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Chaudhuri P, Rosenbaum MA, Birnbaumer L, Graham LM.
Integration of TRPC6 and NADPH oxidase activation in lysophos-
phatidylcholine-induced TRPC5 externalization. Am J Physiol Cell
Physiol 313: C541–C555, 2017. First published August 23, 2017;
doi:10.1152/ajpcell.00028.2017.—Lipid oxidation products, includ-
ing lysophosphatidylcholine (lysoPC), activate canonical transient
receptor potential 6 (TRPC6) channels, and the subsequent increase in
intracellular Ca2� leads to TRPC5 activation. The goal of this study
is to elucidate the steps in the pathway between TRPC6 activation and
TRPC5 externalization. Following TRPC6 activation by lysoPC, ex-
tracellular regulated kinase (ERK) is phosphorylated. This leads to
phosphorylation of p47phox and subsequent NADPH oxidase activa-
tion with increased production of reactive oxygen species. ERK
activation requires TRPC6 opening and influx of Ca2� as evidenced
by the failure of lysoPC to induce ERK phosphorylation in TRPC6�/�

endothelial cells. ERK siRNA blocks the lysoPC-induced activation
of NADPH oxidase, demonstrating that ERK activation is upstream of
NADPH oxidase. The reactive oxygen species produced by NADPH
oxidase promote myosin light chain kinase (MLCK) activation with
phosphorylation of MLC and TRPC5 externalization. Downregulation
of ERK, NADPH oxidase, or MLCK with the relevant siRNA pre-
vents TRPC5 externalization. Blocking MLCK activation prevents the
prolonged rise in intracellular calcium levels and preserves endothe-
lial migration in the presence of lysoPC.
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ENDOTHELIAL CELL (EC) migration is essential for the healing of
arterial injuries such as those that accompany angioplasty.
Rapid reendothelialization of an area of EC denudation limits
the proliferation of smooth muscle cells and the subsequent
development of intimal hyperplasia (2, 15, 23, 47, 48). Unfor-
tunately, EC migration in vitro is inhibited by oxidized LDL
and lipid oxidation products, including lysophosphatidylcho-
line (lysoPC) (25, 26), that are abundant in plasma and lesions
of patients with atherosclerosis (9, 19, 31). Hypercholesterol-
emia inhibits reendothelialization of arterial injuries in vivo,
and the delay in healing correlates with the elevation of plasma
lysoPC (32, 34).

Normal cell migration requires exquisite control of calcium
transients to allow detachment of focal adhesions, cytoskeletal
reorganization to move the cell forward, and formation of new

attachments to the substratum. EC monolayer disruption is
followed by influx of Ca2� from the extracellular milieu and a
transient rise in intracellular Ca2� concentration ([Ca2�]i) that
is required for detachment of focal adhesions and initiation of
movement (41). Following the initial rise in [Ca2�]i, caveolae
and the machinery for calcium wave initiation relocate to the
trailing edge of the cell (20), allowing new focal adhesions to
assemble in the leading portion of the cell. A generalized,
sustained increase in [Ca2�]i, such as that induced by lipid
oxidation products, disrupts the time- and site-specific changes
in focal adhesions and cytoskeleton that are required for cell
movement and thus inhibits EC migration required to repair
monolayer disruption (6).

We have shown that oxidized LDL and lysoPC, the primary
lysophospholipid in oxidized LDL, inhibit EC migration, in
part, by causing Ca2� influx through canonical transient recep-
tor potential (TRPC) channels (5). Specifically, lysoPC acti-
vates TRPC6 and the subsequent brief increase in [Ca2�]i leads
to externalization of TRPC5 and a prolonged increase in
[Ca2�]i. The increase in [Ca2�]i activates calpains causing
breakdown of cytoskeletal proteins and inhibition of EC mi-
gration (6). The importance of this pathway in vivo is demon-
strated by the finding that a high-cholesterol diet dramatically
inhibits endothelial healing of a carotid injury in wild-type
(WT) mice but has no effect in TRPC6-deficient (TRPC6�/�)
mice (33). The mechanism of TRPC channel activation by lipid
oxidation products is not completely elucidated.

Ca2�-dependent regulation of Ca2�-permeable cation chan-
nels is common, and all TRPC proteins have binding regions
for calmodulin (CaM), a ubiquitous Ca2�-binding protein that
can regulate TRPC activation (40). We have shown that lysoPC
induces phosphorylation of CaM at Tyr99, and this phosphor-
ylation is required for the dissociation of CaM and TRPC6 and
externalization of TRPC6 in the cell membrane (8). Interesting,
lysoPC does not cause dissociation of CaM and TRPC5, but
lysoPC-induced TRPC5 externalization does require TRPC6
activation and influx of calcium (5, 8). The mechanism by
which TRPC6 activation leads to TRPC5 externalization is the
topic of this study.

TRPC5 channels can be activated by a multiplicity of signals
including G protein-coupled receptor activation, extracellular
gadolinium or Ca2�, modest elevation of [Ca2�]i, or depletion
of intracellular Ca2� stores (50), but TRPC5 channel activation
is inhibited by high [Ca2�]i (28). We have shown that lysoPC-
induced activation of TRPC5 requires the presence of TRPC6
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channels and Ca2� in the medium (5). To determine the
mechanism by which an increase in [Ca2�]i through TRPC6
channels leads to activation of TRPC5, we assessed the con-
tribution of extracellular regulated kinase (ERK) activation,
activation of NADPH oxidase, increased reactive oxygen spe-
cies (ROS) production, and myosin light chain kinase (MLCK)
activation in the externalization of TRPC5. Determination of
the mechanism by which lysoPC activates TRPC5 and identi-
fying components of the activation cascade from TRPC6 to
TRPC5 provide opportunities to interrupt these events, restore
normal endothelial migration, and promote healing after inter-
ventions in atherosclerotic arteries.

