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Abstract 

 

Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, 

fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive–

compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been 

associated with immune dysfunction. However, there is contradictory evidence about 

the effect of fluoxetine on the immune system. Experimental findings indicate that 

lymphocytes express the serotonin transporter. Moreover it has been shown that 

fluoxetine is able to modulate the immune function through a serotonin-dependent 

pathway and through a novel independent mechanism. In addition, several studies have 

shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated 

in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor 

T-cell activity.  

Here we briefly review some of the literature referring to how fluoxetine is able to 

modify, for better or worse, the functionality of the immune system. These results of our 

analysis point to the relevance of the novel pharmacological action of this drug as an 

immunomodulator helping to treat several pathologies in which immune deficiency 

and/or deregulation is present. 

 

Keywords: Antidepressant; Fluoxetine; Serotonin; Immune System; 

Immunomodulation. 
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1. Introduction 

 

Serotonin [5-hydroxytryptamine (5-HT)] and catecholamines are primitive biogenic 

amines essential to the regulation of central processes, like food and sexual appetite, 

mood, sleep, body temperature and breathing. Their bioavailability is exquisitely 

regulated through diverse mechanisms, such as vesicular sequestration mediated by 

selective transporters. In addition, these neurotransmitters and the corresponding 

transporter proteins are found in peripheral cells, mainly those of the immune–

inflammatory axis. Also it has been described that they are able to modulate immune 

cell activity in an autocrine manner. These transporters have been used widely as 

pharmacological targets for the treatment of mood and anxiety-related disorders. 

Specifically, selective 5-HT reuptake inhibitors (SSRIs) have been demonstrated to be 

very efficient, safe and tolerable. In particular, fluoxetine is usually chosen for the 

treatment of the symptoms of depression, obsessive-compulsive disorder, panic attacks 

and bulimia nervosa. However, antidepressant therapy has been associated with 

alterations of the immune function. 

 

Here we concisely review the literature pertaining to how fluoxetine is able to modify -

for good or ill- the functionality of the immune system. Firstly, we describe the 

evidence on the presence and the role of 5-HT and of the transporters within the 

immune system. Secondly, we mention the findings about the alteration of 5-HT 

homeostasis in affective disorders and other pathologies such as cancer. Thirdly, the 

effect of fluoxetine on the immune response in both healthy subjects and in sickness 

conditions will be depicted. 
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2. Role of serotonin as a regulator of immune response 

 

During the last twenty years experimental findings have indicated reciprocal 

communication between the immune and nervous systems, where 5-HT has been 

proven to have important modulatory effects [1–5]. Enterochromaffin cells of the 

gastrointestinal tract are the main producers of 5-HT. These cells release 5-HT, which is 

taken up by platelets that then act as “mobile storage units”. The rapid release of platelet 

5-HT is induced by inflammatory stimuli, such as C5a, platelet activating factor and 

IgE-containing immune complexes. Thus, at sites of inflammation, lymphocytes can be 

exposed to large amounts of platelet-derived 5-HT, reaching near 1 mM in the local 

milieu [3]. In addition, immune cells contain and synthesize 5-HT [6-9]. The content 

may be different between diverse subtypes of cells, in lymphocytes and monocytes, and 

even in subpopulations of T lymphocytes. These differences could indicate particular 

roles of 5-HT as an immunomodulatory factor acting as an autocrine transmitter. For 

example, dendritic cells are able to uptake and store 5-HT, and then release it by 

exocytosis, inducing proliferation and differentiation of naïve T cells [10]. Therefore 

autocrine and paracrine interplays might take place among lymphocytes. 

 

The neuroimmune axis constitutes one more source of 5-HT for lymphocytes. It is 

known that lymphoid organs are extensively innervated by the autonomic nervous 

system. It has been proposed that nerve fibers in close contact with lymphoid tissues 

might take up 5-HT and then release it on following stimulation of the nerves [3]. 

Several studies have shown that 5-HT is able to regulate numerous immune responses 

by increasing of mitogen-stimulated lymphocyte proliferation, promoting natural killer 
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cell activation and macrophage/dendritic accessory function as well as contributing to 

the initiation of the delayed-type hypersensitivity response [3, 11, 12]. 

 

Within the immune system, 5-HT can be transformed through catabolic pathways in 

melatonin, a cyclooxygenase inhibitor called formyl-N-acetyl-5-methoxykynurenamine, 

formyl-5-hydroxykynurenamine, 5-hydroxyindoleacetic acid and N-methylserotonin. 

