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Abstract 

In this paper we review the examples of J H Poynting (1884) on the transfer of 

electromagnetic energy in DC circuits. These examples were strongly criticized by O 

Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature 

of the electric field in the vicinity of a wire through which a current flows. The 

historical review of this conflict and its resolution based on the consideration of 

electrical charges on the surface of the wires can be useful in the courses of 

electromagnetism or circuit theory. 
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1. Introduction 

The space surrounding an electric circuit can be considered as a region where energy is 

transformed at certain points into electric and magnetic energy by means of batteries, 

generators, etc., while in other parts this electromagnetical energy is transformed into heat or 

mechanical work. 

Poynting vector conceptualizes and quantifies the energy transport through the electromagnetic 

field and is generally used in undergraduate college courses as a way to represent the flow of 

energy of an electromagnetic wave. However, it may also be useful to represent the flow of 

energy in a DC circuit as in the examples presented by J.H. Poynting (JHP hereinafter) in 1884 

[1], where he exposed the transfer of energy in electrical circuits by means of electromagnetic 

fields. 

In his examples JHP assumed that the only component of the electric field was tangent to the 

surface of the resistive wire and, for that reason, the flow of energy that he calculated was 

perpendicular to the surface of the wires. 
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O Heaviside [2,3,4] (OH hereinafter) strongly criticized the results obtained by Poynting, he 

said that they was not correct and that, on the contrary, in real circuits the energy flow, parallel 

to the surface of the wires, is much greater than the energy flow in the normal direction.. OH 

states that this mistake is because JHP had a misconception about the nature of the electric field 

in the vicinity of a wire through which a current flows. 

However, most authors and teachers, who discuss examples of energy transfer in a DC circuit, 

in their books, or in their classroom presentations, ignore Heaviside's criticism. In fact, in well-

known physics texts it is exposed almost identically as JHP’s explanation, as in the excellent 

book Lectures in Physics of R Feynman [5]. 

Since 1985, numerous authors, including Heald [6], Galili and Goibargh [7], Harbola [8] and 

Davis and Kaplan [9] noted that in order to achieve a good understanding of the transfer of 

electromagnetic energy in a circuit DC, it is necessary to know the electric field in the vicinity 

of the wires that carry a current. In particular, they showed that the surface charge on the wire 

creates two types of electric field: the field inside the wire that drives the current according to 

Ohm's law and the field outside the wire, which has components perpendicular and parallel to 

its surface. These authors’ conclusions agree with the vision of Heaviside on the importance of 

the nature of the electric field surrounding a wire through which a current flows. 

The plan of this work is the following: In Section 2 we examine the example of JHP on the 

energy flow in a straight wire carrying a current and also the criticism that this example has 

caused. In Section 3 we reproduce the qualitative reasoning OH and in Section 4, following this 

reasoning, we conduct a quantitative study, more contemporary, on the transfer of power in a 

transmission line. In Section 5 we examine the example of JHP on "discharge of a capacitor 

through a wire" which includes very arbitrary assumptions about the properties of the wire 

through which the discharge is performed. With these assumptions, we obtain an electric field 

tangent to the surface of the wire and an energy flow that penetrates in its interior in the normal 

direction, as in example 1. In Section 6, we solve the Laplace equation for the slow discharge of 

a capacitor through a cylindrical sheet (rather than a wire) for comparison with the example 2 

from Poynting. 

2. Example 1 of JHP:  A straight wire conveying a current. 

JHP presents this example as follows 

“In this case very near the wire, and within it, the lines of magnetic force are circles around the 

axis of the wire. The electric lines of force are along the wire, if we take as proved that the flow 

across equal areas of the cross section is the same at all parts of the section.  

If AB, Fig. 1, represents the wire, and the current is from A to B, then a tangent plane to the 

surface at any point contains the directions of both the electromotive and magnetic intensities 

(we shall write E.M.I. and M.I. respectively in what follows), and energy is therefore flowing in 
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perpendicularly through the surface, that is, along the radius towards the axis. Let us take a 

portion of the wire bounded by two plane sections perpendicular to the axis.  

Figure 1. A wire carrying a current (Fig. 1 in Ref. [1]) 

 

Across the ends no energy is flowing, for they contain no component of the E.M.I. The whole of 

the  energy then enters in through the external surface of the wire, and by the general theorem, 

the amount entering must just account for the heat developed owing to the resistance, since if 

the current is steady there is no other alteration of energy. It is, perhaps, worthwhile to show it 

independently in this case where the energy moving inwards, in accordance with the general 

law, will just account for the heat developed.” (emphasis added). 

