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T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical

lymphoproliferative disorders with considerable clinical, morphological,

immunophenotypic, and genetic variation, including ∼10–15% of all lymphoid

neoplasms. Several evidences indicate an important role of the non-neoplastic

microenvironment in promoting both tumor growth and dissemination in T cell

malignancies. Thus, dysregulation of integrin expression and activity is associated

with TCL survival and proliferation. We found that thyroid hormones acting via the

integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the

pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted

TCL proliferation and induced and an angiogenic program via the up-regulation of the

vascular endothelial growth factor (VEGF). This was observed both on different TCL cell

lines representing the different subtypes of human hematological malignancy, and in

preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well.

Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic

hyperthyroid mice, showed increased tumor growth along with increased expression

of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3

decreased VEGF production, induced TCL cell death and decreased in vivo tumor

growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL

regulation and their contribution to TCL development and evolution. These actions not

only provide novel new insights on the endocrine modulation of TCL, but also provide a

potential molecular target for its treatment.

Keywords: VEGF, proliferation, angiogenesis, integrin αvβ3, thyroid hormones, T-cell lymphoma

INTRODUCTION

Thyroid hormones (THs), triiodothyronine (T3), and thyroxine (T4), are involved in different
biological processes as cell growth, development, differentiation, and the regulation of metabolism
and homeostasis (1). The classical mechanism of action of THs is mediated by the binding of T3 to
nuclear receptors (TR) that interact with specific responding elements (TREs) in the promoters
of target genes. The binding of T3 to TRs promotes a conformational change that induces the
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exchange of corepressors for coactivators, thus leading to
gene transcription on responsive genes (2, 3). THs can also
trigger their actions by a non-classical mechanism that does
not implicate direct gene transcription regulation by nuclear
TRs. These non-genomic actions indirectly modulate gene
transcription through the activation of intracellular pathways
and other transcription factors (3, 4). Despite many of the non-
genomic actions have been demonstrated to be initiated by THs
through the activation of a membrane receptor (mTR), they
can also be initiated at receptors located in the mitochondria
or cytoplasm (5).

In the last years, several studies have identified the integrin
αvβ3 as the membrane receptor for THs in normal tissues
as blood vessels and heart (5); but also in several types of
cancer cells (4, 6–9). Integrin αvβ3 is a member of a large
group of heterodimeric transmembrane receptors that regulate
cell-cell and cell-extracellular matrix (ECM) interactions and
enable cells to respond to their environment (10). Several studies
related to cancer have implicated the activity of this group of
adhesion receptors in the proliferation, migration, and survival
of different types of tumor cells (11). Many aspects of the
cellular microenvironment, like the composition and structure
of the ECM, the signals generated by growth factors or the
stimulation of cytokine secretion are regulated by integrins (12,
13). Particularly, integrin αvβ3 mediates the interaction between
the cells and the ECM as a result of its binding to plasmatic and
ECM ligands that express the peptide sequence RGD (Arginine–
Glycine–Aspartate) (14). Interestingly this integrin is highly
expressed in proliferating cells, like malignant cancer cells and
cells from the endothelial and vascular smooth muscle (14).

It is well-known that the growth, invasiveness, and
dissemination of a tumor are highly associated with angiogenesis.
In recent studies, our group demonstrated that the interaction
of THs with integrin αvβ3 triggers intracellular pathways in
T-cell lymphoma (TCL) cells. This further activates transcription
factors, thus stimulating gene transcription and the production
of angiogenic factors (15). Therefore, the expression of integrin
αvβ3 in tumor cells and their vascular network could explain
the proangiogenic and proliferative effects of THs on different
cancers, including gliomas (9), breast (4), thyroid (6, 8), and
renal cancer (7), among others.

In this review, we will focus on the role of integrin αvβ3 as
the membrane receptor for THs and how its activation induces
the proliferation and survival of different types of cancer cells.
Specifically, we will discuss the influence of THs non-genomic
actions through integrin αvβ3 activation on TCL malignant
phenotype, and the inhibition of this receptor as a potential
clinical target.

