (Martínez 1995; Piovano 2002), fauna (Bucher 1992; Nores 2011), flora (Stutz and 

89 Prieto 2003) and hydrodynamics (Plencovich 2011). A complete review of the knowledge on the 

90 geography, biodiversity and history of this region was made by Bucher (2006).

91

92 Concerned by the complex evolution of the Dulce River wetlands and Mar Chiquita Lake 

93 and attending to its preservation, this research was requested by Argentine government institutions. 

94 Main concerns in this region are the Nature Reserve’s ecosystem, the management of the real estate 

95 market pressure in their edge, and the hydrological balance in response to the pluvial influx from the 

96 northern rivers causing frequent flooding events on the principal cities on the south of Mar Chiquita 

97 Lake, mainly Miramar city. For this purpose, the flooded area behavior of the Dulce River wetlands 

98 within the Nature Reserve was analyzed spanning the period requested by the government authorities 

99 (2003-2017), correlating it with simultaneous locally measured water level of Mar Chiquita Lake 

100 whose database covers five decades since November 1967 up to the present. So, the analyzed period 

101 2003-2017 includes the historical maximum water level around 2003 and the lowest minimum water 

102 level in forty years of 2013.
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103 2. Materials and methods

104

105 2.1 Study area

106 Figure 1-left presents  the geographical location of the Dulce River wetlands and Mar 

107 Chiquita Lake Provincial Nature Reserve on an official map, centered around 30.6ºS, 62.6ºW, 70 m 

108 above sea level (asl) in Córdoba Province (demarcated at bottom-left corner), Argentina. It is 

109 presently in process to be appointed as National Nature Reserve. Covering 9770.85 km2, it will be 

110 the largest of a total of 47 National Nature Reserves in Argentina. Including their tributaries, mainly 

111 the Dulce River at north, it is part of one of the largest endorheic systems in the world with a total 

112 extension of about 37500 km2 (Piovano et al. 2002; 2004). Official cartography can be found at 

113 http://www.recursoshidricos.gov.ar/webdrh/_docs/Poster_Sistema_Mar_Chiquita.pdf. The northern 

114 gray contour of the Nature Reserve in Figure 1-right (over a 2013 Landsat 8 mosaic in real colour, 

115 RGB-432 combination) highlights the area of study of this work and corresponds specifically to the 

116 Dulce River wetlands, a potentially flooded region of 7213.62 km2. 

117

118

119 Figure 1. Left: Geographical location of the Dulce River wetlands and Mar Chiquita Lake Nature 
120 Reserve (demarked at bottom-left corner) in Córdoba Province, Argentina (source: Argentine 
121 Secretary of Environment). Right: The northern gray contour of the Nature Reserve corresponds to 
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122 the potentially flooded area of Dulce River wetlands analyzed in the present study, highlighted over a 
123 2013 Landsat 8 mosaic in real colour (RGB-432 combination). The southern gray contour is the 
124 region actually defined as Mar Chiquita Lake within the Nature Reserve. Rectangular contours 
125 correspond to Los Porongos lagoon and a South branch of Mar Chiquita Lake (called MC South 
126 Cove), sub-areas used to define the MNDWI thresholds for water pixels classification. The clear 
127 arrow on the Northwest border indicates the site where ground photographic registers were taken to 
128 validate the satellite pixel classification.
129

130 The southern grey contour in Figure 1-right is the region actually defined as Mar Chiquita 

131 Lake within the Nature Reserve, with a surface of 2557.23 km2 whose limit is defined by a salty 

132 crustal contour observed at a water level of about 66 m asl typical until year 1976, when the period 

133 of big floods started. The rectangular contours in Figure 1-right demark the sub-areas of Los 

134 Porongos lagoon (northern rectangle) and a South branch of Mar Chiquita Lake (MC South Cove, 

135 southern rectangle) used to establish the MNDWI thresholds for the satellite pixels classification. 

136 The clear arrow on the Northwest border indicates the zone where a field photographic campaign 

137 was made as a complement to validate the satellite classification.

138

139 2.2 Satellite data

140

141 Orbits of both L5 satellite (March 1984 to January 2013) and L8 satellite (active since 

142 February 2013) are circular, sun-synchronous, near-polar at an altitude of 705 km asl. They each 

143 cross the equator from north to south at 10:00 am ± 15 minutes local time on each pass to provide 

144 maximum illumination with minimum water vapour present (haze and cloud build-up), making an 

145 orbit in about 99 minutes, completing over 14 orbits per day, and covering the same area on the Earth 

146 every 16 days, so that about two images a month are available of a given place. Table 1 shows the 

147 characteristics of both L5-TM and L8-OLI sensors.

148
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Sensor Band Spectral range [μm] Spatial resolution [m]

L5-TM B1
B2
B3
B4
B5
B6
B7

0.45 - 0.52 
0.52 - 0.60 
0.63 - 0.69 
0.76 - 0.90 
1.55 - 1.75 

10.40 - 12.50 
2.08 - 2.35 

30
30
30
30
30
120
30

L8-OLI B1
B2
B3
B4
B5
B6
B7
B8
B9

0.435 - 0.451
0.452 - 0.512
0.533 - 0.590
0.636 - 0.673
0.851 - 0.879
1.566 - 1.651
2.107 - 2.294
0.503 - 0.676
1.363 - 1.384

30
30
30
30
30
30
30
15
30

150
151 Table 1. Spectral range and spatial resolution of each band (B#) of Landsat 5 Thematic Mapper (L5-
152 TM) and Landsat 8 Operational Land Imager (L8-OLI) sensors. Temporal frequency at a fixed 
153 location on the Earth’s surface is 16 days.
154

155 To build the mosaic covering the whole Nature Reserve under study, two scenes from 

156 adjacent satellite paths are needed. Both scenes are separated by at least one week in time and they 

157 must present a cloudless-sky, limiting the availability of dates to analyze. Selected atmospherically-

158 corrected, geo-referenced and ortho-rectificated images used in this work, provided by the United 

159 States Geological Survey, are detailed in Table 2. Specific details about these products can be found 

160 in the Landsat 4-7 Surface Reflectance product guide 

161 (https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf) and Landsat 8 

162 Surface Reflectance Code (LASRC) product guide 

163 (https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf). A SPOT 5-HGR2 

164 image from the Argentine National Commission for Space Activities (CONAE) catalogue was used 

165 to perform the main validation procedure as it is explained in the next section.