However, OH [2-4], contemporary to JHP, who discovered the flux of energy from the 

electromagnetic field independently [10], pointed out that only a small component of this flux is 

directed perpendicularly to the wire but the other, much larger, is parallel to the wire. In his 

words [2], written in 1887: 

“...the flow of energy takes place, in the vicinity of the wire, very nearly parallel to it, with a 

slight slope towards the wire. Prof. Poynting, on the other hand [Philosophical Transactions of 

the Royal Society, 1884] holds a different view, representing the transfer as nearly 

perpendicular to a wire, i.e., with a slight departure from the vertical. This difference of a 

quadrant can, I think, only arise from what seems to be a misconception on his part as to the 

nature of the electric field in the vicinity of a wire supporting electric current. The lines of 

electric force are nearly perpendicular to the wire. The departure from perpendicularity is 

usually so small that I have sometimes spoken of them as being perpendicular to it, as they 

practically are, before I recognized the great physical importance of the slight departure. It 

causes the convergence of energy into the wire. ” (emphasis added). 
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The Example 1 of JHP. is used almost verbatim in the Lectures on Physics of R Feynman [5]. 

Indeed, in the Feynman Lectures we read: ‘‘We ask what happens in a piece of resistance wire 

when it is carrying a current. Since the wire has resistance, there is an electric field along it, 

driving the current. Because there is a potential drop along the wire, there is also an electric 

field just outside the wire, parallel to the surface (Fig. 27-5). There is, in addition, a magnetic 

field which goes around the wire because of the current. The E and H are at right angles; 

therefore there is a Poynting vector (S = ExH) directed radially inward ... . There is a flow of 

energy into the wire all around. It is of course, equal to the energy being lost in the wire in the 

form of heat.” (emphasis added).  

JHP does not hypothesize about the origin of the electric field inside the wire, however 

Feynman, argues that "... the electrons are really being pushed by an electric field, which has 

come from some charges very far away, and that the electrons get their energy to  generate heat 

from these fields .... '' (emphasis added). Feynman does not say it explicitly but it seems that 

places these "distant charges" on the terminals of the battery that powers the circuit. 

Ohm's law is so simple that it is taken by many as almost self-evident. There is, however, a 

difficulty connected with the subject we discussed in this paper. This difficulty can be expressed 

in this question: What is the origin of the electric field E that directs the current inside the wire? 

Electric fields are produced by charges, so where are these charges?  Consider, for instance, 

what happens when a resistance wire is connected to the plates of a battery. Before the 

connection is made there is a considerable electric charge on the plates, and hence a large 

electric force in the vicinity of the plates. After the connection has been made and transient 

currents have disappeared, there is a uniform electric field, E= ρJ, everywhere along the wire. 

Thus the electric force close to the plates has been reduced, while that at distant points has been 

increased. How has this come about? Galili [7] notes that this question that has also puzzled 

Feynman "can be clarified with a more suitable model for the electric current flowing in a wire. 

It is easy to understand that a constant current in a wire implies a surface charge on the wire 

surface, guiding and pushing electrons" (emphasis added). 

Note that Galili (in 2004), as Heaviside (in 1887), points out that to understand the transfer of 

energy in a DC circuit requires a better understanding of the electrical fields surrounding the 

wire through which a current flows. 

Model calculations of the surface charge for an infinite wire and for conductors of other 

geometries carrying direct current as well as RC circuits have been done [11,12]. The results of 

these investigations demonstrate that when there is current in the wire, both components of the 

electric field exist. Inside the wire there is only an axial component, but outside there is a 

perpendicular component as well. The electric field parallel to the surface gives rise to the 

energy flux that penetrates inside the wire. The perpendicular electric field component causes a 

Page 4 of 18AUTHOR SUBMITTED MANUSCRIPT - EJP-102615.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Poynting vector parallel to the wire. According to Heaviside this component is much larger than 

the other. 

In the following session we are going to give Heaviside's qualitative explanation for the flow of 

energy in an electric circuit. 

 

3. The Heaviside approach to determining the flow of energy in a simple circuit. 

In [3], OH presents a qualitative, but very rigorous study of the flow of energy in an 

energy transmission line. His reasoning is as follows. 

