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Abstract

Nicotinic acetylcholine receptors (hnAChRs) play an important role in regulating appetite and
have been shown to do so by influencing neural activity in the hypothalamus. To shed light
on the hypothalamic circuits governing acetylcholine’s (ACh) regulation of appetite this
study investigated the influence of hypothalamic nAChRs expressing the a4 subunit. We
found that antagonizing the a432 nAChR locally in the lateral hypothalamus with di-hydro-
B-erythroidine (DHBE), an a4 nAChR antagonist with moderate affinity, caused an increase
in food intake following free access to food after a 12 hour fast, compared to saline-infused
animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and
tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus
expressed the nAChR a4 subunit in varying amounts (34%, 42%, 50%, and 51%, respec-
tively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that
DHBE-mediated increases in food intake may be due to a direct activation of specific hypo-
thalamic circuits. Systemic DHBE (2 mg/kg) administration similarly increased food intake
following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons
showed elevated activity compared to control animals and MCH neuronal activity was over-
all lower as measured by expression of the immediate early gene marker for neuronal activ-
ity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-
containing neurons in the A13 and A12 did not show differential activity patterns. These
results indicate that various neurochemically distinct hypothalamic populations are under
the influence of 42 nAChRs and that cholinergic inputs to the lateral hypothalamus can
affect satiety signals through activation of local a432 nAChR-mediated transmission.
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Introduction

The hypothalamus is a brain region important in sensing peripheral signals that relate to the
energy requirements of an organism. Discrete neurochemically defined circuits respond differ-
entially to peripheral cues to engage in or refrain from food-seeking behavior, depending on
the body’s energy requirements [1-3]. For example, within the lateral hypothalamus (LH),
genetic deletion of the orexin/hypocretin (HO) peptide results in a gain in weight in mice [4]
whereas similar disruption in the melanin-concentrating hormone (MCH) leads to hypophagia
and weight loss [5-7]. Neurons in the paraventricular hypothalamus (PVH), a subpopulation
of which express oxytocin [8], have been shown to encode satiety states since their activation
results in hypophagia. Likewise oxytocin infusions result in a significant decrease in food intake
[9-10] together supporting a role for oxytocin in signaling satiety [11]. Hypothalamic dopa-
mine transmission has similarly been shown to be important in energy balance [12-14] but the
source of this dopaminergic regulation of hypothalamic function is currently unresolved.
Within the hypothalamus two distinct dopaminergic populations reside in areas A13 and A12
in dorsal and ventral hypothalamic regions, respectively [15]. Their role in the regulation of
energy homeostasis is unknown but their intrinsic hypothalamic projections [16] are suggestive
of a functional influence on hypothalamic function.

Nicotine, an active ingredient in tobacco, is known to act as a potent anorectic, causing a
decrease in food intake when administered both systemically and into discrete brain regions
including the hypothalamus [17-20]. Using cell-specific receptor knockdown techniques,
Mineur et al., [21] have demonstrated that this nicotine-mediated reduction in food intake is
dependent on 0334 nicotinic acetylcholine receptors (nAChRs) located on arcuate POMC neu-
rons and their downstream melanocortin targets in the PVH. Systemic as well as local nicotine
treatment, however, has been shown to activate a variety of neural circuits in the hypothalamus
[21-25]. Moreover, ex and in vivo infusion of acetylcholine (ACh) has been shown to influence
the electrical activity of neurons within and around the LH including HO, MCH, and neurons
in the PVH [25-27]. Interestingly, Shimazu et al. [28], have shown that hypothalamic infusions
of ACh can affect glycogen production by increasing liver glycogen synthase suggesting for a
causal link between hypothalamic ACh transmission and energy conservation. Overall, these
results indicate that ACh, the endogenous ligand for the nAChR, plays a role in regulating
appetite and metabolism via its inputs onto various hypothalamic circuits.

The hypothalamus receives extensive cholinergic innervation from various sources includ-
ing the substantia innominata [29], the laterodorsal and pontine tegmental nucleus (LDT,
PPT, respectively) [30-31] and locally via hypothalamic choline acetyl transferase (ChAT)-
containing interneurons [32-33]. In the brain, the predominant nAChRs are homomeric or
heteromeric pentamers made up of the a7 or 042 subunits, respectively, the o334 nAChR
being less common; all three types act functionally as cationic channels. Within the hypothala-
mus, the 04p2 is mostly expressed in the LH with some expression in the arcuate nucleus and
PVH (Wada et al., 1989) whereas mRNA for the 07 subunit is expressed predominantly in the
VMH but also in the arcuate, LH and PVH [34].