166
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Year of mosaic Sensor Scene’s date

2003 L5-TM December 10 2003
December 17 2003

2004 L5-TM May 02 2004
May 09 2004

2005 L5-TM March 25 2005
April 03 2005

2006 L5-TM March 05 2006
March 12 2006

2007 L5-TM February 04 2007
February 11 2007

2008 L5-TM October 20 2008
October 27 2008

2009 L5-TM May 16 2009
May 23 2009

2010 L5-TM February 03 2010
February 12 2010

2011 L5-TM March 03 2011
March 10 2011

2011 L5-TM September 27 2011
October 20 2011

2013 L8-OLI April 16 2013
April 25 2013

2014 L8-OLI January 22 2014
January 13 2014

2015 L8-OLI September 06 2015
September 13 2015

2016 L8-OLI February 29 2016
February 04 2016

2017 L8-OLI March 19 2017
April 11 2017

2017 L8-OLI September 11 2017
September 18 2017

167
168 Table 2. Specifications of the satellite scenes selected in cloudless-sky days along the period 2003-
169 2017 to analyze the extension of the flooded area on the Dulce River wetlands. Each mosaic is 
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170 constructed from two close-in-date and partially overlapping scenes belonging to satellite paths 
171 228/229 and row 81.
172

173 2.3 Satellite data processing

174

175 Satellite reflectance data were processed with Environment for Visualizing Images (ENVI) 

176 software version 4.2 (HGS 2016). The Modified Normalized Difference Water Index (MNDWI) is 

177 defined as: 

178 (1)
green SWIR

green SWIR

r r
MNDWI

r r





179 where rgreen and rSWIR are the reflectance registered from a given direction by the sensor in the green 

180 and short-wave infrared ranges respectively (Xu 2006). The MNDWI takes values in the range [-1, 1] 

181 and works reliably for any multispectral sensor with a green band between 0.5-0.6 µm (bands B2 for 

182 L5-TM and B3 for L8-OLI, see Table 1) and a SWIR band between 1.55-1.75 µm (bands B5 for L5-

183 TM and B6 for L8-OLI, see Table 1), enhancing open-water features for which MNDWI values 

184 arrange in a positive mode, while suppressing noise from built-up land, vegetation, and soil whose 

185 MNDWI values group in a marked negative mode (e.g., HGS 2016). The MNDWI thresholds to 

186 separate open-water pixels, mixed-water pixels and non-water pixels were obtained through a box-

187 plot analysis of MNDWI values along transects crossing two stable water bodies in the region 

188 (Figure 1-right).

189

190 2.4 Classification’s precision assessment

191 A SPOT 5-HRG2 CNES image (spatial resolution 10 m) from 08 April 2018, scene 687/410 

192 was analyzed, using the same thresholds of Table 3 for L8-OLI, to extract check points to be used as 

193 ground truth. A confusion matrix was developed to characterise the open-water, mixed-water and 
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194 non-water pixels classification. Overall accuracy and Kappa coefficient were calculated to assess the 

195 accuracy according to equations (e.g. Congalton and Green 1999):

196 Overall accuracy =  (2)
TP TN

T


197 Kappa coefficient =  (3)
 

2

*T TP TN
T

  
 

198 where TP is the number of correctly classified water pixels, TN is true negative (the number of 

199 correctly rejected non-water pixels), T is the total number of evaluated pixels, Σ is the chance 

200 accuracy represented by (TP + FP)(TP + FN) + (FN + TN)(FP + TN), FN is false negative (the 

201 number of undetected water pixels) and FP is false positive (the number of incorrectly extracted 

202 water pixels). In addition, photographic registers were taken within the study zone (Figure 1-right) in 

203 simultaneous with a Landsat 8-OLI overpass during April 2015, as a complement to assess the 

204 precision of the classification.

205

206 2.5 Water level data

207

208 Water height level data of Mar Chiquita Lake are correlated with the satellite-retrieved 

209 flooded area. They are daily measured by the Secretaría de Recursos Hídricos y Coordinación de la 

210 Provincia de Córdoba, Argentina, continuously since November 1967 through a calibrated bar 

211 stocked in the lake (e.g. Vargas 2014).
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212 3. Results and discussion

213

214 3.1 Mar Chiquita water level dynamics

215

216 Figure 2 presents the monthly average water height level of Mar Chiquita Lake for the period 

217 1967-2017, noting that it developed a marked dynamical character during the last four decades given 

218 the mentioned predominantly positive hydrological balance in its basin (Piovano et al. 2004; Troin et 

219 al. 2010). 

220

221 Figure 2. Complete time series of monthly-averaged daily measurements of Mar Chiquita Lake 
222 water level, from November 1967 to September 2017. Data analyzed in the present work cover the 
223 period 2003-2017.
224

225 Since the start of in-situ water level measurements in 1967, the lowest level occurred in 1972 

226 with 64.1 m asl, followed by a systematic increase and an oscillating period afterwards. This work 

227 addresses the analysis of the period 2003-2017 which is signed by two roughly linear-in-time steps: 

228 the decreasing trend after the historical absolute maximum in May 2003 from a level of 71.8 m asl 

229 down to a minimum of 67.1 m asl in October 2013, followed by a recent progressive recovery 
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230 reaching a level of 69.8 m asl in September 2017. As it was referred to, water levels higher than 

231 about 66 m asl imply flooded area in the surroundings of Mar Chiquita Lake, and they constitute the 

232 main subject of analysis in this work.