“In the vicinity of the wire the radial electric force varies inversely as the distance, and so does 

the intensity of magnetic force. The density of the energy-current therefore varies inversely as 

the square of the distance approximately. As regards the total energy-current, this is VC, the 

product of the fall of potential from one wire to the other into the current (C) in each. One 

factor, V, is the line-integral of the electric force across the dielectric. The other, C, is the line-

integral (1 4π÷ ) of the magnetic force round either wire.”  

Figure2. A transmission line (from Ref. [3]) 

 

“In the figure (Fig. 2 in this work), AB and CD are the two wires, enormously shortened in 

length compared with their distance apart, joined through terminal resistances 0R  and 1R , in the 

former of which alone is the impressed force e. The fall of potential from A to C is 0V  from B to 

D is 1V , and at any intermediate distance is V. The total activity of the source is eC, of which 

0( )e V C−  is wasted in 0R . What is left, or 0V C  is the energy-current at AC, entering the line. By 

regular waste into the wires, its strength falls to 1V C  at BD, where the line is left, and the 

terminal arrangement entered, to be wasted in frictional heat - generation 2

1R C  therein, or 

otherwise disposed of. The lines curved and arrows perpendicular to them show lines of 

electrical force and the direction of the energy-flow at a certain place, the inclination of the line 

of force to the perpendicular being greatly exaggerated, as well as that of the lines of flux of 

energy to the horizontal, in order to show the convergence of energy upon the wires, there to be 

wasted.” 

In the same text the magnitudes of the normal and tangential components of the electric field are 

compared: 
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“...we may compare the normal and tangential components of electrical force. Let there be a 

steady current in the straight wire, and the fall of potential from beginning to end be 0 1V V− ; the 

tangential component is then 0 1( )V V l− ÷ . On the other hand, the fall of potential from the wire 

to its return – of no resistance, for simplicity – at any distance from the beginning of the line, is 

V , which is 0V  at one end and 1V  at the other. It is clear al once that the tangential is a 

exceedingly small fraction of the normal component of electric force, if the wire be long, and 

that it is only under quite exceptional circumstances anything but a small fraction. Prof. 

Poynting should therefore, I think, make his tubes of displacement stick nearly straight up as 

they travel along the wire, instead of having them nearly horizontal, unless I have greatly 

misunderstood him.”  

We can summarize the main arguments of OH: 

1. The electric field inside the wire is determined by the potential drop, from the beginning to 

the end of the transmission line. 

2. The V potential difference from one wire to the other (the return) is proportional to the 

electric field perpendicular to the wires. 

3. The fall of potential from the wire to its return and, therefore, the normal electric field to the 

cables, decreases as we approach the end of the line. 

OH does not explicitly mention the surface charges on the wires, but since the charges are 

proportional to the normal component of the electric field, they must decrease as we approach to 

the end of the line. This variation (gradient) of the surface charge density is responsible for the 

electric field inside the wire. If the wire is a perfect conductor, the tangential component of the 

electric field is zero and the surface charge density has a zero gradient. 

The existence of the perpendicular component of the electric field is a consequence of the 

potential difference between the two wires of the transmission line, in other words, it is the 

result of the interaction between different parts of the circuit. In example 1, JHP analyzes a 

piece of wire that does not interact with the rest of the circuit and this leads him to ignore the 

normal component of the field. This neglect of JHP is not an obstacle to the correct calculation 

of the tangential component of the electric field and the flow of energy entering the interior of 

the wire. This partial achievement of his calculations possibly explains why this example has 

been repeated, in the same way, for over a hundred years in most texts that analyze the flow of 

electromagnetic energy in a circuit. 

OH besides having a solid knowledge of Maxwell's equations, was an experimental electrician 

and this naturally led him to assert that in a real circuit the normal component of the electric 

field not only exists but is much larger than the tangential component. For OH, in a transmission 

line the energy must flow with the lowest attenuation possible. 

In the next section we will make a quantitative study based on Heaviside qualitative reasoning. 
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4. Heaviside's approach with an up-to-date look 

Heaviside's explanation of the previous section is linked to the new currents of investigation that 

try to explain the flow of energy with a model that takes into account the distribution of surface 

charges in the wires of the circuit. To confirm this link we will develop a more quantitative 

treatment of the Heaviside analysis. 

 
Figure 3. Two-wire transmission line, with radius a and separated by d. 