Studies that combined nicotine application with different nAChR antagonists have shown
that nicotine can affect distinct hypothalamic circuits through activation of nAChRs with dif-
ferent subunit composition. Nicotine application in vitro has been shown to increase the inhib-
itory tone in hypothalamic neurons via the activation of both off [23] and a7 [27] nAChRs, as
well as directly activate HO neurons [25]. Quantifying the transcription factor cFos, a molecu-
lar marker of activity, in HO neurons, Pasumarthi et al. [24] showed that systemic nicotine
administration can increase HO activity. This nicotine-mediated activation of HO neurons is
likely due to 42 nAChR-activation since in their study nicotine-mediated increases in HO
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cFos were shown to be disrupted by co-administration of di-hydro-f3-erythroidine (DHBE), an
04 receptor antagonist with moderate affinity, therefore implicating a4p2 nAChRs in the cho-
linergic regulation of hypothalamic function.

Despite much data supporting a role on nicotine-mediated suppression of appetite using
exogenous nicotine adminstration the mechanism by which the endogenous nicotinic receptor
agonist ACh in regulating appetite has received little attention. Due to the dense cholinergic
innervation of hypothalamic regions with known influences on consummatory behavior we
hypothesize that ACh acting on distinct hypothalamic circuits can regulate food intake. To
characterize the mechanisms by which ACh neurotransmission within the hypothalamus regu-
lates feeding behavior, animals were acutely fasted, systemically injected or infused with either
DH@E or saline into the LH, re-introduced to chow and their food intake subsequently mea-
sured for two hours. Our results show that antagonizing hypothalamic 0432 nAChRs result in
animals consuming more food two hours post its reintroduction following a 12 hour fast.
Immunocytochemical analysis showed that hypothalamic circuits known to be involved in reg-
ulating appetite express the nAChR o4 subunit, two of which, the HO and MCH systems, show
differential activity patterns with intraperitoneal (i.p.) injections of DHBE compared to saline
as indicated by cFos immunoreactivity. These results demonstrate that hypothalamic o432
nAChRs are engaged during consummatory behavior and may act to control food intake
through actions on HO and MCH neurons.

Methods

All procedures were carried out in accordance with the UK Animals (Scientific Procedures)
Act 1986, and approved by the Local Ethical Review Panel at the University of Cambridge, UK
(Project License 70/7548). 41 adult male Wistar rats (Harlan Laboratories Ltd.) weighing
300-400 g were individually housed in a standard bedded home cage with water and rat chow
pellets available ad libitum in a light-controlled (12 h on/12 h off) and temperature-controlled
(21.5-22.5°C) environment.

Stereotactic surgery

Sixteen rats were anesthetized with isoflurane (induction 5%, 2% maintenance; Abbott Ltd,
Maidenhead, UK), and bilaterally implanted with 22 gauge stainless steel guide cannulae (Plas-
tics One, Roanoke, VA, US) into the LH using a stereotactic device (David Kopf Instruments,
Tujunga, CA, US). Dental cement (Simplex Rapid, Associated Dental Products Ltd, Swindon,
UK) and four stainless steel screws were used to secure the cannula placement. The coordinates
used were 2.1 mm posterior to bregma, 2.0 mm lateral to midline, and 3.2 mm ventral to dura
mater. Guide injectors were inserted to keep cannulae unobstructed during the recovery of 1
week. Animals’ recovery was monitored daily and none showed signs of distress. One animal
was excluded from the dataset due to misdirected cannulae placements.

Intracranial microinfusions

Bilateral infusion rate (0.25pl/min) was controlled by a syringe pump (kDScientific, Holliston,
MA, US) that operated a microsyringe (Hamilton, Bonaduz, Switzerland). Polyethylene tubing
connected the syringe to 28 gauge injectors (Plastics One) projecting 5 mm below the guide
cannulae. DHBE or saline was infused over a 2 min period, and thereafter the cannulae were
left in place for an additional 1 min to allow for diffusion of the saline or drug into the tissue
before removing the injectors. The food intake study started immediately after the infusions.
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Behavioral testing

Two days prior to fasting, 20 animals were handled and given an i.p. injection (needle, 25
gauge) of saline (the volume of all injections was 1ml/kg unless otherwise stated) or in cannu-
lated animals (n = 16) an infusion of sterile saline (0.50ul) daily for 2 consecutive days at the
end of the dark phase [35]. Two groups of cannulated animals and three groups of i.p. injected
animals were fasted for the 12 hour dark phase. When lights were turned on, each group of
animals was given either an i.p. injection or intra-LH infusion of saline solution or different
concentrations of DHBE (Tocris Bioscience) (for i.p. injections 1 and 2 mg/kg and for intra-
LH infusions, 20 pg/side over 2 min) dissolved in saline solution. The DHBE doses used were
based on effective doses from previous studies [35-37] Experimenter was blinded to the iden-
tity of the drug and animal conditions were counterbalanced for order. All injections were
performed in a designated procedure room. After injections, a known amount of food was
presented to each animal, and they were given free access to this food for 2-3 hours (Re-fed
groups) in their home cages. After this period of time, the remaining food was weighed, and
food intake over 1-2 hours calculated. Three hours post injection i.p injected animals were
sacrificed and confirmed unresponsive by anesthetizing them with a lethal dose of sodium
pentobarbital and checking reflexes with a paw-pinch, before intracardially perfusing them
with PBS followed by 10% formalin. Brains were removed and kept in 10% formalin for 4
hours. All brains were sectioned (40 um thick), and collected in 6 series in PBS treated with
DEPC.