233

234 3.2 Satellite pixel classification

235

236 The whole Dulce River wetlands region analyzed in this work is topographically flat and it 

237 basically lacks of artificial features, so it is free of mountains’ shadows and urban areas that often 

238 cause misclassification of water mapping due to similar reflectance patterns (Feyisa et al. 2014; 

239 Verpoorter et al. 2012). Two sub-areas, whose contours remain basically stable during long periods 

240 of time, were selected to define the MNDWI thresholds for pixel classification: Los Porongos lagoon 

241 (Figure 1-right and observed in detail in Figure 3-top) and MC South Cove (Figure 1-right and 

242 observed in detail in Figure 3-bottom). The detection of mixed-water pixels composed by soil and/or 

243 vegetation with a given percentage of water is a more complex subject when data from only one 

244 sensor are used. A deeper analysis of moist soil and mixed pixels would request complementary data 

245 such as synthetic aperture radar (SAR) measurements (e.g. Xiao et al. 2014; Mitchell et al. 2015) 

246 which are not in the scope of this work. Other studies for biodiversity monitoring include the 

247 complement with atlas of habitat-specific plant species (e.g. Kosicki and Chylarecki 2013), essential 

248 biodiversity variables (Vihervaara et al. 2017), etc. Evidently, MNDWI for mixed pixels will take 

249 intermediate values between the positive and the negative mode of the distribution, and a variety of 

250 approaches have been implemented in previous studies to define these thresholds (e.g. Acharya et al. 

251 2016; Jones, 2015; Ho et al. 2011, 2010; Ji et al. 2009). As this work deals with flooded areas, the 

252 identification of mixed pixels is crucial. For this purpose, MNDWI values were analyzed for all dates 

253 listed in Table 2 along straight-line transects crossing Los Porongos lagoon and MC South Cove 

254 (highlighted over the MNDWI images in Figure 3-right).
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255 Figure 3. Sub-area of the L8-OLI 2013 image corresponding to Los Porongos lagoon (Top, upper 
256 rectangular contour in Figure 1-right) and MC South Cove (Bottom, lower rectangular contour in 
257 Figure 1-right) used to determine the criteria for water pixel classification. Left: real colour (RGB-
258 432). Right: MNDWI image where water areas stand out in light tones. Geographical transects used 
259 to determine the MNDWI thresholds are demarked as yellow segments over both water bodies.
260

261 The MNDWI pixel values along the transects for the sixteen available dates (listed in Table 2) 

262 of L8-OLI and L5-TM scenes are plotted in Figure 4, assuring a contrast between water and non-

263 water pixels which are separated by a steep transition from land to open water in the rather stable 

264 water body’s borders, leaving an intermediate range of MNDWI values that can be considered as 
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265 mixed pixels. In Figure 4, some peaks on the terrain at both sides of Los Porongos lagoon are 

266 consistent with the presence of temporary streams or non-permanent small pools between scrubland 

267 appearing during rainy periods. These pixels had no incidence since they were excluded from the 

268 analysis, as explained bellow.

269

270 Figure 4. MNDWI values as a function of distance from a starting point along both transects of 
271 Figure 3, for the scenes covering the whole range of dates of Table 2. Top: Los Porongos transect 
272 (South-North direction). Bottom: MC South Cove transect (West-East direction). Left: Landsat 5-
273 TM data. Right: Landsat 8-OLI data.
274

275 The MNDWI thresholds to separate mixed-water pixels from open-water pixels and non-

276 water pixels were obtained through a box-plot analysis, observed in Figure 5- left for Landsat 5 TM, 

277 Figure 5- right for Landsat 8-OLI. It results from the “horizontal” sections with small variability of 
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278 MNDWI values from Figure 4, associating lower values to non-water pixels and higher values to 

279 open-water pixels, excluding those pixels along the jump of transition and those mentioned peaks on 

280 the terrain belonging to non-permanent pools and streams. From Figure 5, the MNDWI box plots 

281 corresponding to open-water pixels and non-water pixels are well separated for both sensors, and T-

282 Student test was performed to compare their mean values which resulted significantly different with 

283 95 % of confidence (p < 0.05) in both cases. In Figure 5, horizontal dashed lines indicate the 

284 thresholds that represent the mixed-water pixels range for both sensors. They are detailed in Table 3. 

285

286 Figure 5. Box-plot analysis of MNDWI values for definite conditions of open-water and non-water 
287 from all dates and both transects of Figure 4 that allow determining the thresholds for the 
288 classification of mixed-water pixels, demarcated as horizontal dash lines and also detailed in Table 3. 
289 Left: from Landsat 5-TM data. Right: from Landsat 8-OLI data.
290

291

Surface coverage L5-TM MNDWI range L8-OLI MNDWI range

non-water  MNDWI < -0.15  MNDWI < -0.35 

mixed-water -0.15 < MNDWI < 0.4 # -0.35 < MNDWI < 0.5

open-water 0.4 < MNDWI # 0.5 < MNDWI

292
293 Table 3. Ranges of MNDWI values established to detect non-water pixels, mixed-water pixels, and 
294 open-water pixels in L5-TM and L8-OLI scenes (also shown in Figure 4).
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295 # Only in the analysis of L5-TM mosaic of year 2008 the upper threshold was lowered to 0.25 in order to avoid sparse 
296 pixels identified as mixed-water within the open-water area of the main lagoon, probably due to strong wind causing 
297 waves in the water surface. The threshold of 0.25 was obtained testing the lowest tuned value that assured the correct 
298 classification for the totality of open-water pixels within the body of the lagoon.
299