MATERIALS AND METHODS

EC isolation and culture. Bovine aortic ECs were isolated from
fresh adult bovine aortas and cultured as previously described (6). ECs
in passage 4 to 10 were used for experiments. Under a protocol
approved by the Cleveland Clinic Institutional Animal Care and Use
Committee, mouse aortic ECs (MAECs) were harvested from 129Sv/
C57BL/6J WT, TRPC6�/�, or TRPC5�/� mice (14, 30), as described
previously (5). The genetic deletion of the specific TRPC channel was
confirmed by PCR using DNA extracted from tail or toe biopsies.
MAECs in passage 3 or 4 were used for experiments.

Immunoprecipitation and immunoblot analysis of target protein.
Confluent ECs were used after being made quiescent in serum-free
Dulbecco’s modified Eagle’s medium for 3 h before experimental
conditions were initiated. Immunoprecipitation of target protein was
performed as described previously (7).

Immunoblot analysis was performed after proteins (60–80 �g/
lane) were loaded in 4–20% gradient SDS-PAGE as previously
described (5, 7) and detected by antibodies specific for TRPC6 (1:200;
catalog no. 600-401-FQ5; Rockland, St. Louis, MO), TRPC5 (1:250;
catalog no. 73-104; UC Davis/NIH NeuroMab Facility), ERK1/2
(1:1,000; catalog no. 4695; Cell Signaling Technology, Danvers,
MA), phospho-ERK1/2 (Thr202/Tyr 204; 1:1,000; catalog no. SC-
16982; Santa Cruz Biotechnology, Santa Cruz, CA), p47phox (1:500;
catalog no. 43125; Cell Signaling Technology), phospho-p47phox

(Ser345; 1:200; catalog no. A8391; Assay Biotechnology, Sunnyvale,
CA), MLCK (1:500; catalog no. MABT194; Millipore), phospho-
MLCK (Tyr471; 1:500; catalog no. SC-17183; Santa Cruz Biotech-
nology), MLC (1:250; catalog no. M4401; Sigma), and phospho-MLC
(Thr18/Ser19; 1:500; catalog no.3474; Cell Signaling Technology).
After being washed, the horseradish peroxidase-conjugated secondary
antibody was applied and the signal developed using a chemilumi-
nescent reagent (Perkin Elmer-Cetus, Boston, MA) for 1 min, and the
image was acquired on HyBlot CL autoradiography film (Denville
Scientific). The blot was then stripped and reprobed using an anti-
actin antibody (1:2,000; catalog no. MA1-744; Invitrogen). For im-

munoblot analysis of phosphorylated proteins, samples were divided
into two aliquots, one used for the phorphorylated protein and the
other used for total ERK, p47phox, MLCK, or MLC, as indicated.
Protein band density on the HyBlot CL autoradiography film was
quantititated using ImageJ software (NIH, Bethesda, MD). The film
was then scanned with an HP Scanjet G4050 using HP Photosmart
Premier Software.

Detection of TRPC externalization by biotinylation assay. Exter-
nalization of TRPC6 or TRPC5 was determined by biotinylation assay
as previously described (5). Briefly, cell surface proteins were biotin-
ylated and complexed with streptavidin-agarose beads, beads were
collected, and precipitated proteins were released, resolved by SDS-
PAGE, and identified by immunoblot analysis. Total TRPC6 or
TRPC5 protein was determined by immunoblot analysis of an aliquot
of cell lysate removed before incubation with streptavidin-agarose
beads.

Overexpression of mutant CaM. The full-length human CaM
cDNA (MGC-7) was obtained from ATCC. PCR-based site-directed
mutagenesis was used to generate a cDNA for a mutant CaM in which
Tyr99 was replaced with Phe (Phe99-CaM; ExonBio, San Diego, CA),
as previously described (8). ECs at 60% confluence were transiently
transfected with 2 �g of plasmids containing pcDNA3.1-myc-His-
human CaM (WT-CaM) or pcDNA3.1-myc-His-Phe99-CaM using
Effectene (Qiagen, Chatsworth, CA) according to the manufacturer’s
protocol. The effectiveness of transfection was verified after 48 h by
fluorescence microscopy and immunoblot analysis of CaM as previ-
ously descibed (8).

Downregulation of target protein by small interfering RNA. Using
a transfection kit (RNAiFect; Qiagen), ECs at 80% confluence were
transiently transfected with the small interfering (si)RNA duplex of
CaM isoform1 (20 nM; Santa Cruz Biotechnology), ERK1 (20 nM;
Santa Cruz Biotechnology), ERK2 (20 nM; Santa Cruz Biotechnol-
ogy), p47phox subunit of NADPH oxidase (20 nM; Santa Cruz Bio-
technology), or MLCK (30 nM; Santa Cruz Biotechnology) for 24 h.
Downregulation of endogenous target protein level was examined
after 48 h by immunoblot analysis. A negative control siRNA (Nsi-
RNA; 20–40 nM; Ambion, Austin, TX) without homology to any
known gene sequence was used as a negative control.

Detection of ROS production. Intracellular ROS production was
measured by oxidation of di(acetoxymethyl ester)(6-carboxy-2’-7’-
dichlorodihydrofluorescein diacetate (H2DCF-DA; Life Technolo-
gies, Grand Island, NY). ECs at 70% confluence were incubated with
H2DCF-DA (10 �M) for 20 min and washed twice before addition of
lysoPC for 15 min. Fluorescence was monitored using Leica fluores-
cence microscope (Heidelberg, Germany) with FITC filter. The fluo-
rescence intensity was quantititated using NIH ImageJ software.