However, it is not thoroughly understood the extent by which these metabolites 

generated during catabolism may affect the immune system [for a review see 13]. 

 

Membrane receptors for 5-HT are, at present, grouped into 7 families, known as 5-HT1 

to 5-HT7 [13]. In mammalian, 14 different 5-HT receptor subtypes have been found 

using molecular biological techniques. The 5-HT1 subgroup includes at least five 

subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. The 5-HT2 consists of 

three subtypes: 5- HT2A, 5-HT2B, and 5-HT2C.  For 5-HT5 two related receptor were 

identified: 5-HT5A and 5-HT5B. Excluding the 5-HT3 receptor that is a cation channel, 

all subtypes are G-protein-coupled receptors. 5-HT1, 5-HT4, 5-HT6, 5-HT7 subgroups 

are linked to adenylate cyclase and 5-HT2 to phospholipase C. The second messenger 

system coupled to the 5-HT5 receptors has not been identified yet; however, evidence 

exists indicating the functional coupling of the rat 5-HT5A receptor subtype to 

adenylate cyclase [14, 15].  

 

The presence of 5-HT receptors in the immune system, such as 5-HT1, 5-HT2, 5-HT3 

and 5-HT7, has mostly been studied by pharmacological methods [3]. Stefulj et al. [16] 

investigated the mRNA expression of 5-HT receptors in rat lymphoid tissue cells and in 

mitogen-stimulated spleen cells by RT-PCR methods. The authors found that 5-HT1B, 



7 

 

5-HT1F, 5-HT2A, 5-HT2B, 5-HT6, and 5-HT7 receptor mRNAs are expressed in ex 

vivo isolated thymus, spleen, and peripheral blood lymphocytes. Mitogen-stimulated 

cells also expressed 5-HT3 receptor subtype mRNA. However, mRNA corresponding to 

5-HT1A, 5- HT1D, 5-HT2C, 5-HT4, 5-HT5A, and 5-HT5B subtypes were undetected 

in the examined lymphoid populations [16]. Other authors, however found 5-HT1A 

receptor to be expressed in lymphocytes, where it is involved in the promotion of T-cell 

proliferation, a property conserved between mammals and fish [8, 9]. In addition 5-

HT1A receptor is expressed in B lymphocytes and, as with T cells, both mRNA and 

protein for this receptor are up-regulated by NF-kB–dependent mechanisms [17]. 

Moreover, 5-HT1A receptor seems to participate in the 5-HT–augmentation of rodent 

splenic B cells mitogenic responses induced by lipopolysaccharide and dextran sulfate 

[18]. 

 

Antagonism of 5-HT1B/D receptors inhibits proliferation of human and murine T cells 

[19] and agonism of 5-HT1A receptors increases proliferation of rat [20], mouse [21] 

and human [22] lymphocytes, indicating a crucial role of 5-HT as an immunomodulator 

[23]. Also, the expression of 5-HTR2A in PBMC has been investigated and linked to 

the regulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1 secretion [24]. 

Furthermore, it was demonstrated that 5-HT3, 5-HT4 and 5-HT7 subtypes regulate the 

release of IL-1, IL-6, IL-12, IL-8 and TNF-α in monocytes and dendritic cells [12, 25, 

26]. It was reported that 5-HT3A is expressed in naive and activated B-lymphocytes 

[27], T lymphocytes, and human monocytes [28]. Inhibition of the 5-HT3 receptors with 

antagonists, such as ondasetron and tropisentrol, disrupts TNF-α and IL-1β production, 

suggesting that these receptors may activate the p38/MAPK pathway [29, 30]. Besides, 

5-HT regulates migration, cytokine and chemokine release and T-cell priming capacity 
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of dendritic cells [12]. Table 1 shows the different receptor subtypes and the effect of 5-

HT in different cell types. 

 

High affinity uptake of 5-HT and its inhibition by SSRIs in peripheral-blood 

lymphocytes has been described [31]. In addition, the expression of the 5-HT 

transporter (SERT) has been demonstrated by specific saturable binding of the labeled 

SSRI paroxetine on lymphocytes [32]. It is important to note that the capacity to 

accumulate 5-HT seems to be evolutionarily conserved among lymphocytes suggesting 

that lymphoid SERT has a relevant role, if not a crucial function, within the periphery 

[6, 33]. 

 

Cytokine modulation of SERT mRNA expression in vitro has been reported [34-37]. 