300 In addition, Figure 6 distinguishes the ranges detailed in Table 3 on the histograms of 

301 MNDWI pixel values from the whole Los Porongos region for the February 2010 L5-TM image and 

302 for the April 2013 L8-OLI image. Figure 7 shows the classified images of Los Porongos region for 

303 both the L5-TM 2010 (Figure 7-top) and the L8-OLI 2013 (Figure 7-bottom), standing out the water 

304 bodies in black colour. Figure 7-left shows the mixed-water classified images, Figure 7-center shows 

305 the open-water classified images and Figure 7-right shows the total (open+mixed) water classified 

306 images. Once the number of water-representing pixels are counted, the total area covered by water 

307 within the study zone is obtained multiplying by the 900 m2 area of each pixel.

308

309

310 Figure 6. Histograms of MNDWI pixel values for the Landsat 5-TM 2010 and Landsat 8-OLI 2013 
311 images from data of the whole Los Porongos lagoon region (upper rectangular contour in Figure 1-
312 right). Vertical lines denote the MNDWI thresholds established in Table 3 for the three cases: non-
313 water pixels, mixed-water pixels and open-water pixels.
314
315
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316

317 Figure 7. Classified images of Los Porongos lagoon region according to the MNDWI ranges defined 
318 in Table 3. Top: Landsat 5, 12 February 2010. Bottom: Landsat 8, 25 April 2013. Left: mixed-water 
319 pixels. Center: open-water pixels. Right: total (mixed+open) water pixels.
320

321

322 3.3 Validation 

323

324 3.3.1 Use of higher-resolution images

325

326 Figure 8 shows cut-out images of Los Porongos lagoon from three sources with different 

327 spatial resolution: Landsat 8-OLI scene from April 16 2013 (Figure 8-left), SPOT5-HGR scene from 

328 08 April 2013 with a spatial resolution of 10 m (Figure 8-center) and a cut-out from Google Earth 

329 platform corresponding to a CNES Airbus image from 2018, with a spatial resolution of 0.5 m 

330 (Figure 8-right). Check points were extracted from the SPOT image, close in date to assure that 
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331 changes in water conditions on the ground between satellite acquisitions were minimized to validate 

332 the open-water, non-water and mixed-water Landsat 8-OLI classification. This is a very important 

333 issue since the water content over the flooding area in this region is highly variable and images too 

334 sparse in time do not allow feasible comparisons. So, given that we do not have access to dates close 

335 to Landsat 8-OLI passes for the highest spatial resolution CNES/Airbus image, it can’t be used to 

336 extract check points. It was only used as a complement to observe details over the validation zone 

337 and to analyze MNDWI peaks at the boundaries of the lagoon along the transect used to determine 

338 the thresholds (Figure 3-top).

339

340

341 Figure 8. Cut-out images of Los Porongos lagoon from three sources with different spatial 
342 resolution. Left: Landsat-8 OLI (RGB, 432) 16 April 2013 used as the test zone for validation. 
343 Center: SPOT 5-HGR2 (RGB, 121) 08 April 2013 used to select ground truth points: non-water 
344 pixels (green), open-water pixels (blue) and mixed-water pixels (red). Right: High spatial resolution 
345 Image © 2018 CNES /Airbus, taken from Google Earth facilities. Vertical yellow line corresponds to 
346 Los Porongos transect. 

347

348  Figure 8-center shows the sampling check points selected from the SPOT image to be used 

349 as ground truth, where open-water pixels are coloured in blue, non-water pixels in green, and mixed 

350 pixels in red. Mixed-water pixels were selected point by point following the lagoon and river 

Landsat8-OLI, 16 April 2013. 
Scene: 228/81. Spatial 
resolution: 30 m

Spot5-HRG2, 08 April 2013. 
Scene: 687/410. Spatial 
resolution: 10 m

Google Earth, Image © 2018 
CNES /Airbus. 30º 4'24.89"S ; 
62º33'58.11"O. Spatial 
resolution: 0.5 m
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351 margins from the RGB (121) composite, while open-water and non-water areas were extracted as 

352 polygons. It is worth noting that, due to their different spatial resolution, nine pixels in a SPOT 

353 image cover the area of one pixel in a Landsat 8-OLI image. A total of 7938, 1701 and 4194 pixels 

354 were collected from the SPOT image as non-water, mixed pixels and open-water samples 

355 respectively, corresponding to 882, 189 and 466 control points in the Landsat 8-OLI scene (Figure 8-

356 left). Table 4 presents the confusion matrix results, showing excellent agreement with an overall 

357 accuracy of 99.2 % (Equation 2) and a Kappa coefficient of 0.98 (Equation 3). Table 5 shows the 

358 commission and omission errors for each class. Non-water, mixed-water and open-water pixels 

359 present very small commission errors of 0.6 %, 0 % and 1.3 % and omission errors of 0 %, 6.4 % and 

360 0 % respectively. 

Class Ground truth pixels taken from SPOT image
Non water Open water Mixed pixels Total

Unclassified 0 1 0 1
Non water 882 5 0 887
Mixed pixels 0 177 0 177
Open water 0 6 466 472
Total 882 189 466 1537

361

362 Table 4. Confusion matrix obtained from the SPOT image dated on 08 April 2013 at check sites 
363 shown in Figure 8-center and thresholds classification according to Table 3. Overall Accuracy = 99.2 
364 %, Kappa coefficient = 0.98.