 

A transmission line, consisting of two cylindrical wires of length l and radius a, is shown in Fig. 

3. The wires are parallel to the z axis and are located in ( 0, / 2)x y d= =  and ( 0, / 2)x y d= = − . 

The battery is in 0z = and in z l= the line is closed by a resistance 1R . To simplify, we assume 

that the internal resistance of the battery 0R is zero. We also assume that l d a>> >> . The 

potential difference between the two wires is 0V e= , at 0z = , where e is the emf of the  battery, 

and 1V  at z l= .   

At any point z the potential difference between the wires is ( )V z . If / /E  is the electric field 

inside the wires, then 

/ / 1( ) 2 ( )V z E l z V= − + ,                                                     (1) 

The electric field / /E  and the potential drop between the cable ends are related by the following 

expression: 

0 1
/ /

2

V V
E

l

−
=                                                                 (2) 

Replacing (2) in (1) we obtain 

0 1
1

( )
( ) ( )

V V
V z l z V

l

−
= − +                                                     (3) 

If ( )
AB

zΦ  and ( )
CD

zΦ  are the potentials of the AB and CD wires, at the z-point, then 

/2

/2
( ) ( ) ( ) ( , )

d a

AB CD y
d a

V z z z E y z dy
−

− +
= Φ − Φ = ∫                                (4) 

R1

E//

E//

z V(z) zO

y

A

DC

B

z = l

R1

E//

E//

z V(z) zO

y

A

DC

B

z = l
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Note that ( )
AB

zΦ  and  ( )
CD

zΦ   are the values that the potential function takes at all 

points of the circumference  of the conductors AB and CD. 

In this potential difference is implicit the existence of an electric field that goes from the wire 

AB to the CD wire. This means that there is a component of the electric field perpendicular to 

the surface of the wires. This normal component of the electric field has been ignored by JHP 

and Feynman. 

The charge on the surface of the wires is proportional to the normal component of the electric 

field, therefore, it must decrease with z, in the same way that decreases ( )V z .  

If ( )zλ  is the electric charge per unit length on the wire AB, then: 

( ) ( )z cV zλ = ,                                                                (5) 

where c is the capacitance per unit length, which can be interpreted as a “distributed capacity”. 

The capacity per unit length of the transmission line is 

0

2ln 2 ( 2 ) 1
c

d a d a

πε
=

 + −
 

 

As d a>> , then 

( )
0

ln
c

d a

πε
≈  

and 

( )
0 1

1

( )
( ) ( )

ln

o V V
z l z V

d a l

πε
λ

− 
= − + 

 
                                            (6) 

As the wires are separated by a distance that is much larger than its radius, the potential created 

by each wire agrees with the potential of a loaded line passing through the axis of the wires. 

Then, the potential of our two wires is obtained by superposing the potential of the two lines: 

1
1 2

0 0 0 2

ln ln ln
2 2 2

r
r r

r

λ λ λ

πε πε πε

− −
Φ = + =                                            (7) 

Where 1r  and 2r  are the distances from the field point P to the axis of the wires AB and CD, 

respectively.  References [13,14,15] calculate the potential and field created by a pair of 

resistive wires with equal and opposite currents, without the hypothesis ( d a>> ) we do. 

The electric field components are calculated by taking the gradient of (7). In the xy plane 

1 2

2 2

0 1 0 22 2

r r
E

r r

λ λ

πε πε
= −

� �
�

                                                        (8) 

Since λ  depends on z, there is a component of the electric field parallel to the z-axis: 

1

0 2

ln
2

z

rd dz
E

r

λ

πε
=                                                              (9) 

where 
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( )
0 1( )

ln

o
V Vd

dz d a l

πελ −
= −                                                    (10) 

The gradient in the density of the surface charge (10) provides the axial electric field within the 

wire that guides the movement of the conduction electrons. The normal component changes 

along the wire, reflecting the gradient of the surface charge.  

On the surface of the wire AB the tangential component of the field is 

0 1
/ /( 2 , )

2
z

V V
E y d a z E

l

−
= − = =                                            (11) 

If ρ  is the resistivity of the wire and S its section, we can write / /E I S Jρ ρ= = , where J is 

the current density. For continuity, this is the value that takes the electric field inside the wires. 

The normal component (in the yz plane) of the electric field in the wire AB is 

       

                  (12) 

 

In the middle of the line, z = l/2,  

 

                           (13) 

 

In a “normal” transmission line, l a>>  y 0 1 0 1V V V V− << + , then 

(14) 

 

This confirms OH`s assertion: “...in an actual circuit the normal component of the electric field 

is much larger than the tangential component.” 