Analysis of the expression of the a4 nAChR subunit in HO, MCH, TH and
oxytocin neurons

The 04 nAChR and neuropeptide immunolabeling was done sequentially. A total of four ani-
mals were used for all o4 nAChR subunit immunolableing. In three animals, all four peptides
were analysed. For the 4™ animal however we were unable to isolate a sufficient amount of
A13, A12 tissue for TH immunolabeling. For the 4™ animal however we were unable to isolate
a sufficient amount of A13, A12 tissue for TH immunolabeling. This was due to the overlap-
ping distribution in the rostral-caudal axis of the different cell populations that we investigated.
First, tissue for 04 nAChR immunolabeling was washed three time for 10 minutes in PBS (3 x
10 min), incubated in endogenous peroxidase by 10 min incubation in 0.9% H,0O, in methanol,
10 min wash in distilled water, 20 min incubation in 2% H,O, in PBS, and a further wash in
PBS. The tissue was then antigen blocked for 1 hour in PBS containing 3% BSA and incubated
overnight with primary antibody (goat anti-o4 nAChR sc1772, Santa Cruz Biotechnology) at a
concentration of 0.2ug/ml (1:500) in blocking buffer at 4°C. The next day, slices were washed
and incubated with secondary antibody (biotinylated donkey anti-goat IgG, 1:200) in blocking
buffer for 1 hour, re-washed and incubated with peroxidase—conjugated avidin-biotin complex
(ABC) for 1 hour. Slices were washed before and after development in 0.04% 3.3’-diaminoben-
zidine (DAB, Vector Laboratories). Immediately after o4 immunolabeling the brain slices were
washed 3 x 10 min in PBS and incubated in blocking solution (1% BSA and 0.3% Triton X-100
in PBS) for 1 hour. Slices were then incubated overnight with rabbit anti-orexin A antibody
(1:1000: Phoenix Pharmaceuticals Inc), rabbit anti-MCH (1:1000: Phoenix Pharmaceuticals
Inc.), mouse anti-TH (1:1500; Invitrogen), or rabbit anti-oxytocin (1:2000; Immunostar) at
4°C. The next day slices were washed and incubated with Alexa-Fluor 488 (donkey/goat) anti-
rabbit or anti-mouse for 2 hours at room temperature, and then washed again thoroughly and
finally mounted under coverslips in a Vectashield mounting medium for microscope
observation.

PLOS ONE | DOI:10.1371/journal.pone.0133327 August 6, 2015 4/17



@’PLOS ‘ ONE

Impact of Hypothalamic a4 Nicotine Receptors on Food Intake

cFos-expression in neurochemically-distinct hypothalamic neurons

Tissue from experimental i.p injected animals was used for all cFos immunolabeling (saline,

n = 6; 2 mg/kg DHPE, n = 6). For technical reasons we were unable to recover the brain of one
control animal. The sample size differed between the different experimental conditions as a
result of overlapping cell populations in the rostral-caudal axis that left very little room for
methodological error and sufficient tissue for all cell populations to be analysed in all animals.
Before proceeding with cFos staining, slices were washed before blocking for 1 hour in 0.3%
H,O0, in PBS and incubated in blocking solution (3% BSA and 0.04% Triton-X-100 in PBS) for
1 hour at room temperature. The tissue was then incubated for 2 nights with a rabbit anti-cFos
antibody (1:10,000) (Calbiochem) in blocking solution at 4°C. Following the incubation, slices
were washed, incubated in biotinylated donkey anti-rabbit serum (Jackson Laboratories,
1:500) in blocking solution for 1 hour, and washed before being incubated with peroxidase—
conjugated avidin—biotin complex (ABC) for 1 hour. Slices were washed before development
in 0.04% 3.3’-diaminobenzidine (DAB; Sigma), following manufacturer’s instructions. Imme-
diately after HO, MCH, TH, and oxytocin immunohistochemistry was carried out as described
above and followed by a thorough washing in PBS before mounting with coverslips in a Vecta-
shield mounting medium (Vector Laboratories).