ROLE OF INTEGRIN αVβ3 IN CANCER AND
ANGIOGENESIS

Integrins and Cancer
Despite integrins were initially described as cell adhesion
receptors, current studies highlight the idea that these receptors
have essential roles in cancer. In fact, one of the well-known

mechanisms of cancer is the abnormal function of integrin
receptors (16). Cancer is a complex disease and its progression
is deeply related with the dynamically evolving extracellular
matrix that regulates many aspects of the tumor and tumor-
associated cells (16). Integrin bi-directional signaling is essential
to sense, modulate, and respond to changes in extracellular
stimuli (17). The signal transduction mediated by these receptors
usually occurs through direct or indirect interactions between the
cytoplasmic domain of the integrin and intracellular effectors,
which occasionally can be supported by the interactions with
other cell surface proteins that are associated to integrins (14).
For example, it has been reported that caveolin is required for
the association between Src-family kinases and β1 integrins;
moreover the loss of this association results in the loss of FAK
phosphorylation induction and the correct development of focal
adhesion sites (18). Tetraspanins, on the other hand, are essential
for rapid cell migration mediated by α3β1, α6β1, α6β4, and α7β1
integrins, making these integrin partners potential antimetastatic
targets (19). In cancer cells, FAK and Src are two of the best-
studied integrin-mediated signaling effectors. Different types of
solid tumors, including pancreatic, colon, and breast cancers,
show high expression and activation of FAK and Src, thus
contributing to the progression and the malignant phenotype of
these pathologies (20–22). Inhibition of FAK and Src signaling
reduces tumorigenic and metastatic potential of breast cancer
cells (23). When integrin-mediated cell adhesion occurs, FAK
is activated by autophosphorylation, generating a high-affinity
binding site for the SH2 domain of Src. These activated FAK/Src
complexes are the link between integrins and the downstream
signaling effectors such Rac1 GTPase or the MAPKs (24). The
interaction of integrins and their ligands, and the consequent
activation of these complexes and the intracellular pathways, can
influence cancer cells behavior by increasing cell proliferation,
survival, and gene expression; therefore contributing to tumor
growth and metastasis (24). All these findings point out the
mentioned pathways as potential therapeutic targets in different
types of cancer (23, 24).

Most solid tumors are originated from epithelial cells that
are conferred with the ability to resist apoptosis, migrate,
and disseminate through the epithelial-mesenchymal transition
(EMT) (25). This process involves the remodeling of the ECM
and changes in the interactions of cells with the ECM (26). Many
integrins that are expressed by epithelial cells are retained in
the tumor, but their levels and physiologic functions may be
altered. Integrins α6β4, α6β1, αvβ5, α2β1, and α3β1, regulate
the adhesion of epithelial cells to the basement membrane,
however, in tumor cells they might involve and contribute to cell
migration, proliferation and survival (11). However, during the
differentiation into mesenchymal cells some epithelial integrins
are downregulated and the expression of other integrins with
key roles in EMT progression and tumor invasiveness are
activated (24, 26). For example, the expression of α6β4 integrin
is down-regulated during EMT in the mammary gland through
the epigenetically silencing of the gene encoding β4 integrin
(27). Also in mammary epithelial cells, enhanced expression
of integrin αvβ3 is required for TGF-β-induced EMT (28).
Likewise, α3β1, α5β1, α1β1, and α2β1 integrins are overexpressed
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in different stages of EMT (24, 29). Indeed, the expression
of many integrin subunits, including α3, α5, α6, αv, β1, β3,
and β4 in different types of cancer cells, has been linked to
their invasive and metastatic potential (30). The expression of
integrins αvβ3, α5β1, and αvβ6 are normally low or undetectable
in most adult epithelia but in some tumors their protein
levels are overexpressed (11). Elevated αvβ6 integrin levels are
associated with fibrosis and cancer in lungs, skin and along
the gastrointestinal tract (31). After its activation, α2β1 integrin
promotes cell adhesion, proliferation and invasion in liver and
lung metastasis (32). In prostate cancer (PCa) integrin α2β1 is
overexpressed and its phosphorylation and consequent activation
have been associated with the progression of this pathology (33).
Also, integrin αvβ3 has been reported to contribute to PCa
progression by promoting angiogenesis, survival, and invasion
(34, 35). The overexpression of integrin αvβ3 in primary head
and neck squamous carcinoma and metastatic lymph nodes was
related to lymph node metastasis and worse prognosis (36). In
breast cancer, the levels of integrin α6β4 and ανβ3 correlate
with tumor size, grade and decreased survival (37, 38). The
overexpression of integrin αvβ3 is also involved in the switch
from a non-tumorigenic state of melanoma to a tumorigenic
and invasive one (10) and increased bone metastasis in
prostate cancer (39).