 

Figure 4. Surface charges, electric field, magnetic field and energy flow in a transmission line. 
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Like d a≫ , the magnetic field created by the wires is the sum of the magnetic field created by 

two filiform currents that coincide with the axes of the wires: 

1 2

2 2

1 1 1 22 2

k r k rI I
H

r r r rπ π

× ×
= −

⌢ ⌢� �
�

                                                (15) 

With the help of the previous results we can make the scheme of Fig. 4, where it is observed 

that the energy flow always from the battery to the resistive elements where the energy 

dissipates. 

The magnetic field modulus which goes around the wire AB is approximately equal to 

2H I aπ≈ , since d a>> . This magnetic field and the electric field give rise to a flux of 

energy, normal to the surface of the wires, equal to 2 2I aSρ π . The energy entering a length of 

wire of length z∆  is 2( )z S Iρ∆ . The term in brackets is the resistance of this section of wire. 

Of course, it is equal to the energy that is lost in this portion of wire in the form of heat. 

In order to calculate the electromagnetic power that is directed towards the terminal resistance 

of the line, we must calculate the flux of the Poynting vector through a surface that crosses the 

wires at the z-point. 

( ).E H kda
Σ

×∫
� � ⌢

                                                             (16) 

In (16) the versor  k
�

 is parallel to the z-axis and  Σ   is the surface enclosed by the 

contour C shown in Fig. 5 .  The calculation of this integral is very complicated; however, it 

can be done quickly if we use some integral theorems [16]. If we write E
�

 in terms of the 

electric potential Φ  we get 

( ). ( ).E H kda H kda
Σ Σ

× = − ∇Φ ×∫ ∫
� � �⌢ ⌢

                                            (17) 

A vector identity allows us to write this last integral of the form: 

( ). ( ). .H kda H kda H kda
Σ ∑ ∑

− ∇Φ × = − ∇ × Φ + Φ∇ ×∫ ∫ ∫
� � �⌢ ⌢ ⌢

                         (18) 

At the surface Σ   the current is zero, then 

( ). ( ).H kda H kda
Σ ∑

− ∇Φ × = − ∇ × Φ∫ ∫
� �⌢ ⌢

                                         (19) 

Using Stokes' law the first integral can be converted into a line integral  

( ). .
C

E H k da H ds
Σ

× = − Φ∫ ∫
� � �⌢ �

�                                                    (20) 
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The contributions to this integral vanish at the infinite part of the contour C. In fact, 

when  r  becomes very large, the integrand  HΦ
�

 tends to zero as  31 r  , and the length 

of contour C  grows as r, then the integral tends to zero as ( )3 21 1r r r= . The 

contributions along the segments connecting C1 and C2 to infinity cancel, and so the only 

contribution comes from C1 and C2. According to Ampere's law, the circulation along C1 is I−   

and the circulation along C2 is  I, then   

( ). ( ) ( ) ( )
AB CD

E H k da z I z I V z I
Σ

× = Φ − Φ =∫
� � ⌢

                                      (21) 

We see that the integral of the Poynting flow over the cross-section of the system give us simply 

( )V z I .  

 

Figure 5. Cross-section of the transmission lines.  Area ∑  is enclosed by the curves C + C1 + C2 

 

If we replace (3) in (21) we obtain 

[ ] 2

1( ).  2 ( )E H k da l z S I V Iρ
Σ

× = − +∫
� � ⌢

                                           (22) 

The first term is the power dissipated in the AB and CD wires in the span from z to l 

( ( ) /l z Sρ −  the is the resistance of one of the wires of length l z− ) and the second term 1V I  

is the dissipated power at the terminal resistance 1R . 

5. Example 2 of JHP: Discharge of a condenser through a wire. 

In this example JHP investigates how the energy travels through the medium on its way to the 

resistive wire. His argument is as follows: 

C

C2

C1

Σ

C

C2

C1

Σ

wire AB

wire CD

C

C2

C1

Σ

C

C2

C1

Σ

wire AB

wire CD
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“We shall first consider the case of the slow discharge of a simple condenser consisting of two 

charged parallel plates when connected by a wire of very great resistance, as in this case we can 

form an approximate idea of the actual path of the energy. 