Microscopy

Slides were examined using a Zeiss Axioskop 2 light microscope. Bregma levels were deter-
mined for each slice, using a rat brain atlas for each brain slice to allow the identification of
subregions of the hypothalamic area. Images were taken using a QImaging Fast 1394 Camera.
Images were collected using a GFP filter to visualize fluorescent neurons, and DAB reactivity
was visualized using bright-field microscopy.

Analysis of images

The images of the brain slices from each animal were collated in folders, allocated a random
number by an independent person and then analyzed using Image] (NIH) software. The
counter was blinded as to which animal’s brain slice was being analyzed. For 04 nAChR sub-
unit or cFos and HO, MCH, TH, oxytocin colocalization the 04 nAChR or cFos images were
negatively inverted and false colored (red). The fluorescent and false-colored images were over-
laid in Microsoft Powerpoint, and a brain outline scaled and superimposed onto the image to
consistently identify the various hypothalamic nuclei and subdivisions. In Image]J the “cell
counter” plugin was used to count the total number of fluorescent neurons and those contain-
ing 04 nAChR or cFos. As there is no known lateralization of HO, MCH, oxytocin or hypotha-
lamic TH function or activity, the images from both hemispheres were included in the analysis.
Coronal slices between animals were matched as best as possible between animals and based
our analyses on tissue from similar rostral-caudal levels. In all cases we calculated the percent
of cell type that expressed cFos relative to total count of analyzed cell type. The total cells ana-
lyzed for each were similar between animals (see results). Raw PVH cFos counts were analyzed
by counting the total cFos from four coronal sections whose rostral-caudal level was matched
up between animals.

Statistical analysis

Graphs were plotted and the statistical analyses performed using GraphPad Prism 6.0 software.
One-Way ANOVA followed by Bonferroni’s post hoc test or Two-way repeated measures
ANOVA was used to analyze food intake data. One-Way ANOV As were used to compare the
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expression of the 04 nAChR subunit in different regions of the LH. Unpaired Student T-Tests
were used to compare cFos expression. The body weights of the rats were compared using
One-way ANOVA (i.p. injected rats) or Unpaired Student T-Test (intra-LH infused rats).

Results

To shed light on the cholinergic influences on eating behaviour we performed bilateral intra-
LH infusions of saline (n = 8) or 20 ug DHBE (n = 7), an a4 nAChR antagonist with moderate
affinity, immediately following a 12 hour fast and before re-introducing ad libitum access to
chow in adult Wistar rats (Fig 1). Both saline and DHBE groups were of equal weight (Saline,
371 +9.7 g; 20 ug DHPE, 374.6 + 5.4 g: Unpaired Student’s T-Test, two-tailed: p = 0.812). One
hour after being refed there was no difference in food intake between saline and drug-treated
animals, but when food intake was measured 2 hours post ad libitum food access significant
cumulative differences in food intake emerged showing that DHBE-treated animals consumed
more chow than control animals (Fig 1C) (Two-way repeated measures ANOVA, dose effect, F
(1,13) = 5.21, p = 0.039; time effect, F(1,13) = 28.37, p < 0.001). These results indicate that

Day 1and 2 Day 3
A
LH saline infusions 12 hour fast LH infusions ad libitum
all animals Saline or 20 um DHBE food access
(2 Hours)

C

Food intake following intra-LH infusions of DHBE

4

[
) ns
2
o 3
=]
<)
<
2
£ 27
-
o
°
(118
1 - [] DHBE (20 pg)
O DHBE (20 ug) @ saline
@ Saline
1 hour 2 hours

Fig 1. The effects of DHBE infusions into the lateral hypothalamus on food intake. A. Scheme demonstrating the experimental setup. Intra-cerebral
cannulae were confined to the lateral hypothalamic region (B2) an example of which is shown in B1. Cumulative measurements of food intake showed that
DHBE-infused animals consumed more food 2 hours post ad libitum food access following a 12 hour fast (C) (saline, n = 8; 20 ug DHBE, n =7).
Abbreviations: mt, mammillothalamic tract; f, fornix.

doi:10.1371/journal.pone.0133327.g001
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OXY-PVH

Fig 2. Example immunolabeling for a4 (A), oxytocin in the PVH (B), tyrosine-hydroxylase in the A13
(C1) and arcuate nucleus (C2), and HO (D1) and MCH (D2) immunoreactivity throughout the
hypothalamus. Abbreviations: OXY, oxytocin; PVH, paraventricular nucleus of the hypothalamus; TH,
tyrosine hydroxylase; HO, Hypocretin/Orexin; MCH, Melanin Concentrating Hormone; 3V, third ventricle; mt,
mammillothalamic tract; f, fornix. Scale bar: A, B 100 ym; C-E 300 um.

doi:10.1371/journal.pone.0133327.9002

04B2 nAChRs in the LH are physiologically engaged during normal feeding behavior to regu-
late food intake.