Measurement of [Ca2�]i. [Ca2�]i was measured using the Ca2�-
binding fluorophore fura 2-AM (Life Technologies), as previously
described (5, 6). ECs were cultured in 35-mm dishes designed for

Fig. 1. LysoPC induces Ca2�-, calmodulin (CaM)-, and TRPC6-dependent ERK phosphorylation. A: ECs were incubated with medium alone (Control), lysoPC
(12.5 �M), or PC (12.5 �M) for 15 min. ERK and phospho-ERK1/2(Thr202/Tyr204) were detected by immunoblot (IB) analysis. Actin served as loading control
(n � 4). IB, immunoblot. B: ECs were incubated with calcium-free or calcium-containing KR buffer for 10 min or ECs were incubated with BAPTA/AM (25
�M) for 30 min before addition of lysoPC. Phospho-ERK1/2(Thr202/Tyr204) and total ERK1/2 were detected by immunoblot analysis. Actin served as loading
control (n � 4). C and D: ECs were transiently transfected with control siRNA (NsiRNA) or CaM siRNA (20 nM) for 24 h. The siRNA was then removed. C:
at 24 h after siRNA removal, cells were lysed and CaM was identified by immunoblot analysis. Actin served as loading control (n � 3). D: after siRNA removal,
ECs were incubated with lysoPC (12.5 �M) for 15 min. Phospho-ERK1/2(Thr202/Tyr204) and total ERK1/2 were detected by immunoblot analysis. Actin served
as loading control (n � 4). E and F: ECs were transiently transfected with pcDNA3.1-myc-His-WT-CaM or pcDNA3.1-myc-His- Phe99-CaM for 24 h. E:
overexpression of CaM was confirmed after 48 h by immunoblot analysis with anti-Myc Tag antibody. Actin served as loading control (n � 3). F: after
transfection, ECs were incubated with lysoPC (12.5 �M) for 15 min. Phospho-ERK1/2(Thr202/Tyr204) and total ERK were detected by immunoblot analysis.
Actin served as loading control (n � 4). G and H: WT, TRPC6�/�, or TRPC5�/� MAECs were incubated with lysoPC (10 �M) for min. G:
phospho-ERK1/2(Thr202/Tyr204) and total ERK were detected by immunoblot analysis. Actin served as loading control (n � 3). H: densitometry measurements
of phospho-ERK(Thr202/Tyr204) are represented in graphic form: �, medium control with WT ECs; �, lysoPC with WT ECs; Œ, medium control with TRPC6�/�

ECs; �, lysoPC with TRPC6�/� ECs; }, medium control with TRPC5�/� ECs; Œ, lysoPC with TRPC5�/� ECs. (In A–G, lines indicate lanes rearranged from
the same gel. All bands are from the same gel.)
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fluorescence microscopy (Bioptechs, Butler, PA), incubated with fura
2-AM (1 �M) for 30 min, and washed with Krebs-Ringer (KR) buffer
to remove excess fura 2-AM. Fluorescence of a group of 10–12 cells
inside the light path was continuously examined with an Olympus
1X-70 inverted fluorescence microscope (Melville, NY). The relative
change of [Ca2�]i was estimated by the ratio of fura 2 excitation at
wavelengths of 340 nm and 380 nm (340/380 ratio).

EC migration assay. ECs were made quiescent in serum-free
Dulbecco’s modified Eagle’s medium for 8–12 h before the migration

assay. EC migration was assessed by the razor-scrape assay as
described in our previous study (6). Migrating cells were quantitated
using NIH Image 1.63 software by an observer blinded to the
experimental conditions.

Statistics. Results are presented as means � SD. Experiments were
performed in triplicate with ECs isolated from at least three different
animals. Statistical analysis was performed using Student’s t-test or
ANOVA, and differences between means were considered statistically
significant at P � 0.05.
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RESULTS

LysoPC induced Ca2�-CaM dependent ERK phosphorylation.
Previously, we showed that lysoPC (1-palmitol-2-hydroxi-sn-
glycerol-3-phosphocholine; Avanti Polar Lipids, Alabaster,
AL) increased [Ca2�]i through a unique TRPC6 channel to
TRPC5 channel activation cascade (5). An increase in [Ca2�]i

through TRPC6 channels can lead to ERK activation (18), and
ERK can activate MLCK (22), which is essential in TRPC5
externalization (21, 37). Therefore, a possible role of ERK in
the lysoPC-induced TRPC activation cascade was studied. In
ECs incubated with lysoPC (12.5 �M), but not phosphatidyl-
choline (PC; 12.5 �M), for 15 min, ERK1/2 phosphorylation at
Thr202/Tyr204 increased to 280 � 30% of control (n � 4; P �
0.01; Fig. 1A). Total ERK levels did not change.

To determine if lysoPC-induced ERK phosphorylation was
Ca2� dependent, ECs were incubated in Ca2�-free or Ca2�-
containing KR buffer or with the intracellular Ca2�-chelator
BAPTA/AM (25 �M) before the addition of lysoPC (12.5
�M). LysoPC did not induce ERK1/2 phosphorylation in the
absence of extracellular Ca2� or presence of BAPTA/AM,
suggesting that ERK1/2 phosphorylation was Ca2� dependent
(n � 4; P � 0.01 compared with incubation with lysoPC in
Ca2�-containing KR buffer; Fig. 1B).

ERK activation can be regulated by CaM (1), and lysoPC
induces CaM phosphorylation at Tyr99 that is required for
TRPC6 externalization (8). Transient transfection of ECs with
CaM siRNA significantly reduced the level of CaM (Fig. 1C)
and the lysoPC-induced ERK1/2 phosphorylation [n � 4; P �
0.01, compared with ECs transiently transfected with negative
control siRNA (NsiRNA) that has no homology to a known
gene sequence; Fig. 1D]. When ECs were transiently trans-
fected with WT-CaM or mutant CaM in which the Tyr99 site
was replaced with Phe (Phe99-CaM) that cannot be phosphor-
ylated (Fig. 1E), lysoPC increased ERK1/2 phosphorylation in
ECs transfected with WT-CaM but not in ECs overexpressing
Phe99-CaM (n � 4; P � 0.01, compared with WT-CaM; Fig.
1F). Taken together, these findings suggested that lysoPC-
induced ERK activation in ECs was Ca2�-CaM dependent and
required CaM phosphorylation at Tyr99.