 

Figure 6. Discharge of a condenser through a wire (Fig 2 in [1]) 

 

Let A and B, Fig. 2 (Fig. 6 in this work), be the two plates of the condenser, A being positively 

and B negatively electrified. Then before discharge the sections of the equipotential surfaces 

will be somewhat as sketched. The chief part of the energy resides in the part of the dielectric 

between the two plates, but there will be some energy wherever there is electromotive intensity. 

Between A and B the E.M.I. will be from A to B, and everywhere it is perpendicular to the level 

surfaces. Now connect A and B by a fine wire LMN of very great resistance, following a line of 

force and with the resistance so adjusted that it is the same for the same fall of potential 

throughout. We have supposed this arrangement of the resistance so that the level surfaces shall 

not be disturbed by the flow of the current. The wire is to be supposed so fine that the discharge 

takes place very slowly. 

While the discharge goes on a current flows round LMN in the direction indicated by the arrow, 

and there is also an equal displacement-current from B to A due to the yielding of the 

displacement there. The current will be encircled by lines of magnetic force, which will in 

general form closed curves embracing the circuit. The direction of this around the wire will be 

from right to left in front, and around the space between A and B from left to right in front. The 

E.M.I. is always from the higher level surfaces — those nearer A, to the lower — those nearer 

B, both near the wire and in the space between A and B. 
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Now, since the energy always moves perpendicularly to the hues of E.M.I. it must travel along 

the equipotential surfaces. Since it also moves perpendicularly to the lines of M.I. it moves, as 

we have seen in case No. (1), inwards on all sides to the wire, and it is all converted into heat — 

if we suppose the discharge so slow that the current is steady during the time considered. But 

between A and B the E.M.I. is opposed to the current, being downwards, while the M.I. bears 

the same relation to the current as in the wire. Remembering that E.M.I., M.I., and the direction 

of flow of energy are connected by the right-handed screw relation, we see that the energy 

moves outwards from the space between A and B. As then the strain of the dielectric between A 

and B is gradually released by what we call a discharge current along the wire LMN, the energy 

thus given up travels outwards through the dielectric, following always the equipotential 

surfaces, and gradually converges once more on the circuit where the surfaces are cut by the 

wire. There the energy is transformed into heat. It is to be noticed that if the current may be 

considered steady, the energy moves along at the same level throughout.” 

This example of JHP offers several interesting aspects to be analyzed. First, he chooses the 

shape of the LMN wire to match a line of electric field force created by the electrical charges 

that are on the outer surfaces of the capacitor. This electric field then directs the current inside 

the wire. Since electric current I must have the same value at all points of this wire, JHP 

accommodates its resistivity so that Ohm's law is fulfilled in each segment. This implies that 

ES

I
ρ =                                                                     (23) 

The electric field  E  is relatively strong in the vicinity of the plates, near the points L and N, and 

decreases rapidly when we move towards the point M. The resistivity of the wire, according to 

(23), must vary in the same way. There is no doubt that this cable is very special. 

What happens if the LMN cable (wire) is a ordinary cable with a constant conductivity? In this 

situation the law of Ohm determines that the electric field must have a constant modulus along 

the whole cable. But, what is the origin of the electric field in the places of the wire that are far 

from the plates of the capacitor? Clearly the E field can be created only by electric charges. The 

electric charges on the capacitor plates can act appreciably only in their near areas, since the 

electric field decreases as the square of the distance. Then, the charges on the capacitor plates 

are not the ones that create this electric field of constant modulus inside the wire.  

We now know that the charges that create this electric field are charges that are distributed over 

the surface of the wires. JHP and R Feynman have not been aware of the role of surface 

charges in wires in creating the electric field that directs the current inside them. Both 

assume that the charges that create this field are very far away, Feynman seems to suggest that 

they are over the battery terminals while JHP places them on the outer surface of the capacitor 
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plates. The field at an inner point of the wire, however, is created by surface electrical charges 

that are close to that point. Hartel [17] states that the influence of the surface charge extends 

only to distances that are comparable with the diameter of the wire.  

6. Capacitor’s discharge through a cylindrical conductor 

If we try to solve the Laplace equation for the electrostatic potential in the geometry of Fig. 7 

(but, with a wire of constant resistivity) we would have to deal with the boundary conditions on 

the toroidal surface of a wire with finite radius. In principle, the problem can be solved using 

numerical methods, but the contour geometry and the three-dimensionality make it very 

difficult. 