The 04 nAChR is moderately expressed in various hypothalamic nuclei, mostly confined to
dorsal divisions including the LH, PVH, and zona incerta [38], regions that contain distinct
neuronal cell types known to regulate energy balance. To shed light on the cholinergic regula-
tion of such circuits in controlling appetite we next analyzed the expression of the 04 nAChR
subunit on neurochemically defined hypothalamic circuits, specifically on HO, MCH, oxyto-
cin, and TH containing neurons (Fig 2). Consistent with previous research, o4 immunoreactiv-
ity was seen throughout the dorsal hypothalamus (Figs 2A and 3) [38]. Interestingly, nicotine-
related increases in HO activity have been previously documented but it was unclear whether
or not these effects were mediated directly through HO-expressing 042 nAChRs. Our analysis
demonstrated that 37.1% of HO neurons express the o4 subunit (n = 4), indicating that a large
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LH neurons expressing a4 receptor
(5231); (3832) (349)  (1096)  (409) (1978)

iy
o
1 1

N
o
1

% peptide - a4 colocalization

MCH HO
Total

DMH LH PeF

PeFLH

Fig 3. HO and MCH neurons expressing the a4 nAChR subunit. A. Example images of a4 (A1) and HO
(A2) immunolabeling in the hypothalamus. 37.1% of HO neurons were colocalized with a4 (B,D) and showed
no difference across various hypothalamic subnuclei (D) (a4-HO, n = 4). a4 was not seen to colocalize with
MCH neurons (C,D) (a4-MCH, n = 4). Number above each column represents total cells counted.
Abbreviations: HO, hypocretin/orexin; MCH, melanin concentrating hormone; f, fornix; DMH, dorsomedial
hypothalamus; LH, lateral hypothalamus; PeF, perifornical region; PeFLH, perifornical region of the
hypothalamus. Scale bar: 300 pm.

doi:10.1371/journal.pone.0133327.g003

proportion of HO neuronal activity can be directly regulated by ACh acting via 042 nAChRs
(Fig 3B and 3D). These percentages were consistent across different hypothalamic regions
where HO neurons reside, including the dorsomedial hypothalamus (DMH), LH, perifornical
region (PeF) and perifornical area of the lateral hypothalamus (PeFLH) (Fig 3B and 3D) and
no significant difference between these regions was observed (One-way ANOVA, F (2, 6) =
3.180; p = 0.57). In contrast, there was no MCH-04 nAChR co-expression (n = 4), indicating
that MCH neurons are not under the direct control of the 04p2 nAChR (Fig 3C and 3D).

Our observations revealed strong 04 immunoreactivity in the hypothalamus including the
PVH (Fig 4B1). In terms of the regulation of appetite, one candidate cell type potentially under
cholinergic regulation is that of neurons expressing oxytocin [9]. Increases in both PVH oxyto-
cin activity and release in the hypothalamus have been reported to cause a decrease in food
intake [9-10, 39]. Our analyses confirmed that ACh can act on oxytocin neurons located in
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A2 TH- containing neurons expressing a4 receptor
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Fig 4. Hypothalamic TH and oxytocin neurons expressing the a4 nicotinic subunit. A. 50.1% of TH-containing neurons in the A13 were colocalized with
a4 (A1,2) while 50.7% of A12 TH-containing neurons in the arcuate nucleus showed a4 nAChR co-expression (A1,A2) (a4-TH, n = 3). There was no
difference in colocalization across the different arcuate subdivisions analyzed (A2). B. Within the PVH, 41.3% of oxytocin neurons were also immunolabeled
for a4 (a4-oxy, n = 4). Abbreviations: TH, tyrosine hydroxylase; Oxy, oxytocin; PVH, paraventricular nucleus of the hypothalamus; Arc, Arcuate nucleus; 3V,

third ventricle. Scale bar: 200 ym.

doi:10.1371/journal.pone.0133327.9004

the PVH since 41.3% of these neurons were also immunopositive for the a4 subunit (n = 4)
(Fig 4B). Dopamine neurons in the mesolimbic system have been shown to express and be
under the influence of 04p2 nAChRs [40-41]. In light of this we next analyzed hypothalamic
dopamine populations located in A13 of the zona incerta (n = 3) and A12 of the arcuate
nucleus (n = 3). Both populations showed similar levels of 04 expression (50.1% and 50.7%),
TH-expressing neurons in A12 showed no difference in colocalization across the different
arcuate subdivisions analyzed (Fig 4A) (One-Way ANOVA, F (2, 6) = 3.180, p = 0.11). Overall,
in all identified neurons analyzed in this study TH-containing neurons showed the highest
degree of colocalization with the nicotinic o4 subunit.