365

Class Commission error (%) Omission error (%)
Non water 0.6 0
Mixed pixels 0 6.4
Open Water 1.3 0

366

367 Table 5. Commission and omission errors for each class of classification, resulting from the analysis 
368 of Table 4.
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369 Now, we simulate the MNDWI values as result of their non-water and open-water fractions in 

370 order to evaluate the minimum and maximum content of water present in a Landsat 8-OLI pixel to be 

371 classified as mixed-water. This approach has been used for MNDWI calculated for several sensors 

372 using the assumption of the linear mixture model, which states that the different components in a 

373 pixel contribute independently to its reflectance (Ji et al. 2009), giving in our case the equation:

374

375 Simulated MNDWI =  (4)0.45*  0.8*non water open waterf f  

376

377 where fnon-water and fopen-water correspond to the fraction of non-water area and open-water area 

378 respectively inside a pixel classified as mixed-water. Coefficients -0.45 and 0.80 are in fact the 

379 obtained Landsat 8-OLI mean values of the MNDWI distributions for these pure-content features 

380 (square symbols in the box-plots of Figure 5-right). Figure 9 presents simulated MNDWI Landsat 8-

381 OLI values calculated from the Equation 4, inferring that mixed-water pixels calculated using the 

382 thresholds of Table 3 should contain from about 9 % to 76 % of their area covered by open-water. 

383
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384 Figure 9. Simulated Landsat 8-OLI MNDWI values from the linear mixture model (Equation 4) 
385 which allows estimating the range of detectable open-water fraction of area inside a given pixel to be 
386 classified as mixed-water. They are demarked as dashed horizontal lines at open-water fractions of 
387 0.09 and 0.76
388

389

390 To check the simulated MNDWI, the inner open-water content was analyzed in Landsat 8-

391 OLI pixels classified as mixed-water at the boundaries of Los Porongos lagoon by comparing with 

392 the classification (using the same thresholds than L8-OLI from Table 3) of the nine SPOT pixels 

393 contained in each Landsat 8-OLI pixel. Figure 10 a) shows a MNDWI image calculated for the 

394 SPOT5-HRG2 cut-out by using band 1 (centered at 545nm) and band 4 (centered at 1665 nm). 

395 Figure 10 b) presents MNDWI values along Los Porongos transect for both sensors, L8-OLI and 

396 SPOT5-HRG2. It can be observed that jumps across the boundaries of Los Porongos lagoon appear 

397 at the same distance and mixed pixels for HRG2 sensor present a range between 0 and 0.55. 

398 Recently, Ogilvie et al. (2018) presented a semi-automated method to assess and optimize the 

399 potential of multi-sensor Landsat time series to monitor surface water extent and mean water 

400 availability over small water bodies in Tunisia. They used SPOT imagery and hydrometric field data 

401 of the period 1999–2014 for seven small reservoirs to calibrate MNDWI thresholds which resulted, 

402 out of other six water detection indices, to provide high overall accuracy and threshold stability 

403 during high and low floods. They obtained a mean surface area error below 15 %, attributed mainly 

404 to undetected narrow inlets on certain lakes. They propose an optimal threshold to delineate water 

405 bodies equal to -0.09, and based on their previous experience they suggest that this value includes 

406 mixed pixels. In our study we used a threshold of 0.5 to calculate open-water pixels from the SPOT 

407 MNDWI image. This threshold is slightly larger than the recommended by Ji et al. (2009): values 

408 greater than cero to detect water from SPOT 5 MNDWI data. Figure 10 c) shows the SPOT 5 

409 MNDWI image, with the SPOT mixed-water pixels highlighted in red colour and a black square 

410 contour corresponding to a Landsat pixel classified as mixed-water containing nine SPOT pixels. 
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411 Figure 10 d) presents in cyan colour the SPOT MNDWI pixels classified as open-water within the 

412 region delineated as mixed pixels in a Landsat 8-OLI coarser classification. This classification was 

413 also revised by visual analysis over a SPOT composite (322), in which the lagoon boundaries are 

414 clearly defined. The black square contour in Figure 10 d), corresponding to the mixed-water-

415 classified Landsat pixel centered at 30º 02’ 57.86’’ S, 62º 38’ 19.48’’ W, shows that the presence of 

416 100 m2 of open water (a SPOT-pixel area), which corresponds to 11 % of a Landsat pixel area, is 

417 enough to detect a Landsat mixed-water pixel using the thresholds from Table 3. This result is 

418 consistent with the MNDWI simulation (Figure 9) suggesting a minimum of about 9 % of open-

419 water content to classify mixed pixels according to Table 3.  To round off, a L8-OLI pixel centered 

420 at 30º 02’ 55.26’’ S, 62º 38’ 16.13’’ W containing six open-water-classified SPOT pixels (66 % of its 

421 area, just below the limit of 76 % deducted from Figure 9) is also classified as mixed-water.

a) b)

c) d)
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422
423 Figure 10. a) SPOT 5-HRG2 MNDWI image calculated for Los Porongos lagoon region. Red points 
424 correspond to mixed-water pixels selected as ground truth for the validation process. b) SPOT-5 and 
425 Landsat 8 MNDWI values as a function of distance along Los Porongos transect (yellow line). c) 
426 SPOT 5 MNDWI image with mixed-water pixels in red colour and a selected Landsat 8 mixed-water 
427 pixel (black square contour, centered at 30º 02’ 57.86’’ S, 62º 38’ 19.48’’ W). d) The same Landsat 
428 8 mixed-water-classified pixel, shows that it contains only one SPOT open-water-classified pixel 
429 (highlighted in cyan colour), in the lower limit deducted from Figure 9.
430

431

432 3.3.2 Context with similar works

433

434 In a recent study, Acharya et al. (2018) compared five methods, based on water spectral 

435 indices, to infer flooded areas in Nepal, finding  that MNDWI is reliable to detect mixed pixels of 

436 small ponds and rivers but unable to detect snow cover and shadows in the Himalayas, errors that are 

437 absent in our study zone, free of shadows and snow. They did not discriminate between mixed pixels 

438 and open-water to classify water bodies and they proposed an optimal threshold equal 0.35, which is 

439 consistent with our results but would overestimate the open-water area in our region. Feyiza et al. 