It is well-known that integrins are able to synergistically
interact with cytokine receptors and growth factors, thus
mediating some features of cancer progression as cell
migration, invasion, and survival. In the last years, it has
been described that integrin N-glycosylation is essential for
integrin heterodimerization and interaction with ligands
(16, 40, 41). Currently, several published works indicate that
N-glycan alterations on integrin subunits influence their affinity
for their ligands, thus contributing to the malignant phenotype.
These studies propose the targeting of 1,6-GlcNAc structures,
sialic acid, and fucose and their related enzymes, in combination
with the inhibition of integrins, represent a promising new
therapeutic approach (16).

Mainly two therapeutic strategies based on integrin target
were developed in the last decades: inhibition of integrin function
and the use of integrin expression patterns for drug delivery
(42). The direct inhibition of integrin function with synthetic
peptides and humanized antibodies, among others, has so far be
the main therapeutic strategy in the clinic and until now is the
only form of anti-integrin treatment shown to work in patients
(43). The antibodies abituzumab, intetumumab, and the small
molecule, cilengitide, are the most advanced molecules studied
in clinical trials for the treatment of different types of cancer (44).
Despite the promising preclinical results observed, poor efficacy
was obtained in late-phase clinical trials (16). The problem
in translating the preclinical data of anti-integrin therapies to
the clinic, especially in cancer, would be related to the poor
knowledge of integrin biology. For example, the profile and
distribution of many integrins in normal and pathological tissues
from cancer patients is somehow hard to achieve as there is a
lack of good antibodies for integrin staining in formalin-fixed-
paraffin embedded tissues. The use of integrins as biomarkers
could improve the efficacy of anti-integrin cancer treatment (44).

In summary, if we improve the skills for the identification
of integrins in patient samples and increases our knowledge
on other integrin characteristics, as the internalization and
intracellular trafficking response in the oncology process, new
effective, and safe therapies would be generated.

Integrins and Tumor Microenvironment
The transformed cells are not capable of generating tumors
with metastatic potential by themselves; this process requires
a permissive tumor microenvironment (TME) that might be
crucial for tumor progression. Recent works have begun to focus
more deeply on the study of non-tumor cell components of the
stroma and their involvement in the malignant progression (45).
The TME include many host cell types, including fibroblasts,
endothelial, perivascular, and inflammatory cells, that in some
cases can contribute to tumor progression through different
processes like angiogenesis, lymphangiogenesis or inflammation.
Examples of tumor-associated stromal cells are tumor or cancer-
associated fibroblasts (TAFs or CAFs) and tumor-associated
macrophages (TAMs) (25, 45, 46). Reciprocal communication
between cancer cells and these non-tumoral cells is essential and
leads to high proliferation and metastatic capability of the tumor.

Integrins can bidirectionally transduce signals across the
cell membrane, (24). The “outside-in” signaling is triggered by
chemical or mechanical alterations in the ECM. The interaction
of the integrin extracellular head domain with the ECM ligand or
divalent cations induces integrin clustering and conformational
rearrangements of the cytoplasmic tail that lead to the activation
of several signaling pathways that regulate gene transcription
and cell shape, survival and migration (47). The “inside-out”
signaling, on the other hand, is triggered by a cytoplasmic signal
that can alter the integrins’ affinity for extracellular ligands
(48, 49). These mechanisms are essential for the communication
of the cells with their microenvironment and regulate many
important biological functions including cell proliferation,
survival, and motility. The tumor cells use these same processes
to acquire invasive and oncogenic survival properties and to
orchestrate changes in the host microenvironment that lead to
tumor growth and metastatic dissemination (17).

Additionally to their role in malignant cells, integrins
expression on tumor-associated host cells can profoundly
influence in the malignant potential of a tumor (17, 50). Integrins
are expressed on all the cell types that compose the TME,
and modulate functions of both, tumor and stromal cells, that
promote the communication between different cell types of the
TME, leading to tumor growth and malignant progression (50).
For example, integrin α9β1 regulates the signaling that increases
tumor growth and lymphatic metastasis via the recruitment
of TAFs in breast cancer cells (51). In gastric cancer, C-X-C
motif chemokine 12 (CXCL12) derived from CAFs promotes cell
invasion by enhancing the clustering of integrin β1 in gastric
cancer cells (52). Dr. Cress group demonstrated that the cleavage
of integrin α6β1 by the serine protease urokinase plasminogen
activator (uPA) induces tumor cell motility, invasion, and
metastasis in a xenograft model of PCa cells placed within
the living bone matrix (53). The same group described later
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that TAMs stimulate the production of uPA inside the tumor,
resulting in α6β1 integrin cleavage in PCa cells (54).