To shed light on the hypothalamic appetite circuits potentially regulated by ACh we
repeated our feeding experiment but instead of the LH infusion of DHBE we injected animals i.
p. with DHBE (see Fig 5A1). The animals’ weights from the three groups (Saline, 1 mg/kg, and
2 mg/kg) were not significantly different (Saline, 356.5 + 8.1 g; 1 mg/kg, 361.6 + 6.4 g; 2 mg/kg,
354.0 £ 6.9 g: One-way ANOVA: F, ;; = 0.29, p = 0.75). Similar to the case of intra-LH infu-
sions of DHBE, i.p. injections of 2 mg/kg DHBE (n = 6) resulted in animals consuming more
food compared to saline injected animals (n = 7) 2 hours after fasted animals were given free
access to food, whereas 1 mg/kg DHBE (n = 7) had no effect (Fig 5A2) (Two-way ANOVA:
F,,17 = 4.63, Bonferonni post-test, 2 mg/kg vs. saline, p = 0.028). In animals receiving injections
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Fig 5. The effects of systemic DHBE injection on food intake and PVH activity. A1. Schematic demonstrating the experimental setup. A2. Animals
injected with 2 mg/kg DHBE i.p. consumed more food than saline injected animals (saline, n = 7; 1 mg/kg, n = 7; 2 mg/kg, n = 6). Total cFos (B1) (Saline and
DHBE, n = 5) and percent of PVH oxytocin-expressing neurons (B2) (Saline and DHBE, n = 4) were not significantly different between DHBE and Control
conditions (B3). Abbreviations: PVH, paraventricular nucleus of the hypothalamus; OXY, oxytocin 3V, third ventricle. Scale bar: 100 um.

doi:10.1371/journal.pone.0133327.9005
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of saline and 2 mg/kg of DHBE, differences in activity levels in neurochemically identified neu-
rons were quantified by immunolabeling for cFos, an immediate early gene product that is
often used as a marker for cell activation. Cellular expression of cFos is confined to the nucleus,
making its expression in immunolabeled neurons clearly visible (Fig 5B2, inset) and typically
reaches maximum value between 90 to 180 minutes after cellular activation [42]. To capture
activation patterns based on differences in satiety levels between the groups we perfused ani-
mals 3 hours after re-introducing food. Analysis of raw PVH cFos counts in saline and DHBE
conditions (Saline, n = 5, 463 + 46 cells; DHBE, n = 5, 516 + 41 cells: Unpaired Student’s
T-Test, two-tailed: p = 0.42) did not show any significant differences (Fig 5B1 and 5B3) nor did
analysis of oxytocin-expressing PVH neurons (Fig 5B2 and 5B3) (n = 4; Saline, 5.36 + 1.42%,
DHBE, 8.65 + 2.41%: Unpaired Student’s T-Test, two-tailed: p = 0.28) (Fig 5B).

As our intracranial injections were mostly confined to the LH (Fig 1A) we next shifted our
attention to distinct populations centered on the LH. Nicotine administration has been shown
to increase the expression of cFos in HO neurons, suggesting that HO activity can be enhanced
by endogenous ACh acting via nAChRs [24]. In their study nicotine-mediated increases in HO
activity were blocked by the addition of the nAChR antagonists mecamylamine and DHpE,
suggesting that the nicotine-mediated increase in HO activity was likely via a heteromeric o3
nAChR pathway. Our results demonstrating that HO neurons express the nicotinic a4 subunit
are consistent with the idea that nicotine can directly excite HO neurons by acting on a func-
tional 04B2 cationic channel. To investigate the impact of DHE in the context of food intake
we analyzed the activity of HO neurons in the control (n = 6; 30.46 + 6.51% of HO cells
expressing cFos) and 2mg/kg DHBE (n = 6; 34.50 + 5.30% HO cells expressing cFos) groups.
No significant differences between the saline-treated and 2mg/kg DHBE-treated groups were
found in the % colocalization of cFos immunoreactivity in HO neurons, nor across the various
hypothalamic subregions (Fig 6A2) (Unpaired Student’s T-Test, two-tailed: Total, p = 0.65;
DMH, p = 0.95; LH, p = 0.22; PeF, p = 0.94; PeFLH, p = 0.72). However, when we divided the
HO population into a medial and lateral division, surprisingly more HO neurons in the 2mg/
kg DHBE group expressed cFos, indicating that under DHBE conditions resulting in greater
food intake, laterally located HO were found to be more active (Fig 6A2, far right) (Medial;
Saline 35.86 + 8.04%, DHBE 35.72 + 5.9%: Lateral; Saline 18.73 + 3.82%, DHBE 32.01 + 4.24:
Unpaired Student’s T-Test, two-tailed: Medial, p = 0.99; Lateral, p = 0.04). Our results demon-
strating greater HO activation when 042 nAChRs are antagonized are inconsistent with
results by Pasumarthi et al. [24] since in their study, nicotine-related increases in HO cFos
expression are lower with i.p. injections of DHBE. This difference could result from the fact
that rather than activating nAChRs with exogenous nicotine, our study was designed to disrupt
normal cholinergic transmission acting via nAChRs, which as a consequence led to significant
behavioral changes in food intake.