Furthermore, TNF-α, IL-6, IL-10, IFN-γ production requires intracellular lymphocyte 5-

HT, but this production may be suppressed by an increase in extracellular 5-HT 

concentration [38]. These observations suggest that SERT could be able to regulate the 

production of cytokines.   

 

Experimental evidence shows that SERT does not act just as a transport protein but also 

as a substrate-dependent signal transducer [39]. In addition, SERT-delivered 5-HT has 

been probed to impact signal transduction directly by a novel mechanism, the 

“serotonylation” of small GTPases [40, 41]. Thus, SERT appears equipped to modify 

cell‟s functional behavior in potentially diverse ways [15]. 

 

3. Alteration of serotonin homeostasis in disease  

 



9 

 

Reports indicating alterations on 5-HT homeostasis in immune system are referred 

especially to psychiatric disorders, such as the major depressive disorder; immune 

dysfunction and malignant immune cells, like Burkitt lymphoma.  

 

The major depressive disorder is defined as a pervasive and persistent low mood with a 

multi-factor cause. It has long been considered that dysfunction of the central 

serotonergic system is involved in the pathogenesis of this disorder. Several studies 

have shown that 5-HT manipulations alter subjective emotional state [42]. Kambeitz 

and Howes [43] performed a meta-analysis of in vivo and post mortem findings and 

conclude that SERT availability is diminished in crucial regions of the limbic system in 

depressed patients. However, it was reported that there are no variation in the plasma 

levels of circulating 5-HT and their metabolite 5-hydroxyindoleacetic acid (5-HIAA) [6, 

44]. Nevertheless, in major depression patients a reduction was found in lymphoid 

SERT that was increased after fluoxetine [6] or mirtazapine treatment [44]. In addition, 

a decrease of the SERT mRNA was described in these patients [7]. SERT protein 

expression in leukocytes has, however, been found in other studies to be increased in 

depressive patients and reverted by antidepressant administration [45]. These different 

results may be linked to the type of cell preparation utilized or the type of patients 

evaluated in each study. These findings support the significant action of SERT on 

different circulating cells playing an important role for the maintenance of serotonergic 

homeostasis such as it happens in the brain.  

 

Changes in lymphocyte proliferation have been described in depression. Thus, it has 

been reported a lower mitogen-induced T cell proliferation in depressed patients [46-

48]. However, the probability of a basal immune activation in these patients that in turn 
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promote an autoimmune reaction cannot be discarded. In fact, in depression, it was 

reported an increased basal lymphocyte proliferation, an over-reactivity of 5-HT1A 

receptors [48] and a reduction of lymphocyte cAMP [49]. Moreover, other immune 

variations were evidenced, such as leukocytosis with lymphopenia and increased 

CD4+/CD8+ ratio [50]. Besides, some studies have shown an increase in the 

CD3+/CD8+ ratio without modification in CD3+CD4+ lymphocytes and a higher 

percentage of natural killer (NK) cells in major depression [51]. Finally, Fazzino et al. 

[52] found a decreased number of SERT in CD8+ lymphocytes without changes in 

CD4+/CD8+ relation in major depression. The presence of SERT in CD4+ and CD8+ 

cells may be indicative of the existence of differential serotonergic system regulation of 

cell activity in lymphocyte subpopulations. 

 

Immune responses to viruses, bacteria, fungi, and parasites require 5-HT. Human 

immunodeficiency virus (HIV) infection is a primary model for the study of the action 

of 5-HT during infection. Numerous studies encourage a role of 5-HT in T-cell function 

of HIV-seropositive individuals. 5-HT induces a decrease of intracellular cAMP levels 

in lymphocytes and an increase of proliferative responses mediated by IL-2 production 

through 5-HT1A receptors [53]. In addition, 5-HT decreases the expression of the HIV 

co-receptor CCR5 on infected macrophages and reduces proviral synthesis by 50% [54]. 

 

The role of the serotonergic system in cancer patients is still under investigation. 