The capacity of integrins to regulate cell adhesion and
migration alone is enough to drive invasion. Tumor cells
must break the ECM barriers to metastasize to a distant
organ; this process requires not only the degradation and
remodeling of ECM, but it can also involve ECM stiffening.
For example, in human breast carcinoma, collagen fibers
become bundled and align perpendicularly to the basement
membrane, thus converting into tracks for cells to migrate
(55). Likewise, in pancreatic ductal adenocarcinoma, increased
collagen thickness and matricellular fibrosis in response to
elevated β1-integrinmechano-transduction was related to amore
aggressive pathology (17). ECM degradation and remodeling is
carried out by several proteases. It has been shown that integrins
can modulate the expression levels and the activity of those
proteases, in particular matrix metalloproteinases (MMPs) and
the uPA system (56). The ability to regulate matrix organization
and remodeling is a critically important function of integrins
(24). For example, the interaction between MMPs and integrin
β2 is required for leukocyte migration, and the combined
participation of MMPs and other integrins is also necessary for
tumor metastasis (56).

The levels of MMPs are always elevated in the presence of
tumors (57). The expression of MMP gene can be up-regulated
by integrin signaling pathways (58). It has been reported in
different studies that integrins αv and β1 are able to increase
the levels of several MMPs. It was demonstrated that integrin
αvβ6 increases the expression levels of MMPs in oral, ovarian and
colon cancers (59–61). In oral squamous cell carcinoma (SCC),
the increment of integrin αvβ6 expression activates MMP-3, thus
promoting oral SCC cell proliferation and metastasis in vivo (61);
on the other side, integrin β1 promotes invasion and migration
of SCC cells vía MMP7 (62). In ovarian cancer cells, high levels
of integrin αvβ6 correlate with an augment of the expression and
secretion of pro-MMP-2, pro-MMP-9 and high molecular weight
uPA, thus increasing ECM degradation (59).

One of the characteristics that is important to consider is the
physical location of MMPs because this dictates their biological
functions and is critical for tumor progression. The localization
of several MMPs in cell membrane through the interaction with
integrins has been demonstrated; one example is the binding of
MMP-2 to αvβ3 or MMP-9 to αVβ6 (56, 63). MMP-9 expression
levels were found to be increased in colon cancer metastasis
to liver, and this metalloproteinases co-localized with integrin
αVβ6 at the invading border of the tumor (63). Consequently,
integrins have a critical role in TME impact on tumor invasion
and spreading.

Integrin αvβ3 and Angiogenesis
Angiogenesis is the formation of new blood vessels from pre-
existing ones. Even though it is a fundamental physiological
event, in certain situations angiogenesis can also be negative; the
formation of new blood vessels contributes to the progression of
several pathologies and is crucial in tumor growth andmetastasis.
Consequently, angiogenesis is essential for the growth, spreading
and infiltration of malignant cells within tissues (64). In

the beginning, tumors can proliferate and survive by taking
advantage of the available vessel of their host and surroundings;
nevertheless, malignant cells can become hypoxic if they are too
far away from the oxygen and nutrients of those vessels (65).
In response to hypoxia tumor cells are able to create new blood
vessels to fulfill their metabolic needs.

Tumor angiogenesis depends on ECM disruption, the
migratory ability of endothelial cells (ECs) and their adhesion to
integrins. As we have already mentioned, integrins are expressed
on ECs, lymphatic endothelial cells and pericytes (66) and for this
reason, they have been pointed out as important players in cancer
angiogenesis (11). They are involved in tumor angiogenesis by
interacting with both axis that regulate the maturation and
plasticity of the new vessels: the pathway of vascular endothelial
growth factor (VEGF) and its receptor (VEGFR) (67) and that of
angiopoietins and Tie receptors (ANG-Tie).