ERK activation by lysoPC was downstream of TRPC6 ex-
ternalization but not TRPC5 externalization. CaM phosp-
horylation is required for TRPC6 externalization (8); theref-
ore, the relationship between lysoPC-induced ERK activation
and TRPC activation was explored using TRPC6�/� and
TRPC5�/� MAECs. The basal level of ERK1/2 phosphorylat-
ion was similar in WT, TRPC6�/�, and TRPC5�/� MAECs
under control conditions (Fig. 1G). Incubation with lysoPC (10
�M) for 15 min caused an increase in ERK1/2 phosphorylation
to 301 � 10% of control in WT MAECs (n � 3; P � 0.01; Fig.
1, G and H), but no change in ERK1/2 phosphorylation in
TRPC6�/� MAECs (n � 3; Fig. 1, G and H). Similar to WT
MAECs, lysoPC induced an increase in ERK1/2 phosphoryla-
tion to 300 � 10% of control in TRPC5�/� MAECs (n � 3;
P � 0.03; Fig. 1, G and H). These data indicated that lysoPC-
induced ERK activation required TRPC6 but not TRPC5,
suggesting that ERK activation is downstream from TRPC6
but upstream from TRPC5 activation.

To further assess the role of ERK in TRPC externalization,
ERK was downregulated with siRNA. Transient transfection of
ECs with ERK siRNA resulted in a significant decrease in ERK

at 48 h (n � 3; P � 0.01, compared with NsiRNA; Fig. 2A).
The effect of ERK downregulation on TRPC6 and TRPC5
externalization was assessed by biotinylation assay (Fig. 2,
B–G). Transfection with ERK siRNA had no effect on lysoPC-
induced TRPC6 externalization (n � 4; Fig. 2, D and E);
however, TRPC5 externalization was significantly inhibited
(n � 4; P � 0.04, compared with NsiRNA transfected ECs
incubated with lysoPC; Fig. 2, F and G). These results sug-
gested that lysoPC increased TRPC5 externalization through
an ERK-dependent mechanism.

LysoPC induced ERK-dependent NADPH activation. Ly-
soPC and ERK can activate NADPH oxidase (35, 43), and
TRPC5 can be activated by ROS (27). Therefore, we explored
the role of NADPH oxidase in lysoPC-induced TRPC5 external-
ization. We previously showed that lysoPC caused the p47phox

and p67phox subunits of NADPH oxidase to translocate from the
cytosol to the membrane (32), characteristic of NADPH oxidase
activation. After EC incubation in lysoPC (12.5 �M), but not
PC (12.5 �M), for 15 min, p47phox phosphorylation at Ser345

increased to 340 � 20% of control (n � 4; P � 0.02; Fig. 3A),
again suggesting NADPH oxidase activation.

To determine if lysoPC-induced NADPH oxidase activation
was Ca2� dependent, ECs were incubated in Ca2�-free or
Ca2�-containing KR buffer, or with BAPTA/AM (25 �M),
before addition of lysoPC (12.5 �M). LysoPC did not induce
p47phox phosphorylation at Ser345 in absence of extracellular
Ca2� (n � 4; P � 0.01, compared with Ca2�-containing KR
buffer; Fig. 3B) or in the presence of BAPTA/AM (n � 4; P �
0.02, compared with incubation with lysoPC in Ca2�-contain-
ing KR buffer; Fig. 3B). In addition, lysoPC-induced translo-
cation of p47phox to the membrane from the cytosol was
reduced in the absence of Ca2� (n � 4; Fig. 3C), suggesting
that NADPH oxidase activation was Ca2� dependent.

The role of ERK activation in NADPH oxidase activation
was explored. LysoPC induced ERK phosphorylation, and this
was accompanied by increased association of p47phox and
phospho-ERK (Fig. 3D; n � 3) as well as p67phox and phos-
pho-ERK (Fig. 3E; n � 3). To determine if NADPH oxidase
activation by lysoPC required ERK, ERK was downregulated
with siRNA for 24 h and then, lysoPC (12.5 �M) was added
for 15 min. ERK downregulation caused a significant reduction
in lysoPC-induced p47phox phosphorylation (n � 5; P � 0.02,
compared with NsiRNA; Fig. 3F), indicating that lysoPC-
induced NADPH oxidase activation was ERK dependent. Con-
versely, downregulation of p47phox did not alter lysoPC-in-
duced ERK phosphorylation (n � 4; Fig. 3G). Similarly,
downregulation of p22phox (n � 3; Fig. 3H) did not alter
lysoPC-induced ERK phosphorylation (n � 3; Fig. 3I).

To confirm that p47phox phosphorylation induced by lysoPC
required TRPC6 activation, p47phox phosphorylation was as-
sessed in TRPC6�/� or TRPC5�/� MAECs. LysoPC induced
p47phox phosphorylation in WT MAECs but not in TRPC6�/�

MAECs (n � 4; P � 0.01, compared with WT MAECs with
lysoPC; Fig. 4, A and B). LysoPC-induced p47phox phosphor-
ylation in TRPC5�/� MAECs was similar to that in WT
MAECs (n � 4; Fig. 4, A and B). These results suggested that
lysoPC-induced NADPH oxidase activation was TRPC6 de-
pendent. To determine if TRPC6 was required for NADPH
oxidase activation by lysoPC in human ECs, TRPC6 was
downregulated using siRNA (n � 3; Fig. 4C). This blocked
lysoPC-induced p47phox phosphorylaton (n � 3; Fig. 4D).
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Superoxide and NADPH oxidase activation were required
for lysoPC-induced TRPC5 externalization. Because ROS can
activate TRPC5 (27), the role of superoxide in lysoPC-induced
TRPC6 and TRPC5 externalization was assessed by biotinyla-
tion assay. ECs were pretreated with superoxide dismutase
(SOD; 50 units/ml; Sigma) or PEG-catalase (5,000 units/ml)
for 30 min before incubation with lysoPC (12.5 �M) for 15

min. LysoPC-induced TRPC6 externalization was not altered
by either agent (n � 3; Fig. 5A). TRPC5 externalization,
however, was blocked by SOD, suggesting that superoxide
production was required for lysoPC-induced TRPC5 external-
ization (n � 3; Fig. 5B). Preincubation of ECs with PEG-
catalase did not block lysoPC-induced TRPC5 externalization
(Fig. 5B).
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To verify the role NADPH oxidase activity in the lysoPC-
induced superoxide production, p47phox was downregulated
with siRNA. In ECs transiently transfected with p47phox

siRNA for 48 h, p47phox protein levels were significantly
reduced (n � 5; P � 0.01, compared with NsiRNA; Fig. 5C).
Next, ROS production was determined using H2DCF-DA.
Addition of lysoPC (12.5 �M) for 15 min induced an increase
in ROS production to 780 � 40% of control in NsiRNA-
transfected ECs as detected by H2DCF-DA assay (n � 5; P �

0.01; Fig. 5, D and E). In ECs transiently transfected with
p47phox siRNA, incubation with lysoPC caused an increase in
ROS production to only 201 � 40% of control (n � 5; P �
0.02 compared with NsiRNA-transfected ECs incubated with
lysoPC; Fig. 5, D and E). Thus downregulation of p47phox

decreased the lysoPC-induced ROS production by ~75%.
Next, the role of NADPH oxidase in TRPC6 and TRPC5

externalization was assessed. In ECs transiently transfected
with p47phox siRNA, incubation with lysoPC induced TRPC6
externalization (n � 4; Fig. 5F), but TRPC5 externalization
was blocked (n � 5; P � 0.02, compared with NsiRNA with
lysoPC; Fig. 5G). In ECs incubated for 30 min with TNF-�
(500 U/ml), an NADPH oxidase activator (17), TRPC6 was not
externalized (n � 3; Fig. 5H), but TRPC5 externalization was
increased to 202 � 40% of control (n � 3; P � 0.01; Fig. 5I).
These results suggested that NADPH oxidase activation could
promote TRPC5 externalization but not TRPC6 externaliza-
tion.

LysoPC-induced MLCK activation required Ca2� influx and
TRPC6 channels. ROS can activate MLCK (51), a Ca2�-CaM-
dependent kinase that phosphorylates MLC, and MLC can
modulate the insertion of TRPC5 containing vesicles into the
plasma membrane, resulting in activation of TRPC5 (21, 37).
We assessed MLCK phosphorylation at Tyr471 as this can
contribute to increased enzymatic activity (3). In ECs incu-
bated with lysoPC (12.5 �M), but not PC (12.5 �M), for 15
min, MLCK phosphorylation at Tyr471 increased to 230 �
40% of medium alone (n � 3; P � 0.01; Fig. 6A). LysoPC-
induced MLCK phosphorylation was inhibited in the absence
of extracellular Ca2� (n � 4; P � 0.03, compared with
Ca2�-containing KR buffer; Fig. 6B) or the presence of
BAPTA/AM (n � 4; P � 0.01, compared with Ca2�-contain-
ing KR buffer; Fig. 6B), suggesting that lysoPC-induced
MLCK phosphorylation was Ca2� dependent.

To determine if MLCK activation was dependent on TRPC
activation, we assessed MLCK phosphorylation in WT,
TRPC6�/�, or TRPC5�/� MAECs. LysoPC induced a robust
increase in MLCK phosphorylation to 220 � 30% of control in
WT MAECs (n � 4; P � 0.02) and an increase in MLCK
phosphorylation to 220 � 26% of control in TRPC5�/�

MAECs (n � 4, P � 0.02; Fig. 6, C and D). No increase was
noted when TRPC6�/� MAECs were incubated with lysoPC
(n � 4; P � 0.7, compared with WT control; Fig. 6, C and D),
confirming that lysoPC-induced MLCK phosphorylation was
TRPC6 dependent. The MLCK phosphorylation was accom-
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panied by an increase in MLC phosphorylation. Incubation
with lysoPC increased MLC phosphorylation to 230 � 40% of
control in WT MAECs (n � 4; P � 0.02; Fig. 6, E and F).
LysoPC also increased MLC phosphorylation to 220 � 30% of

control in TRPC5�/� MAECs (n � 4; P � 0.02; Fig. 6, E and
F). No lysoPC-induced increase in MLC phosphorylation was
noted in TRPC6�/� MAECs (n � 4; P � 0.8, compared with
TRPC6�/� control; Fig. 6, E and F). The endogenous levels of
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MLC were not changed in the presence of lysoPC (n � 3; Fig.
6E). These results supported the TRPC6 dependence of MLCK
activation by lysoPC.

ERK and NADPH oxidase activation were required for
lysoPC-induced MLCK activation and MLC phosphorylation.
The role of ERK and NADPH oxidase in MLCK phosphory-
lation was assessed. In ECs incubated with the NADPH oxi-
dase activator TNF-� (500 U/ml) for 30 min, MLCK phos-
phorylation was increased significantly (n � 3; P � 0.03,
compared with control; Fig. 7A). The roles of ERK and
NADPH oxidase in MLCK phosphorylation were confirmed by
downregulating ERK or p47phox. ERK siRNA significantly
reduced lysoPC-induced MLCK phosphorylation (n � 4; P �
0.01, compared with NsiRNA; Fig. 7B). Similarly, p47phox