Increased levels of systemic 5-HT appears to correlate with advanced stages of breast 

cancer [55]. Serafin et al. [56] showed in established Burkitt lymphoma (BL) cell lines 

that 5-HT plays an important role in driving programmed cell death. Despite Burkitt 

lymphoma being a very aggressive tumor, it shows a propensity to apoptosis, as 
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indicated by its classical starry sky histology. The authors described that 5-HT induced 

a considerable suppression of DNA synthesis in parallel with an important apoptosis in 

BL cells culture. These effects were anteceded by early caspase activation and 

mitochondrial membrane potential disruption. However, 5-HT receptor antagonists (i.e. 

granisetron, methysergide, SDZ205-557) were not able to inhibit 5-HT-driven 

apoptosis, while fluoxetine, paroxetine, and citalopram extensively blocked the 

monoamine actions. Nevertheless, SSRIs directly signal for apoptosis in these cells 

[57].  The presence of SERT, as well as the active uptake of 5-HT indicated by transport 

assays in BL cells, suggest that 5-HT is able to drive apoptosis by an active transport 

mechanism.  

 

4. Fluoxetine action on immune system. 

 

Experimental findings suggest that antidepressants can modulate the proliferation of 

immune cells. However, there is conflicting evidence about the action of fluoxetine on 

the immune system. Pellegrino and Bayer [58, 59] described a reduced mitogen-induced 

T lymphocyte proliferation after acute, but not chronic fluoxetine therapy. In addition, 

the subchronic administration of fluoxetine in depressed patients regularized the 

initially increased plasma concentrations of pro-inflammatory cytokines IL-6 [60] and 

IL-1β [61]. Repeated treatment with fluoxetine and tricyclic antidepressants (TCAs) 

might suppress the acute phase response in major depression [62]. On the contrary, we 

described that after 4 weeks treatment with fluoxetine in normal mice, an augmentation 

of T cell mediated immunity occurs. Thus, an increase of T cell proliferation with no 

changes on CD4+/CD8+ ratio as well as an enhanced IFN-γ and TNF-α cytokines 

production was observed [63]. Experiments carried out with athymic mice -lacking of T 
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lymphocytes- indicated that fluoxetine effects are selective for T cells, not found in 

other lymphocyte subpopulations [63]. On the other hand, Fazzino et al. [64] found that 

chronic administration of fluoxetine in normal rats induces a significant reduction of 

CD4+/CD8+ ratio and an increase of IL-4/IL-2 ratio. It is important to note that the 

antidepressant route of administration influences the effects observed. For instance, 

Fazzino et al. [64] administered fluoxetine intraperitoneally and our group [63] orally. It 

is probable that intraperitoneal injection represents an extra stressor that leads to an 

opposite effect.  

 

Fluoxetine was shown to revert the stress-induced suppression on T lymphocyte 

population [65-67] and activity of phagocytosis [68] without affecting them in control 

mice. In addition, chronic restraint stress provokes a reduction of the total number of T 

CD4+ cells affecting T helper immunity in BALB/c mice. Nevertheless, according to 

our observations, fluoxetine increases T cell reactivity with no changes in the total 

number of T lymphocytes. This differential effect could be indicating that fluoxetine 

exerts this modulatory action on T helper immunity through compensatory and/or 

specific mechanisms [69]. Thus, it has been proposed that fluoxetine can act by indirect 

effects through the activation of central 5-HT2 receptors [65], but that it may also 

mediate a direct regulation of peripheral cells [63, 69, 70]. In fact, in vitro results 

indicate that fluoxetine is able to modulate immune functions. It was shown that 

fluoxetine suppresses in vitro mitogen induced rat T- and B-lymphocyte proliferation in 

a dose-dependent manner [71]. Fazzino et al. [52] reported that elevated basal 

proliferation observed in patients with depression, as mentioned above, was reduced 

efficiently in the presence of fluoxetine. Besides, incubation of mitogen-stimulated 

human immune cells with fluoxetine in vitro, significantly reduces the production of the 
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pro-inflammatory cytokines TNF-α and IFN-γ, and the IFN-γ/IL-10 production ratio, 

with [72] or without [73] significant increase of the anti-inflammatory cytokine IL-10. 

Moreover, desipramine and fluoxetine were able to suppress lymphocyte proliferation 

[71] and to decrease the inflammatory reaction and mortality in rat and murine models 

[74]. In addition, Kubera et al. [75] showed that both fluoxetine and desipramine 

significantly ameliorate the contact hypersensitivity induced by a topical application of 

hapten 2,4-dinitrofluorobenzene (DNFB). This effect is mediated by the suppression of 

the T cytotoxic-cell-mediated antigen-specific type of skin inflammation by 

antidepressant drugs. These findings suggest that these drugs may be beneficial 

therapeutic tools in the treatment of contact allergy. Table 2 reports the available 

information on the immunomodulatory effect of fluoxetine in pathological situations in 

which immune alterations play a role.  