Among all integrins, αvβ3 has been thoroughly studied for its
localized expression in neovasculature and in aggressive tumors
(68). The membrane receptor integrin αvβ3 recognizes ECM
proteins expressing the RGD peptide sequence. Despite the
expression levels are low in resting endothelial cells and normal
organ systems, integrin αvβ3 is highly expressed on activated
tumor endothelial cells (11). The latter, makes this integrin an
appropriate target for antiangiogenic therapeutics. Moreover,
integrin αvβ3 is also express on tumor cells, thus both tumor cells
and tumor vasculature can be target by anti-integrin therapy.

It was described that only 20% of integrin αv-null mice
survive until birth, and that 100% die within the 1st day of
birth (69). These mice develop intracerebral hemorrhage due
to the defective interactions between blood vessels and brain
parenchymal cells (70). On the other side, the β3 integrin-null
mice can survive and apparently develop a normal vascular
network (71). Furthermore, no integrin β3 protein levels are
detected in quiescent blood vessels, but its expression increases
during sprouting angiogenesis (72).

One of the roles of integrin αvβ3 during angiogenesis is
to bind and activate MMP-2 on new blood vessels to disrupt
ECM and facilitate tumor cell migration and infiltration (64).
A cooperative action between activated integrin αvβ3 in tumor
cells and platelets, that promotes extravasation and metastasis,
has also been reported (73). Integrin αvβ3 also participates in the
angiogenic switch. This process is referred the time during tumor
progression where the balance between pro- and anti-angiogenic
factors tilts toward a pro-angiogenic outcome, resulting in the
transition from not vascularized hyperplasia to a vascularized
tumor andmalignant tumor progression (74). In this sense, it was
described that the inhibition of tumor-associated αvβ3 integrin
regulates the angiogenic switch in melanoma cells leading to
reduced melanoma growth and angiogenesis in vivo (74).

In 2004, Davis et al. have shown that THs can induce
angiogenesis through a cell surface receptor using a chick
chorioallantoic membrane (CAM) model (75). In 2005, Bergh
et al. have demonstrated that the membrane receptor for THs is
near the RGD binding site of the integrin αvβ3 (76). Additionally,
we found that the activation of integrin αvβ3 by THs mediates
angiogenesis in malignant T cells (15). A number of in vitro and
in vivo studies have supported a role for THs in the proliferation
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of tumor cells (75, 77–79) and as proangiogenic factor in many
types of cancer (15, 75, 76, 80). These properties may be relevant
to tumor biology and we will discuss them later in this review.

All the mentioned findings highlight integrin αvβ3 as
a fundamental tumor angiogenic promotor. Antagonists of
αvβ3 integrin were developed and some proved to be very
successful antiangiogenic agents both in vitro and in preclinical
angiogenesis assays in vivo. In accordance, integrin αvβ3
antagonists could inhibit tumor growth in several cancer animal
models of human breast cancer (81) and glioblastomas (82).
Cilengitide, a specific inhibitor of integrin αvβ3, was able to
decrease tumor growth in two different angiogenic and invasive
glioblastomamodels, by decreasing the diameter of tumor vessels
thus reducing the infiltration of cells around the tumor center
(83). Associated with its function as membrane receptor for THs
actions, the effects of the deaminated analog of L-thyroxine,
Tetraiodothyroacetic acid (TETRAC) and its nanoparticulate
formulation have been reported as antithyroid agents at
the integrin (84).

THYROID HORMONE NON-GENOMIC
ACTIONS IN T CELL LYMPHOMAS

THs Effects on T Cell Lymphoma Growth
and Proliferation
As we have already mentioned, THs are critical for many
processes like cell growth, differentiation, metabolism, and
homeostasis maintenance (1). The classical effects of THs
are initiated when T3 binds to their nuclear receptors (TRs)
that interact with specific responding elements (TREs) in the
promoters of target genes. The conformational change promoted
by the binding of T3 to TRs induces the exchange of corepressors
for coactivators, thus leading to gene transcription on responsive
genes (2, 3). TRs are encoded by two different genes: the
THRA located in chromosome 17, and the THRB located
in chromosome 3, codifying for the TRα and TRβ proteins,
respectively (2, 3). The expression of these isoforms differs
during the embryonic development and in adult tissues (1).
Mutations of TRs have been detected in several cancers, such
as erythroleukemia and liver, kidney and thyroid cancers (13).
These mutations have been suggested to be a selective advantage
for malignant transformation (85). Thus, the mutation (86, 87) or
aberrant expression (88) of TRs has been demonstrated in several
cancer cell lines. Also, biopsies of patients with gastrointestinal
tumors showed increased levels of TRα1 that correlate with Wnt
pathway activation and tumor proliferation (89).