440 (2014) performed a thorough study of water indices evaluation with Landsat 5-TM imagery and 

441 proposed a new one. They have also demonstrated that a MNDWI threshold equal to 0.5 to classify 

442 open-water pixels presents an accuracy of 81 %, containing inside at least 50 % of detectable open 

443 water. In our study zone, pixels with 50 % of water content are classified as mixed within a 94 % of 

444 confidence using the same threshold. Martins et al. (2018) evaluated the surface water change and 

445 turbidity variability of Sobradinho reservoir in northern Brazil during drought years, from 2013–

446 2017, by analysing Landsat 8-OLI time series. They classified pixels as open-water if the MNDWI> 

447 0 and NDVI< 0 and they did not include mixed pixels in their analysis. However, the threshold value 

448 equal to zero was determined on a preliminary assessment over five land-cover categories, i.e. clear 

449 water, turbid water, vegetation, soil/sand and urban surfaces. In addition, they present box-plot 

450 analysis of MNDWI index values for clear and turbid open-water covers which are concentrated over 
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451 0.5, in agreement with the results of the present work. The review by Boschetti et al. (2014) 

452 compares the performance of several water indices for MODIS sensor, finding that MNDWI, 

453 calculated from band 4 (Green) and band 6 (SWIR) showed the best performance, proposing a 

454 threshold for open water equal to -0.228. In that case, according to a second order adjustment 

455 between MNDWI and water content with a determination coefficient equal to 0.59, that value would 

456 indicate near 40 % of water content inside a pixel. They have demonstrated that MNDWI index 

457 presents the third best performance among VIR/SWIR and VIS/NIR indices to detect open-water 

458 pixels. Finally, Fisher et al. (2016) evaluated six different water indices, including MNDWI, to 

459 perform automatic water body extraction in eastern Australia. They demonstrated, based on long 

460 term data, that all indices and thresholds perform consistently across images from different Landsat 

461 sensors (TM, ETM+ and OLI) facilitating the automated classification of water bodies to similar 

462 levels of accuracy for the growing archive of Landsat data, consistently with the results of the present 

463 work. Finally, Crétaux et al. (2016) proposed methodological approaches to monitor lake-volume 

464 from space, particularly by SAR altimetry measurements, using also MNDWI index applied to 

465 Landsat 5-TM and MODIS sensors to infer lake areas. They established that final conclusions will 

466 depend on the methodology employed and the study zone delineation, emphasizing the need of 

467 validation with ground observations if available. In this framework, we had also performed a field 

468 campaign simultaneously with a Landsat 8-OLI overpass to assess the precision of the classification.

469

470 3.3.3 Photographic field assessment

471

472 In-situ GPS-georeferenced digital photographic registers were taken at many sites in a field 

473 itinerary along a Northwest zone of the Nature Reserve (see Figure 1-right) during morning hours of 

474 day 06 April 2015, simultaneous to a Landsat 8 overpass, for different ground conditions including 
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475 dry and wet soil, pure vegetation, mixed areas with different proportions of water, and open-water 

476 lagoons, which are used as a complement to validate the satellite image classification. The sky was 

477 partially cloudy with sparse cumulus (total cloud cover of the whole Landsat scene: 8 %). Then, 

478 digital pictures taken at sites where the Landsat 8 scene presented neither cloud nor cloud shadow 

479 were selected for the comparison.

480

481 Figure 11 presents examples of the photographic validation showing very good agreement 

482 with the MNDWI thresholds defined for satellite pixel classification, under the three ground 

483 conditions we need to distinguish within a wetland region: open water pixels, mixed pixels with 

484 different proportions of observed water, and non-water pixels. It can be observed that the defined 

485 mixed water pixels range within -0.35 < MNDWI < 0.5 for L8-OLI is in fact appropriate, given that 

486 pixels mostly covered by mud, vegetation and soil have MNDWI values just below the threshold of -

487 0.35. Even though no similar photographic registers are available in previous years, the L5-TM 

488 MNDWI thresholds were established with the same criteria as seen in Figures 4 and 5, and the limit 

489 MNDWI = 0.4 to separate mixed-water from open-water pixels for L5-TM was selected as the 

490 minimum MNDWI value assuring that the interior of Los Porongos lagoon being classified as open-

491 water. Note that the third photo from left column is classified as non-water, even when it presents 

492 some observed water that, as shown, does not cover the minimum of 9 % of observed open water 

493 necessary to classify a pixel as mixed-water (81 m2 over the 900 m2 of a Landsat pixel), supported by 

494 the high resolution image analysis which revealed an omission error of only 6.4 % in detection of 

495 mixed-water pixels (Table 5). Additionally, the MNDWI value for this pixel (-0.379) is very close to 

496 the MNDWI value for the fourth photo from left column (-0.370) which corresponds definitely to 

497 non-water (prevailing mud with sparse vegetation), ratifying the reliability of the range -0.35 < 

498 MNDWI to separate non-water from mixed-water pixels.

499
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Coordinates: 30º11’3.8’’S, 63º9’13.9’’W
Observed ground conditions: shrubs

MNDWI value: -0.468 (Satellite classification: non-water)

Coordinates: 30º11’1.6’’S, 63º0’6.1’’W
Observed ground conditions: pool between scrubland

MNDWI value: -0.331 (Satellite classification: mixed-
water)

Coordinates: 30º11’2.8’’S, 63º0’7.2’’W
Observed ground conditions: scrubland

MNDWI value: -0.419 (Satellite classification: non-water)