siRNA inhibited lysoPC-induced MLCK phosphorylation (n �
4; P � 0.02, compared with NsiRNA; Fig. 7B), suggesting the
involvement of both ERK and NADPH oxidase in lysoPC-
induced MLCK phosphorylation. The lysoPC-induced MLCK
phosphorylation was accompanied by an increase in MLC
phosphorylation. In the medium control, lysoPC increased
MLC phosphorylation to 240 � 20% of control (n � 3; P �
0.01; Fig. 7C). In ECs transfected with NsiRNA, lysoPC also
increased MLC phosphorylation to 240 � 20% of control (n �
3; P � 0.01; Fig. 7C). Downregulation of ERK using siRNA
blocked lysoPC-induced MLC phosphorylation (n � 3; P �
0.02, compared with NsiRNA with lysoPC; P � 0.01, com-
pared with medium control; Fig. 7C). Similarly, downregula-
tion of p47phox using siRNA significantly reduced lysoPC-
induced MLC phosphorylation (n � 3; P � 0.01, compared
with NsiRNA with lysoPC; Fig. 7D). These results suggested
that lysoPC-induced MLCK phosphorylation and MLC phos-
phorylation were dependent on the activation of ERK and
NADPH oxidase.

MLCK activation by lysoPC required superoxide. The re-
sults with p47phox siRNA suggested that superoxide production
is required for lysoPC-induced MLCK activation. To confirm
the role of ROS, MLCK phosphorylation was measured in the
presence of SOD. ECs were preincubated with SOD for 30 min
and then lysoPC (12.5 �M) was added for 15 min. Incubation
with lysoPC increased MLCK phosphorylation to 260 � 20%
of control (n � 3; P � 0.01; Fig. 7E), but after SOD pretreat-
ment lysoPC did not cause a significant increase (n � 3; P �
0.8, compared with SOD control; Fig. 7E). Similarly, lysoPC
increased MLC phosphorylation to 260 � 10% of medium
control (n � 3; P � 0.01; Fig. 7F), but after SOD pretreatment
lysoPC did not cause a significant increase (n � 3; P � 0.8,
compared with SOD control; Fig. 7F). Endogenous levels of

MLCK and MLC were not changed by SOD pretreatment (n �
3; Fig. 7, E and F). These results suggested that lysoPC-
induced MLCK activation required superoxide.

LysoPC-induced TRPC5 externalization required MLCK
phosphorylation. The role of MLCK in TRPC5 externalization
was analyzed by inhibiting or downregulating MLCK. ECs
were preincubated with ML-9 (10 �M), a relatively selective
inhibitor that impairs MLCK phosphorylation by competing
for the ATP binding site. After 30 min, lysoPC (12.5 �M) was
added for 15 min. ML-9 had no effect on total TRPC6 or
TRPC5 level and did not inhibit the lysoPC-induced TRPC6
translocation to the cell membrane suggesting that TRPC6
activation was MLCK independent (n � 4; Fig. 8A). However,
ML-9 blocked lysoPC-induced TRPC5 translocation (n � 4;
P � 0.02, compared with lysoPC control; Fig. 8B). In ECs
transiently transfected with MLCK siRNA for 48 h, MLCK
was downregulated significantly (n � 4; P � 0.02, compared
with NsiRNA; Fig. 8C). When MLCK was downregulated,
lysoPC-induced TRPC6 externalization was unchanged (n � 4,
Fig. 8D), but TRPC5 externalization was markedly diminished
(n � 4; P � 0.02, compared with NsiRNA with lysoPC; Fig.
8E). Similarly, when MLCK was downregulated with siRNA,
incubation with TNF-� (500 U/ml) for 30 min did not increase
TRPC5 externalization (n � 4; P � 0.8, compared with MLCK
siRNA-transfected ECs without TNF-�; Fig. 8E). These results
suggested that NADPH oxidase-mediated TRPC5 externaliza-
tion, including that by lysoPC, was dependent on MLCK.

MLCK inhibition reduced lysoPC-induced [Ca2�]i rise and
inhibition of EC migration. To determine if inhibition of
MLCK blocked the lysoPC-mediated increase of [Ca2�]i, ECs
were loaded with fura 2-AM for 30 min. After baseline [Ca2�]i

readings were obtained, lysoPC (12.5 �M) was added and the
increase of [Ca2�]i was assessed. LysoPC was removed and
cells were washed. Then, ECs were incubated with ML-9 (10
�M) for 20 min and lysoPC again added. ML-9 did not alter
the basal [Ca2�]i readings nor inhibit the initial transient
increase in [Ca2�]i induced by lysoPC, presumably through
TRPC6 channels but blocked the long plateau phase (n � 4;
P � 0.02, compared with lysoPC control; Fig. 8F) that was
attributed to TRPC5 activation (5).

To determine the role of MLCK in lysoPC-induced inhibi-
tion of EC migration, ECs were preincubated with ML-9 for 30
min. Basal migration of ECs with or without ML-9 was similar.
LysoPC inhibited 24 h EC migration by 63%, but after pre-
treatment with ML-9, lysoPC inhibited EC migration by only
42% (n � 5; P � 0.001, compared with lysoPC without
ML-9; Fig. 8G). Since ML-9 is only relatively specific for