 

Figure 7. Discharge of a capacitor through a cylindrical resistive sheet. ,r θ are the polar coordinates with 

center in  O   and ,ρ φ  are the polar coordinates with center in O’. 

For these reasons, we restrict our attention to a two-dimensional analog problem outlined in Fig. 

7. We will interpret Fig.7 as the cross-sectional representation of a device composed of a 

capacitor which is connected to a very long cylinder of radius a. The capacitor is charged until 

the potential difference between the plates is 
0

V . When the resistive cylindrical surface is 

connected to the capacitor plates, a current will start to flow. If the resistance of the cylinder 

is very great the discharge will be very slow and the current will remain relatively 

constant during a certain interval of time. With these conditions this problem is similar 

to those solved in [6,15]. 

The capacitor plates are located in θ π≈ ±  (if we assume d a<< ) and its plates are at potentials 

0
/ 2V± . We use a conventional cylindrical coordinate system , ,r zθ  coaxial with the cylinder 

as shown in Fig. 7. In this figure ,ρ φ  are the polar coordinates with center in O’. 

In accordance with Ohm's law, the potential on the inner surface of the resistive cylinder is 
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0( , ) ( )
2

V
a

θ
θ π θ π

π
Φ = − < <                                           (24) 

The solution of the Laplace equation, inside the cylinder is given by (see Ref. [6]) 

[ ]0 0( ; ) arctan sen / ( cos ) ,
V V

r a r a rθ θ θ φ
π π

   
Φ < = + =   

   
                               (25) 

Inside the cylinder the equipotential are the planes .cteφ =  The electric field at any point is 

found by calculating the potential gradient. The components of the electric field inside the 

cylinder are: 

0

2

1 ( cos )V r a
E

r
θ

θ

θ π ρ

∂Φ +
= − = −

∂
                                            (26) 

0

2

sen
r

V a
E

r

θ

π ρ

∂Φ
= − = −

∂
                                                       (27) 

The electric field force lines, perpendicular to the equipotentials, are shown in Fig. 8. Note that 

the lines of force are circumferences centered in , 0x a y= − = . 

 

 

Figure 8. Equipotentials lines, champ electric and surface charges. The equipotentials lines inside the 

cylindrical resistive sheet can also be interpreted as lines of energy flux. In this figure, in order to observe 

the equipotential lines inside the capacitor we have magnified the distance  d  between the plates. 

At the point ( , )r a θ=  of the cylinder surface, the tangential component is 

0( , )
2

V
E r a

a
θ θ

π
= = −                                                          (28) 

and the normal component is 

0 0( , ) tan tan
2 2 2

r

V V
E r a

a a

θ
θ φ

π π

 
= = − = − 

 
                                 (29) 

The surface charge density on the inner surface of the cylinder is 

-

+ +

+
+

+

-

-

-

-

-

++ +

- -

I

V0/2

-V0/2

A

B

M

L

N

-

+ +

+
+

+

-

-

-

-

-

++ +

- --

+ +

+
+

+

-

-

-

-

-

++ +

-

+ +

+
+

+

+ +

+
+

+

-

-

-

-

-

++ +

- -

I

V0/2

-V0/2

A

B

M

L

N

Page 15 of 18 AUTHOR SUBMITTED MANUSCRIPT - EJP-102615.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



0 0
0( ) ( , ) tan

2
r

V
E r a

a

ε
σ θ ε θ φ

π
= − = =                                        (30) 

Note that ( )σ θ  does not vary linearly along the perimeter of the resistive cylinder as in the case 

of the two-wire transmission line, but is a tangent function that increases non-linearly near the 

battery. 

The magnetic field inside the cylinder is
z

H I w= − , where w is the length of the cylinder. 

Poynting vector is in the xy plane and is orthogonal to the electric field lines. Then, the 

equipotential lines in Fig. 8 are also lines of the energy flow. The energy flow is directed along 

a straight line from the inside of the capacitor to each of the resistive elements of the cylinder. 

The electric field between the plates of the capacitor is 0 /yE V d= − , then the Poynting vector, 

in , 0x a y= − = , (at the right end of the capacitor) is 
cx

P VI dw= . The total power flowing 

from the condenser to the surface of the resistive cylinder is ( )
c cx

W P dw VI= = . 