Coordinates: 30º11’22.4’’S, 63º15’55.4’’W
Observed ground conditions: prevailing water surrounded by 

mud 
MNDWI value: -0.329 (Satellite classification: mixed-

water)

Coordinates: 30º11’8.6’’S, 63º17’38.5’’W
Observed ground conditions: prevailing vegetation with 

sparse water
MNDWI value: -0.379 (Satellite classification: non-water)

Coordinates: 30º10’59.8’’S, 65º56’52.8’’W
Observed ground conditions: prevailing water surrounded by 

mud 
MNDWI value: -0.27 (Satellite classification: mixed-water)

Coordinates: 30º11’8.6’’S, 63º18’10.6’’W
Observed ground conditions: prevailing mud with sparse 

vegetation
MNDWI value: -0.370 (Satellite classification: non-water)

Coordinates: 30º11’34.6’’S, 63º14’59.1’’W
Observed ground conditions: prevailing water surrounded by 

mud 
MNDWI value: -0.205 (Satellite classification: mixed-

water)
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500

501 Figure 11. Examples of field validation of the Landsat 8 MNDWI values obtained from a L8 scene 
502 with date 06 April 2015, particularly for non-water and mixed-water pixels, compared with eight 
503 geo-referenced digital photographic registers simultaneous to the L8 overpass taken during a field 
504 campaign along a Northwest zone (demarcated in Figure 1-right) within the Nature Reserve. Results 
505 ratify the MNDWI ranges defined in Table 3.

506

507

508 3.4 Flooded-area variability analysis

509

510 As mentioned above, a total of sixteen Landsat mosaics (Table 2) covering the Dulce River 

511 wetlands and Mar Chiquita Lake Nature Reserve region in Argentina were analyzed spanning the 

512 period 2003-2017. Figure 12 shows examples of them. Figure 12-top is in real colour (RGB-321 for 

513 L5-TM, years 2003 and 2010, and RGB-432 for L8-OLI, years 2013 and 2015). Figure 12-bottom 

514 highlights in black colour the presence of open water, and in light gray the mixed-water pixels within 

515 the Dulce River wetlands under study (see Figure 1-right), with the Nature Reserve contour and Mar 

516 Chiquita Lake area demarcated in dark gray tone.

517
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518

519 Figure 12. The Dulce River wetlands and Mar Chiquita Lake Nature Reserve in Argentina contoured 
520 from mosaics of available cloudless-sky Landsat satellite images dated in December 2003, February 
521 2010, April 2013 and September 2015. Top: real colour (RGB-321 for L5-TM, years 2003 and 2010, 
522 and RGB-432 for L8-OLI, years 2013 and 2015). Bottom: open-water bodies within the Dulce River 
523 wetlands are highlighted in black colour and mixed-water pixels in light gray colour, while dark gray 
524 tone denotes the Nature Reserve contour and defined filled area of Mar Chiquita Lake at a level of 66 
525 m asl.
526

527  Figure 13-left shows the time evolution of the satellite-retrieved extension of open-water, 

528 mixed-water and total (open+mixed) flooded area during the analyzed period 2003-2017, together 

529 with the locally-measured average water level of Mar Chiquita Lake for the same dates. Open-water 

530 and water level follow a strongly correlated behavior, as it is analyzed in detail in Figure 13-right. 

531 Total-water shows its maximum covered area around 2003-2005 with about 3600 km2. Open-water 

532 area reduced 86 % from 3448.54 km2 in 2003 (the year of maximum recorded open-water extension 

533 with an average water level of 71.8 m asl in May 2003) down to 478.57 km2 by the end of 2013 

534 (when average water level reached a minimum around 67.5 m asl). As it is expected for a flat basin, 

535 the reduction in the area initially covered by open water pixels due to different processes (e.g. 

536 hydrological deficit, evaporation in absence of rain, absorption by the soil) implies that many of them 

537 change to an intermediate condition of mixed-water, increasing the fraction covered by mixed water 
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538 pixels within the same area simultaneously, and the reduction in the area covered by open water 

539 implies an increase in the area covered by mixed water as shown in Figure 13-left. However, this 

540 increase in the area covered by mixed water has two well defined periods. Even though the open-

541 water covered area diminishes constantly in the period 2003-2013, mixed water shows a slowly 

542 rather linear increase from 2003 to 2011 followed by a sudden increase from 2011 to 2013 when it 

543 reaches their maximum. In turn, 2011 agrees with the date when the total water (open+mixed) 

544 reaches their minimum (2056.1 km2) and their recovery starts at a rather constant rate until 2015-

545 2017 with an extension of about 3400 km2, when the Mar Chiquita Lake water level (see Figure 2) 

546 reaches 69.80 m asl in September 2017. Then, period 2011-2013 is key to understand the 

547 phenomena: after a period (2003-2011) of negative hydrological balance by reduced contribution 

548 from the northern rivers, a positive hydrological balance started in 2011 when the northern rivers 

549 increased their caudal. The first result of this positive hydrological balance is the increase in the 

550 mixed-water areas from the north when water is starting to recover the region, even though open-

551 water area still reduces during the period 2011-2013. After  2013, this increased caudal incorporates 

552 to the open-water area at the north of Mar Chiquita Lake which starts their recovery in detriment of 

553 the mixed-water that loses the area gained by the open-water, while the total-water area continues 

554 their increase until 2015-2017 with an area of about 3400 km2.
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556 Figure 13. Left: Time evolution of the satellite-retrieved flooded-area extension within the Dulce 
557 River wetlands for the cases of mixed water, open water and total (mixed+open) water, and 
558 simultaneous locally-measured average water level of Mar Chiquita Lake during the period 2003-
559 2017. Right: Satellite-retrieved flooded area within the Dulce River for open-water, mixed water and 
560 total water as a function of the average water level of Mar Chiquita Lake. Solid black line represents 
561 a linear fit to the open-water data, giving a slope s = 690 ± 72 km2/m, while dashed black line is a 
562 linear extrapolation of the fitting down to zero flooded area, which would be reached for a water 
563 level of 66.0 m asl.
564

565 Figure 13-right shows that the area covered by open-water pixels is strongly linearly 

566 correlated (correlation coefficient r = 0.95, p-value = 6 e-8) with the Mar Chiquita Lake water level, 

567 different from the mixed water pixels (r = -0.70, p-value = 4 e-3) and the total flooded area (r = 0.77, 

568 p-value = 7 e-4). The resulting linear fit of open-water pixels as a function of Mar Chiquita Lake 

569 water level (coefficient of determination r2 = 0.90) is consistent with two independent observations. 