Fig. 5. NADPH oxidase activation is required for TRPC5 externalization. A and B: ECs were made serum-free for 3 h, then pretreated with superoxide dismutase
(SOD; 50 units/ml) or PEG catalase (5,000 units/ml) for 30 min before incubation with lysoPC (12.5 �M) for 15 min. TRPC6 or TRPC5 externalization was
detected by biotinylation assay and total TRPC6 or TRPC5 was determined by immunoblot analysis of an aliquot of the same sample (n � 3). Actin served as
loading control (n � 3). C: ECs were transiently transfected with NsiRNA or p47phox siRNA (20 nM) for 24 h. The siRNA was removed, and 24 h later cells
were lysed. Total p47phox was detected by immunoblot analysis. Actin served as loading control (n � 5). D and E: ECs were transiently transfected with NsiRNA
or p47phox siRNA for 24 h and then incubated with H2DCF-DA for 20 min before incubation with lysoPC (n � 5). D: ROS production was detected by DCF
assay using fluorescence microscopy. E: fluorescence intensity was quantitated using image analysis software and graphed. Results are represented as
means � SD (n � 5; *P � 0.01, compared with NsiRNA-transfected EC control; **P � 0.02, compared with NsiRNA-transfected ECs incubated with lysoPC).
F and G: ECs were transiently transfected with NsiRNA or p47phox siRNA for 24 h before incubation with lysoPC. Externalization of TRPC6 or TRPC5 was
detected by biotinylation assay and total TRPC6 or TRPC5 by immunoblot analysis. Actin served as loading control (F: n � 4; G: n � 5). H and I: ECs were
incubated with PC (12.5 �M) for 15 min, TNF-� (500 U/ml) for 30 min, or lysoPC (12.5 �M) for 15 min. Externalization of TRPC6 or TRPC5 was detected
by biotinylation assay and total TRPC6 or TRPC5 by immunoblot analysis. Actin served as loading control (n � 3). (In A–C and G, lines indicate lanes rearranged
from the same gel. All bands are from the same gel.)
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MLCK, the effect of MLCK downregulation using siRNA
on EC migration was also assessed. Results using MLCK
siRNA paralleled those with ML-9. Basal migration of
control ECs and ECs transfected with NsiRNA or MLCK
siRNA was similar. LysoPC inhibited 24-h migration of ECs
transfected with NsiRNA by 64%, but in ECs transiently
transfected with MLCK siRNA, lysoPC inhibited EC migrat-
ion by only 43% (n � 3; P � 0.001, compared with ECs
transfected with NsiRNA and incubated with lysoPC; Fig. 8H).
This preservation of migration was similar to that seen in
TRPC5�/� MAECs or when TRPC5 was downregulated using
siRNA (5, 33). Taken together, these data suggested that
MLCK is essential in the lysoPC-induced TRPC5 activation
and inhibition of EC migration.

DISCUSSION

TRPC5 is activated by a variety of agonists and through multiple
mechanisms (50). Ca2�-dependent regulation of Ca2�-permeable
cation channels is a ubiquitous mechanism of regulation. We have
shown that lysoPC, the major lysophospholipid in oxidized LDL,
activates TRPC6 with a resultant increase in [Ca2�]i and this sets in
motion a cascade of events resulting in TRPC5 externalization with a
prolonged increase in [Ca2�]i that disrupts the coordinated calcium
transients required for normal EC migration. The studies presented
here define some of the steps in this cascade.

An increase in [Ca2�]i via TRPC6 channels can activate
several pathways and kinases including ERK (18). Ca2� and
CaM can regulate the Ras/Raf/MEK/ERK pathway and posi-
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�M) for 15 min. Phospho-MLCK(Tyr471) and total MLCK (C) or phospho-MLC(Thr18/Ser19) and total MLC (E) were detected by immunoblot analysis. Actin
served as loading control (n � 4). Densitometry measurements of phospho-MLCK(Tyr471) (D) or phospho-MLC(Thr18/Ser19 (F) are represented in graphic form:
�, medium control with WT ECs; �, lysoPC with WT ECs; Œ, medium control with TRPC6�/� ECs; �, lysoPC with TRPC6�/� ECs; }, medium control with
TRPC5�/� ECs; Œ, lysoPC with TRPC5�/� ECs. (In A–C and E, lines indicate lanes rearranged from the same gel. All bands are from the same gel.)
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tively modulate ERK1/2 activation (1, 24). We show that
lysoPC-induced ERK activation is regulated by influx of Ca2�

specifically through TRPC6 channels. ERK and TRPC5 are not
activated when ECs from TRPC6�/� mice are exposed to

lysoPC. These findings are consistent with the work of other
investigators showing increased ERK1/2 phosphorylation in
293T cells and podocytes that overexpress TRPC6 proteins
with gain-of-function mutations (10).
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Fig. 7. LysoPC-induced MLCK and MLC phosphorylation are dependent on ERK and NADPH oxidase. A: ECs were incubated with PC (12.5 �M) or
TNF-� (500 U/ml) for 30 min. Phospho-MLCK(Tyr471) was detected by immunoblot analysis, and actin served as loading control (n � 3). B–D: ECs were
transiently transfected with NsiRNA (40 nM), ERK1 siRNA and ERK2 siRNA (20 nM of each), or p47phox siRNA (20 nM) for 24 h before incubation
with lysoPC or TNF-�. B: phospho-MLCK(Tyr471) and total MLCK were detected by immunoblot analysis, and actin served as loading control (n � 4).
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collected). G: ECs were pretreated with ML-9 (10 �M) for 30 min, then the ML-9 was removed, and the migration assay initiated. Migration was assessed after
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ML-9 control; †P � 0.001, compared with lysoPC). H: ECs were transiently transfected for 24 h with NsiRNA or MLCK siRNA (30 nM) and then made
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A, D and E, lines indicate lanes rearranged from the same gel. All bands are from the same gel.)
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We have shown that lysoPC increases EC production of
ROS through activation of NADPH oxidase and this contrib-
utes to the inhibition of EC migration (43). Activation of
NADPH oxidase in ECs involves phosphorylation and trans-
location of cytosolic components, including p47phox and
p67phox, to the membrane where they assemble with Nox2 or
Nox4 and p22phox (29). NADPH oxidase activation by specific
agonists requires an increase in intracellular calcium (11), and
lysophosphatidylcholines prime NADPH oxidase and stimu-
late multiple neutrophil functions through changes in cytosolic
Ca2� (38). We provide evidence that the lysoPC-induced
activation of NADPH oxidase in ECs depends on Ca2� influx
through TRPC6-containing channels because lysoPC does not
activate NADPH oxidase in TRPC6�/� MAECs. TRPC6 can
be forming a complex with other TRPC proteins to permit
Ca2� influx to activate NADPH oxidase as has been shown in
granulocytes (4). Furthermore, the resultant Ca2� influx can
activate NADPH oxidase directly or indirectly through activa-
tion of a kinase.