The normal component of the Poynting vector ( , )
r

P r a θ=  on the surface of the cylinder is 

2VI awπ  and the total power entering the cylinder is VI. In conclusion, the power dissipated in 

the resistive cylinder comes from the energy stored in the capacitor. 

Although the calculations presented in this section are only for a two-dimensional (cylindrical) 

case, the results allow us to get an idea of the surface distributions of electric charges, 

equipotential surfaces, electric fields and the flow of energy in any electric circuit simple in 

three-dimensional space. In particular, this example shows how energy flows from the 

inside of the condenser to the resistive cylinder elements acting as sinks. This was the 

goal of Example 2 of JHP 

 

7. Conclusion 

The Poynting vector allows us to visualize the flow of energy from the battery to the place 

where it is consumed. This description needs the knowledge of the electric and magnetic fields 

that surround the circuit. OH asserted that JHP's explanation in his first example of the transfer 

of electromagnetic energy in 1885 was not correct because he had a misconception about the 

nature of the electric field around a wire through which a current flows. This misconception, 

however, lasted over time and is found in most textbooks dealing with this subject, for example, 

in reference [5]. 

For this reason, objections similar to those formulated by Heavisade have appeared in articles of 

numerous investigators since 1985. These researchers point out that in order to achieve an 

adequate understanding of the flow of electromagnetic energy it is necessary to know the 

surface charges in the circuit wires. However, the dissemination of the surface charge approach 

in learning materials is slow.  
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We believe that the diffusion we make of the controversy between Poynting and Heaviside, 

which is of the year 1885, can help to achieve a more correct treatment of this question from the 

vision based on the surface charges. The analysis of circuits in terms of surface charges give 

answers to some questions that do not have an appropriate explanation within the context of 

traditional circuit theory: Who creates the electric field that moves the charges inside the 

conductors? How does energy flow from the battery to the resistive elements where it 

dissipates? These questions cannot be answered within the framework of traditional circuit 

theory which is based on the concept of potential difference. The charge density gradient, on the 

surface of the resistive elements, creates the electric field that produces current flow. This 

electric field is the source of the potential difference along the resistive element. The surface 

charges that are required to create the electric field, which maintains the current, also produce, 

in the outer space of the conductors, the electric field that is needed for the transfer of energy. 

 

Appendix  

We consider it convenient to include in this appendix simple calculations showing the 

magnitude difference between the Heaviside and Poynting energy flux vectors and that despite 

this enormous difference the energy balance remains valid. 

From the results of section 4 it follows that the tangential component of the electric field is 

given by  / / l
E R I l=   where 

l
R  is the resistance of one of the wires of the line and I  is the 

current in the circuit. The normal component of the electric field is given approximately by 

( )1 / ln )nE R I a d a≈ , where 1R is the resistance at the end of the line (see figure 3). Then, 

/ / 1

/ / 2 ln

n

n l

S E R l

S E R a d a
= ≈ , 

where / /S  and 
n

S  are the components of the energy flow in the parallel and normal 

direction to the wire, respectively, 

If 1 98R = Ω , 1
l

R = Ω  and  l = 1000 m (a telegraph line), d = 10 cm and a = 0.5 cm, then on 

the surface of the wires 
7

/ / 10
n

S S ≈ .  Away from the transmission line / / 0S →  like  
31 r  

when r → ∞  

For Heaviside, a great theorist of electromagnetism, but also a practical electrician (he worked 

on the design and laying of transoceanic telegraph lines) the transmission line must have very 

little resistance so that the energy arrives practically without dissipating in the terminal 

resistance. This is the reason why he claimed that the parallel component of the energy flow, in 

a real circuit, is much larger than the normal component. 
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If in the previous example the voltage at 0z =  is 0 100V V= , then the current in the circuit is 

1I A= , the power dissipated in the line is 2 W while the terminal resistance dissipates 98 W. 

The power supplied by the battery is 100 W. 

If we calculate, for this example,  the flow of the component "Heaviside" on an infinite surface 

Σ that cuts the line at a point z that is to 500 m from the battery, we find (Eq. 22) that 1W 

dissipates in the section of the line that goes from 500 to 1000 m and 98W dissipate in the 

terminal resistance. 

This is a trivial result of circuit theory. However, this theory does not tell us how energy travels 

from the battery to the different parts of the circuit where it dissipates. The theory of Poyting-

Heaviside tells us that this energy leaves the battery, traveling throughout the space that 

surrounds the circuit, and converges on the different points of the circuit where it dissipates. 
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