570 Firstly, the linear extrapolation to zero-flooded-area within the Dulce River wetlands is obtained for 

571 a Mar Chiquita water level of 66.0 m asl, effectively the mentioned level of about 66 m asl that 

572 defines the Mar Chiquita Lake contour. Secondly, a slope s = 690 ± 72 km2/m (at one standard 

573 deviation confidence level) is obtained in the linear fit. If the maximum flooded area in the Dulce 

574 River wetlands during year 2003 is approximated by a rectangular surface (in nadir view) with 

575 longest side L ≈ 80 km, oriented slightly Southwest-Northeast as shown in Figure 14, it can be 

576 deducted that the topographical percentage slope α of the Dulce River mouth wetlands, idealized as a 

577 plain tilted terrain, is α = 100*L/s. So, α ≈ 0.012 % is obtained in agreement with the value of α < 

578 0.02 % determined from bathymetric studies of the same area (Vargas, 2014).
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579

580 Figure 14. Simplified rectangular area of longest side L = 80 km (in nadir view) representing the 
581 maximum extension of the open-water Dulce River wetlands flooded area over an idealized plain 
582 tilted surface of percentage topographical slope α, plotted over the satellite-retrieved open-water 
583 flooded area (highlighted in black colour) during the maximum extension of year 2003 within the 
584 Nature Reserve. Considering the slope s = 690 ± 72 km2/m of the linear fit from Figure 13-right, the 
585 resulting value is α ≈ 0.012 %.
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586 4. Conclusions

587

588 This work constituted a practical application of satellite data complemented by a set of 

589 locally-measured parameters and registers for analysis and validation, integrating scientific and 

590 official decision-maker institutions for monitoring, understanding and preservation of a wetland 

591 Nature Reserve of international relevance in Argentina. The water-covered surface area within the 

592 potentially flooded region of the Ramsar Nature Reserve Dulce River wetlands and Mar Chiquita 

593 Lake in Córdoba Province, Argentina, was retrieved from L5-TM and L8-OLI reflectance data by 

594 using the Modified Normalized Difference Water Index (MNDWI) on a total of 16 cloudless-sky 

595 mosaics in the period 2003-2017. As in every wetland region, the sensitivity of the satellite algorithm 

596 to detect areas partially covered by exposed water or with underlying water is crucial, and especial 

597 emphasis to correctly classify mixed-water pixels has been put in this work. Transects crossing two 

598 stable sub-regions, Los Porongos lagoon and a South branch of Mar Chiquita Lake, were used with 

599 the sixteen available image dates to define through box-plot analysis the MNDWI threshold values 

600 for each sensor to detect open-water pixels, mixed-water pixels and non-water pixels. To validate the 

601 established satellite MNDWI thresholds, a SPOT higher resolution satellite image was used, 

602 complemented by digital photographic registers taken within the Nature Reserve simultaneously to a 

603 Landsat 8 overpass, covering a diversity of zones with different proportion of observed water, 

604 assuring reliability in distinguishing mixed-water pixels. Additionally, an exhaustive linear mixture 

605 model analysis of the percentage of detectable open water inside a given Landsat pixel was made, 

606 ranging from 9 % to 76 % to be classified as a mixed-water pixel.

607

608 Maximum total flooded area extensions of about 3600 km2 during years 2003-2005 and a 

609 minimum one of 2050 km2 by the end of 2011 were determined. Supporting the known 

610 phenomenology of the region, the comparative evolution of open-water, mixed-water and total-water 
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611 areas, and the Mar Chiquita Lake water level is highly compatible with an explanation that strongly 

612 relates the hydrological balance in the region with the caudal regime from the contributing northern 

613 rivers. The satellite-estimated open-water flooded area within the Dulce River wetlands shows a 

614 marked linear relation with the average locally measured water level of Mar Chiquita Lake. The 

615 extrapolation of the linear fitting to zero flooded area closely agrees with the water level of about 66 

616 m asl that defines the historical contour of Mar Chiquita Lake. Idealizing the Dulce River wetlands 

617 as a rectangular plain tilted surface, the slope of the linear fitting (690 km2/m) leads to a terrain’s 

618 topographical slope of 0.012 %, in agreement with the topographical slope < 0.02 % obtained from 

619 bathymetric studies in the same area.

620

621 While the open-water flooded area within the Dulce River wetlands decreases systematically 

622 since 2003 down to the end of 2013, the total flooded-area reached its minimum by the end of 2011, 

623 when a significant increase of the mixed-water area started. The detailed links of this behavior to the 

624 whole variables influencing the hydrological balance, climate parameters, chemical and physical 

625 water parameters, etc. in this complex endorheic system will be a subject of future work. The 

626 analysis of satellite imagery and correlations found in this work can be part of a management tutorial 

627 for government officials attending the preservation of the resources within this important Nature 

628 Reserve. The validated satellite method here provided constitutes a contributing tool to discriminate 

629 mixed-water from open-water pixels for monitoring different aspects of wetlands in the present 

630 climate change scenario.
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