ERK can activate NADPH oxidase (13, 35). When ECs are
exposed to transient hypoxia, ERK2 is activated, and this in
turn activates NADPH oxidase causing an increase in ROS
production (35). Our finding that downregulation of ERK
blocks lysoPC-induced NADPH activation also indicates that
ERK activation is upstream from NADPH oxidase activation.
We find that downregulation of p47phox or p22phox does not
alter lysoPC-induced ERK phosphorylation. Similarly, angio-
tensin II-induced ROS formation is blocked by p22phox anti-
sense, but this has no effect on angiotensin II-induced ERK
activation (44). Our results suggest that Ca2� influx through
TRPC6 channels activates ERK that in turn activates NADPH
oxidase.

The importance of NADPH oxidase activation lies, in part,
in the ability of superoxide to function as an intracellular
signaling molecule. Although ROS can activate MLCK (51),
and MLCK can activate TRPC5 channels (21, 37), there is
conflicting evidence in the literature on the ability of ROS to
activate TRPC5. One report indicates that TRPC5 can be
activated by ROS (27). Another study suggests that ROS do
not activate TRPC5, but only one inhibitor was used and its
effectiveness was not assessed (16). Our findings support a
major role for ROS in the lysoPC-induced externalization of
TRPC5.

ERK can phosphorylate MLCK and thereby increase its
activity (3, 22), and MLCK is essential for TRPC5 channel
externalization (21, 37). MLCK phosphorylates MLC, and
MLC phosphorylation/dephosphorylation regulates the inser-
tion of TRPC5 containing vesicles into the plasma membrane
(21, 37). Intracellular Ca2�-calmodulin may constitutively ac-
tivate MLCK maintaining a basal distribution of TRPC5 chan-
nels at plasma membrane (37). Our data suggest that lysoPC
increases MLCK activity through ERK activation and subse-
quent MLCK phosphorylation.

Inhibition of MLCK impairs TRPC5 translocation to the
plasma membrane and TRPC5 activity (21, 37). We find that
ML-9 can inhibit the lysoPC-induced externalization of
TRPC5 channels in ECs, complementing the findings in
HEK293 cells overexpressing TRPC5 where ML-9 decreased
the cell surface localization of TRPC5 channels (37). In
HEK293 cells overexpressing TRPC6, ML-9 has been reported
to reduce cationic currents elicited by carbacol by an MLCK-
independent mechanism (36). Our data do not show a reduction
in basal [Ca2�]i in ECs pretreated with ML-9 nor do the results
reported by other investigators studying ECs (39, 45, 46). The
ability of ML-9 to reduce [Ca2�]i may be dependent on
concentration, cell type, and native expression of calcium
channels.

The pattern of lysoPC-induced increase in [Ca2�]i seen in
ECs pretreated with ML-9 is very similar to that seen after
blocking of TRPC5 activity with siRNA (5). In both cases,
lysoPC induces only an initial transient increase in [Ca2�]i that
we attribute to TRPC6 channels, but the prolonged elevation of
[Ca2�]i is absent. ML-9 inhibits the lysoPC-induced external-
ization of TRPC5 but not TRPC6, supporting the role of
MLCK in TRPC5, but not TRPC6, insertion into the cell
membrane. LysoPC-induced phosphorylation of MLCK is
blocked in ECs from TRPC6�/� mice but not in those from
TRPC5�/� mice, suggesting that Ca2� influx through TRPC6
is critical for lysoPC-induced MLCK activation.

Our findings should not be taken to suggest that there is a
single linear pathway between TRPC6 channel opening and
TRPC5 channel externalization. Many alternative pathways,
redundancies, and regulatory influences exist. ROS production
by NADPH oxidase can activate ERK (12, 49). MLCK can
facilitate recruitment of cytoskeletal proteins and NADPH
oxidase to the plasma membrane with subsequent activation of
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NADPH oxidase and increased ROS production (42). Patho-
logic feed-forward activities could occur with cycles of in-
creasing ROS production and ERK and MLCK activation,
culminating in elevated TRPC5 externalization.

The in vivo relevance of these studies is seen in comparing
endothelial healing of arterial injuries in mice on a high-
cholesterol diet compared with those on a chow diet (34). The
high-cholesterol diet increases plasma lysoPC levels and in-
hibits endothelial healing in WT mice. Although a high-
cholesterol diet causes the same increase of plasma cholesterol
and a greater increase of plasma lysoPC in TRPC6�/� and
TRPC5�/� mice, endothelial healing is not impaired in
TRPC6�/� mice and the impairment is significantly reduced
in TRPC5�/� mice (33). These findings suggest that the pres-
ence or absence of TRPC6 and TRPC5 channels has a signif-
icant influence on the cellular response to environmental fac-
tors.

Based on our results, we propose that lysoPC induces
CaM-dependent TRPC6 activation allowing an initial transient
rise in [Ca2�]i. This triggers ERK activation, which leads to the
activation of NADPH oxidase. The increase in ROS activates
MLCK, which in turn facilitates TRPC5 channel insertion into
the plasma membrane and causes a prolonged influx of Ca2�

that disrupts the finely coordinated local signals that regulate
calcium transients required for normal EC migration (see
proposed model in Fig. 9). Although studies were conducted
using animal ECs, TRPC6 and TRPC5 are expressed in human
ECs, and downregulation of TRPC6 blocks lysoPC-induced
p47phox phosphorylation (Fig. 4D), suggesting that the pathway
outlined in this paper is functional in human ECs. Knowledge
of the signaling pathway provides opportunites for its regula-
tion and the restoration of endothelial healing under conditions
of elevated lipid oxidation products or oxidative stress leading
to TRPC6 or TRPC5 activation.
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