Several clinical studies show controversial results related to
THs status and cancer. On one side, some studies show that
hyperthyroidism might be a risk factor for the development
and progress of different types of tumors like breast, thyroid
and prostate cancers (85, 90, 91), while hypothyroidism
could favor the clinical outcome of cancer patients (92, 93).
However, hypothyroidism was associated with an increased
risk of colorectal cancer and hepatocellular carcinoma, that
would be explained by the increased generation of reactive
oxidative species associated with lipid peroxidation, that result

in chronic inflammation and DNA damage leading to neoplastic
transformation (94, 95). The association between THs and cancer
is now better understood following the discovery of the αvβ3
integrin plasma membrane receptor for T4 and T3 (see below).

In the last decade several studies reported the proliferative
effect that physiological concentrations of T3 and T4 have on
different cancer cell lines, such as glioma, papillary, and follicular
thyroid carcinoma, lung carcinoma and breast adenocarcinoma,
among others (26, 77, 78, 96). These actions induce the activation
of intracellular signaling pathways and transcription factors that
increase cell proliferation.

In this sense, our group has investigated the effect of genomic
and non-genomic actions of THs on normal T lymphocytes (97,
98) and in TCL cell (15, 79, 99–103) proliferation and survival.
We found that TH induced cell proliferation of murine TCL cells
by triggering a non-genomic intracellular signaling that involves
the activity of PKCζ that leads to ERK 1/2 and NF-κB activation
and the increase of transcriptional levels of TRs and the inducible
nitric oxide synthase (99). We have also found that THs can
regulate the balance between proliferation and apoptosis of TCL
cells both in vitro and in in vivo assays (79, 100). Additionally,
we studied how the thyroid status modulates the in vivo growth
of EL4 TCL cells and how the antitumor immune response is
affected in euthyroid, hypothyroid, and hyperthyroid mice. The
appearance of palpable solid tumors was earlier in hyperthyroid
animals, which also developed tumors with a higher growth
rate and an increased volume when compared with tumors in
euthyroid controls or hypothyroid mice (79). In addition, the
larger tumor size in hyperthyroid mice was accompanied by
higher expression levels of the proliferating cell nuclear antigen
and cell cycle regulators; andwith an increase of intratumoral and
peritumoral vasculogenesis (79).

Despite TCL tumor growth was not significantly different
between hypothyroid and euthyroid mice, hypothyroid animals
showed a higher frequency of metastases (102). This was
associated to an increased percentage of regulatory T (Treg) cells
in their tumor draining lymph nodes, a decrease number and
activity of splenic NK cells and a decreased number of splenic
myeloid-derived suppressor cells (MDSCs) when compared to
control euthyroid tumor-bearing mice (102) (Figure 1). Also,
tumor-bearing hyperthyroidmice displayed the lowest metastatic
dissemination. This was related with an increased systemic
antitumor immunity in hyperthyroid mice, reflected by the
low number of MDSCs and increased number and activity of
both NK and CD8+ cytotoxic T lymphocytes (Figure 1), thus
strengthening the fact that low levels of circulating THs are
related to TCL spreading and metastatic dissemination. These
results highlight the importance of monitoring the thyroid status
in patients with TCL.

Integrin αvβ3 as the Thyroid Hormone
Membrane Receptor in TCL Cells
As we have already mentioned, both T3 and T4, play important
roles in regulating the proliferation of several cancer cell types.
Their metabolic, developmental and growth effects in normal
tissues are mediated primarily by TRs (104), while their surface
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FIGURE 1 | Regulation of antitumor immune cells by circulating levels of THs.

In hyperthyroid conditions (blue arrows) increased number and activity of NK

and cytotoxic CD8+ lymphocytes, while decreased number of myeloid-derived

suppressor cells, were found in the spleens of TCL tumor-bearing mice.