 

It is probable that the effect of fluoxetine on T-cell activity is related to the degree of 

lymphocyte activation. We found [69,70] that when lymphocytes were stimulated with 

optimal Concanavalin A (Con A) concentration fluoxetine promotes an increase of 

intracellular Ca
2+ 

levels
 
that in turn induces proteolysis of protein kinase C (PKC) 

increasing cyclic-AMP levels, so impairing lymphocyte proliferation. However, when 

suboptimal Con A concentration was utilized, fluoxetine increased PKC translocation, 

without affecting cAMP levels, leading to T-cell proliferation. These results suggest that 

fluoxetine has a dual activity on T-cell proliferation through Ca
2+

 mobilization that 

influences PKC and protein kinase A pathways [69, 70]. Accordingly, we reported a 

similar dual effect of fluoxetine on B-cell receptor (BCR)-driven murine B-cell 

proliferation [76]. In addition, Frank et al. showed that in vitro exposure of 

mononuclear cells to fluoxetine and paroxetine directly increase NK-cell activity [77]. 
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Blockade of SERT may be followed by an increment in 5-HT concentration close the 

lymphocytes, modulating proliferation through specific receptors. To evaluate the role 

of 5-HT in the effects of fluoxetine on T-cell activity we determined the mitogen-

induced proliferation in the presence of 5-HT or fluoxetine alone and in combination 

with fluoxetine. We [63] found that 5-HT and fluoxetine have similar effects; both were 

capable of stimulating the proliferation induced by suboptimal Con A and of inhibiting 

the optimal one. However, for 5-HT, these effects were directly related to the 

concentration used. On the contrary, the stimulatory effect of fluoxetine was inversely 

linked to the concentration used, whereas the inhibitory effect was directly related to 

fluoxetine concentrations. When combinations of 5-HT and fluoxetine were used, 5-HT 

was able to decrease the inhibitory effect of fluoxetine at optimal Con A-induced 

proliferation and to increase the stimulatory effect of fluoxetine on suboptimal Con A 

stimulated proliferation. These results point out that the modulatory effects of fluoxetine 

are partially independent of its capacity to increase 5-HT extracellular levels. This 

mechanism might introduce the action of fluoxetine through a novel receptor or new 

intracellular pathway coupled to 5-HT transport [63, 67]. 

 

The evidence summarized above suggests that SERT cannot only remove the 

monoamine from the extracellular space, but also, under particular conditions pump 5-

HT out of cells. Moreover, it is now perceived that intracellular 5-HT is not simply 

passive since the „serotonylation‟ of small GTPases, like Rho and Rac, induce their 

degradation directly impacting on signal transduction [15]. 

 

It is important to note that fluoxetine per se has an immunomodulatory effect in normal 

animals. We demonstrated that fluoxetine alone increases mitogen-induced T cell 
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proliferation and IL-2, IFN-γ and TNF-α expression over control levels [63]. Moreover, 

we found that fluoxetine was able to inhibit tumor growth, retard its appearance, and 

prolong survival of mice. These effects were maximal in animals receiving continuously 

fluoxetine. However, if fluoxetine is administered only before or after tumor injection, a 

decrease in tumor progression and an increase in survival were also observed. An 

outstanding finding is the fact that the survival was increased when fluoxetine was 

administered after tumor injection, suggesting a potential pharmacological beneficial 

effect of fluoxetine on cancer therapy [63]. 

 

A relevant question is thus which dose of fluoxetine is to be used. It was reported that 

the oral intake of 10 and 25 mg/kg/day of fluoxetine in BALB/c mice yield a plasma 

concentration near 170–1780 g/ml, corresponding to 5 x 10
-7

 M to 5 x 10
-6

 M [78]. In 

addition the range of plasma levels reported in patients consuming 20–80 mg/day 

Prozac is near 100–700 ng/ml [79], equivalent to a fluoxetine concentration of 2 x10
-7 

to 

3 x 10
-6 

M. Using these doses we demonstrated that fluoxetine improves  the reduced T 

cell proliferation found in stressed mice both in vivo and in vitro [67]. These results 

emphasize that when the direct effects are analyzed by in vitro approaches, the 

antidepressant concentration used is crucial since the cytotoxic/apoptotic phenomena 

could be just due to high doses of these drugs, but not necessary an effect occurring in 

vivo. 