Our a4 nAChR immunolabeling results show that MCH neurons do not express the a4 sub-
unit (Fig 3C), indicating that MCH neurons are not under the direct influence of 0432
nAChRs. Nevertheless we next analyzed cFos expression patterns in MCH neurons under both
saline (n = 4) and 2mg/kg DHBE (n = 5) conditions. HO and MCH neurons show complemen-
tary functions in relation to homeostatic processes such as energy homeostasis and we thus
predicted that an increase in HO activity would be complemented by a decrease in MCH activ-
ity. Indeed, our results demonstrate an overall decrease in total MCH activity in the 2mg/kg
DHBE-group compared to saline-injected animals (Fig 6A3) (Saline 5.24 + 1.22%, DHBE
1.67 + 0.46%: Student’s T-Test, two-tailed, p = 0.03) (Fig 6A3). Significant differences were
confined to the PeF, PeFLH and medial regions (Student’s T-Test, two-tailed: PeF, p = 0.04;
PeFLH, p = 0.04; Medial, p = 0.03) while in other divisions there was no significant difference
between saline and 2 mg/kg DHBE injections (Student’s T-Test, two-tailed: LH, p = 0.07;
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Fig 6. The effects of systemic DHBE injections on HO, MCH, A13-TH and A12-TH activity. In animals that showed greater food intake compared to
controls, DHBE injections at 2 mg/kg increased cFos expression in laterally located HO neurons (A1-2) (Saline and DHBE, n = 6) and decreased cFos
expression in total MCH neurons (A3) (Saline, n = 4; DHBE, n = 5). There was no difference between 2 mg/kg DHBE and Saline groups in TH A13 (Saline and
DHBE, n = 6) and A12 cFos expression (Saline and DHBE, n = 4) (B1-2). Abbreviations: HO, hypocretin/orexin; MCH, melanin concentrating hormone; TH,
tyrosine hydroxylase; f, fornix; DMH, dorsomedial hypothalamus; LH, lateral hypothalamus; PeF, perifornical region; PeFLH, perifornical region of the
hypothalamus; Arc, arcuate nucleus. Scale bar: A, 300 ym; B, 100 ym.

doi:10.1371/journal.pone.0133327.9006
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DMH, p = 0.07; Lateral, p = 0.07) (Fig 6A3). These results are consistent both in vivo and in
vitro studies showing that when HO activity is elevated, MCH neuronal activity is reduced
[43-44]. Analysis of cFos in dopaminergic A13 (for both groups n = 6; Saline 22.17 + 4.62%,
DHBE 15.16 +3.36%) and A12 (for both groups n = 4; Saline 14.65 + 3.55, DHBE

9.74 + 2.28%) cell groups showed no difference between saline and 2 mg/kg DHBE injection
groups (Fig 6B) (Student’s T-Test, two-tailed: A13 total, p = 0.26; A12 total, p = 0.288; ArcD,
p =0.36; ArcM, p = 0.34; ArcL, p = 0.41) although in both TH groups, cFos immunoreactivity
in the 2 mg/kg DHBE group was overall lower than in the control.

Discussion

Here we show that a variety of neurochemically distinct hypothalamic circuits express the 04
nicotinic subunit and antagonizing the 042 nAChR in the lateral hypothalamus of fasted ani-
mals led to an increase in food intake compared to vehicle infused animals. Systemic DHBE
administration led to similar results and were accompanied by an increase in HO neuronal
activity in the lateral division of the hypothalamus and an overall decrease in total MCH activ-
ity as measured by immunolabeling for cFos. No change in activity was seen in PVH oxytocin
neurons or in A13 and A12 TH-containing neurons.