 

5. Concluding Remarks 
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Based on the above described actions of fluoxetine on immune responses, it has been 

proposed that serotonergic and dopaminergic pathways offer an attractive target to treat 

human immune system disorders. 

Despite some conflicting experimental findings, in general it appears that fluoxetine is 

able to modulate the immune response. Thus, when basal immune function is high, 

fluoxetine administration reduces lymphocyte activity. On the contrary, when immune 

function is deficient, fluoxetine administration improves it.  

Fluoxetine can exert its effect by direct and indirect mechanisms. Indirect mechanisms 

would be 5HT-dependent or independent (Figure 1). It is relevant to note that the 

concentration used for analyzing the direct action of fluoxetine in vitro is crucial taking 

into account that cytotoxic / apoptotic effects can be due to the usage of high doses of 

this drug, not necessarily occurring at the concentration found when the drug is 

administered in vivo.  

These results highlight the importance of the novel pharmacological action of this drug 

as an immunomodulator, helping to treat several pathologies that course with immune 

deficiency and/or deregulation.   

 

Fluoxetine can exert immunomodulatory effects by its action on serotonergic neurons in 

the central nervous system regulating neuroendocrine signals. In addition, fluoxetine is 

also able to act directly on T lymphocytes modulating their proliferation in a dual 

manner depending on cellular activation. This mechanism could include: a) the action 

through a novel receptor or a novel intracellular pathway coupled to 5-HT transport, b) 

the increase of 5-HT in the lymphocyte milieu which in turn activates intracellular 

signals by binding to serotonergic receptors, and c) the increase of intracellular 5-HT 
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leading to “serotonylation” of small GTPases.  The crosstalk of different events leads to 

the immunoregulatory effect in the presence of antigen or inflammatory stimulus.  
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Figure Captions 

 

 

Figure 1: Hypothetical Pathways for Fluoxetine Immunomodulatory Effects.  
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Tables 

Table 1. 5-HT receptor subtype and serotonin action in immune cells. 

Immune cell type 5-HT receptor subtype 5-HT effect 

T-cell 

 

5-HT1A, 5-HT1B, 

5HT2A, 5HT3, 

5HT7 
13-15

 

-Induction of Na
+
 influx 

22
 

-Induction of IL-16 secretion from CD8
+
 T 

cell
22

 

-Enhancement of proliferation
22

 

-Potentiation of T-cell activation 
22

 

-Increase  of IL-2 and IFN- production
22

 

B-cell 

 

5-HT1A
17

 -Increase of proliferation
17

 

Dendritic cell 

 

5-HT1B, 5-HT2,  

5-HT3, 5-HT4,  

5-HT7
12

 

-Induction of  oriented migration in immature 

DC
12 

-Induction of  Th2-cell polarization capacity 

of mature DC
12 

-Inhibition of CXCL10 production in mature 

DC
12 

-Stimulation of  CCL22 production in mature 

and immature DC
12 

-Stimulation of IL-1, IL-6 and IL-8 in 

mature DC
12, 26 

-Inhibition of  IL-12, TNF-α in mature DC
 26

  

-Stimulation of IL-10  in LPS-stimulated  

mature DC
12 

-Inhibition of  IL-12p70 in LPS-stimulated 

mature DC
12 

 

Macrophage 

 

5-HT1E, 5-HT2A, 

5-HT3, 5-HT4,  

5-HT7
23

 

-Stimulation of IL-1, IL-6, IL-8 and IL-12 
25 

-Inhibition of TNF-α release
25 

  
 

Abbreviations: DC: Dendritic Cells; CXCL10: Chemokine 10; CCL22: Chemokine 22; LPS: 

lipopolysaccharide. 
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Table 2 Immunomodulatory effect of fluoxetine in pathology. 

Pathological 

situation 

Immune alteration Fluoxetine effect 

Inflammation -Increase of  INF-and TNF-  -Decrease TNF-and INF-




-Increase of IL-10
72,75

 

 

Stress -Decrease of phagocytosis 

-Decrease of T cell response 

 

-Decreased production of 

TNF-andIFN- 

 

-Restoration of phagocytosis
68

 

-Restoration  of T cell 

response
65,66,67

 

-Enhance of  TNF-and IFN-

production
 63

 

 

 

Depressive 

disorder 

-Elevated basal and stimulated  

proliferation 

-High IL-6 levels and IL-1 

 

-Normalization of both basal and 

stimulated proliferation 
52

 

-Reduction of IL-6
60

 and IL-1
61

 

 

 