Our results revealing changes in HO and MCH activity in i.p. DHBE-injected animals is
consistent with our initial behavioral results as both MCH and HO populations predominantly
reside in the LH thus supporting previous work showing that cholinergic transmission in LH
networks can affect metabolic functions [28]. Despite being strongly immunoreactive for the
o4 subunit of the excitatory a4B2 nAChR and contrary to what one would expect to occur
when antagonizing a known excitatory cationic channel, systemic DHBE administration led to
greater activity in laterally located HO neurons, a model supported by work done by Pasur-
marthi et al. [24] showing that acute nicotine injections dose-dependently increase cFos
expression in OH neurons. In the context of naturally occuring feeding behavior, our results
suggest that HO neuronal activity may not be influenced directly by the cholinergic activation
of 04p2 nAChRs but rather is indirectly affected by ACh impacting both HO and MCH neu-
rons through local hypothalamic cell populations. Consistent with this, our a4 immunolabel-
ing data showed that in addition to HO neurons the 04 nAChR subunit was expressed
throughout the LH (Fig 2, data not quantified) and despite MCH neurons being immunonega-
tive for the 04 nAChR subunit there was a sharp decrease in MCH activity in the 2 mg/kg
DHBE group. Together this data supports the proposition that DHBE-mediated increases and
decreases in HO and MCH activity, respectively, may result from a decrease in local inhibitory
and excitatory drive onto HO and MCH neurons stemming from other hypothalamic circuits.
This can potentially occur by ACh acting locally in the LH to neuromodulate LH circuits by
influencing dopamine and serotonin release [19, 45] but also by directly influencing local excit-
atory and inhibitory networks. Previous in vitro studies have shown that bath-application of
nicotine can act presynaptically to enhance glutamatergic [46] and GABAergic [23] transmis-
sion in the hypothalamus, the latter of the two cases by acting on oy nAChRs. Cholinergic
inputs to the LH may therefore be regulating food intake via distinct hypothalamic circuits that
may ultimately impact HO and MCH neuronal activity. Two recent studies have shown that
photoactivating vGlut2- [47] or vGAT [48], presumably glutamatergic and gabaergic, express-
ing neurons in the LH can decrease and increase food intake, respectively. Whether or not
these circuits are also influenced by o nAChRs remains to be seen.

Converging melanocortin circuits onto chemically distinct PVH neurons are critical for reg-
ulating appetite [39, 49-50]. Here we show significant 04 immunoreactivity in PVH (Fig 2A)
neurons, suggesting that these cells are strongly influenced by ACh acting via o nAChRs. Our
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activity analysis however revealed no differences in PVH cFos expression between the groups
or in hypothalamic TH-containing neurons despite these neurons showing the greatest o4
immunoreactivity. This perhaps may be due to the inherent sampling restrictions and low tem-
poral resolution of tracking the timecourse of cFos expression. Alternatively, considering that
direct LH infusions of DHBE affected food intake, DHBE-mediated increases in consummatory
behavior may arise independently of PVH or hypothalamic TH processing.

Disruptions in the HO system serve to decrease appetite and profoundly reduce physical
activity, indicating that the obese phenotype previously documented in animals with such dis-
ruptions results mostly from a decrease in energy expenditure. In addition to increasing food
intake, intracerebral infusions of HO are known to increase spontaneous activity and exercise
on a running wheel [51], together establishing that the HO circuits may be important in initiat-
ing active measures to seek out food for maintaining energy homeostasis. Indeed, HO cells are
stimulated during hypoglycemia [52] and are inhibited when glucose levels are high [53].
Moreover, HO neurons have been shown to increase their activity when food-restricted ani-
mals are entrained to anticipate food delivery, thereby increasing locomotor activity associated
with food seeking. A recent study has shown that more laterally located HO neurons in the PeF
and LH are preferentially engaged during consummatory behavior while HO neurons located
medially in the DMH are mostly active during the food anticipatory phase prior to feeding
[54]. These results are consistent with a model proposed by Harris and Aston-Jones [55] sug-
gesting a functional dichotomy between medially located HO neurons in the DMH regulating
arousal with laterally located HO neurons being more engaged during consummatory behav-
ior. Our results showing increases in laterally located HO populations are consistent with this
scheme since DHPBE-injected animals consumed more than control animals, a behavioral effect
that was recapitulated when DHPE was directly infused into lateral divisions of the
hypothalamus.

The most profound change in cellular activity was seen in MCH neurons, with 2 mg/kg
DHPBE-injected animals showing decreases in total MCH activity. HO and MCH neurons are
known to have opposing response profiles [43] as well as behavioral actions promoting food
seeking and energy conservation, respectively [56]. Actions of both transmitters are known to
increase food intake although the consummatory drive is thought to stem from separate meta-
bolic requirements. Much evidence supports the idea that MCH neurons reinforce consump-
tion of palatable food for the purpose of storing and conserving energy while the HO system is
more important in initiating food seeking behavior and consumption. Our cFos analysis cap-
turing an increase in a subpopulation of HO neurons and decrease in MCH activity may reflect
the initial phase of consummatory behavior in DHBE-treated animals, but whether or not
these activity patterns would change over time to reflect the prolonged meal duration and thus
conservation of energy would require further studies with different cFos sampling times. None-
theless, the results of the current study indicate that a number of different hypothalamic cir-
cuits are under the influence of a4-containing nAChRs and that endogenous cholinergic
inputs to the hypothalamus can regulate food intake by acting on 04p2 nAChRs. These effects
on satiety signals may result from the activation of local LH networks that differentially influ-
ence the activity of neurochemically distinct hypothalamic populations known to be important
in maintaining energy homeostasis.
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