However, hypothyroid tumor-bearing animals displayed higher numbers of T

regulatory lymphocytes (Treg) in tumor-draining lymph nodes and lower

number and activity of splenic NK and CD8+ lymphocytes than control,

indicating that the hypothyroid status favors the dissemination of TCL cells.

receptors are involved in the modulation of angiogenesis.
Bergh et al. (76) found that physiological concentrations of T4
activate the MAPK pathway in CV-1 cells that lack nuclear
TRs, but express the mTR integrin αvβ3. The MAPK-mediated
proangiogenic action of T4 was inhibited by TETRAC, RGD
peptide, and anti-αvβ3 antibodies (76). These results indicated
not only that the surface receptor for THs is on the integrin αvβ3,
but also that the binding site for the hormone is either at or near
the RGD recognition site. High affinity-binding of radiolabeled
hormone to the purified integrin was also demonstrated, and for a
complete identification of the mTR, knockdown of integrin αvβ3
by small interfering RNA (siRNA) against both monomers was
shown to abrogate the transduction of the THs signaling into
MAPK activation (105).

Many laboratories reported the involvement of ERK1/2, Src
kinase, and PI3-kinase in the non-genomic mechanisms of THs
(106, 107). Studies performed in a glioblastoma cell line showed
that not only T3, but also T4 activate the ERK1/2 pathway leading
to cell proliferation (26). These results point out a difference
between mTR and TRs, the latest is activated with high affinity
only by T3, while integrin αvβ3 can bind both T3 and T4.

Studies of the kinetics of thyroid hormone binding performed
with crystallographic and mathematical modeling (108, 109)
found that THs binding site on integrin αvβ3 has no homology
to nuclear TR and contain two binding domains. One domain,
namely S1, recognizes exclusively T3 and activates PI3K via
Src kinase. The S2 domain regulates MAPK1 and MAPK2 and
binds both T4 and T3, however the affinity for T4 is higher
than the S1 or S2 sites have for T3 (5). At physiological free
hormone concentrations T4 is maximally active at the S2 site
on integrin αvβ3, however significantly higher than physiological
levels of free T3 are required to induce proliferative activity via
this receptor (5).

The identification of αvβ3 integrin as the mTR provides
the molecular basis to many actions of TH at cancer cells.
THs can influence cell proliferation, survival and angiogenesis
in different cancer cells via integrin αvβ3 (110–112). Thus,
myeloma cell adhesion to fibronectin is increased by T3 and
T4 which induces αvβ3 clustering. In addition, THs induce
MMP-9 expression and activation via integrin αvβ3 and MAPK
induction, suggesting a role for TH-mediated activation of
integrin αvβ3 in myeloma migration and progression (110). THs
also promote the proliferation of ovarian cancer cells via integrin
αvβ3 that activates extracellular regulated kinase (ERK1/2) (112).
In breast cancer cells, THs regulate cell migration via integrin
αvβ3 that activates SRC/FAK/PI3-K pathway (111).

Integrin αvβ3 in the Malignant Phenotype
of T Cell Lymphomas
T cell lymphomas (TCL) are a broad group of aggressive
lymphoproliferative disorders with significant variation clinical,
immunophenotypic, and genetic features. This group of
hematologic disorders that is characterized by a clonal growth
of T cells at different stages of maturation represents ∼10–
15% of Non-Hodking lymphomas (113, 114). The last World
Health Organization classification has divided this group of
hematopoietic malignancies according to its predominant
presentation: leukemic (disseminated), nodal, extranodal, or
cutaneous (115). The most frequent subtypes include peripheral
T cell lymphoma not otherwise specified (PTCL-NOS),
anaplastic large cell lymphoma (ALCL) and angioimmunoblastic
T cell lymphoma (AITL) (116, 117). Although cutaneous T
cell lymphomas (CTCL) are less frequent, is important to note
that the skin is the second location in frequency of extranodal
primary lymphomas (118). As in other neoplastic disorders,
TCL are exposed to a complex environment that comprises
among others, growth factors, cytokines, and hormones that are
produced by either lymphoma cells or normal cells present in the
surrounding or distal tumor microenvironment (119, 120). As
we already mentioned, we have demonstrated that one of those
factors are THs (15, 79, 99, 100, 103).

Studies of our group demonstrated that both, genomic and
non-genomic actions triggered by THs increase cell proliferation
of human and murine TCL lines. Moreover, these results
described the contribution of the mTR, the integrin αvβ3, in
the non-genomic actions of THs in TCL cells (15, 99, 103). The
signaling induced by THs through the mTR in murine TCL cells
includes the rapid translocation of the ζ isoform of PKC to the cell
membrane (99, 103), ERK 1/2 phosphorylation and the activation
of the transcription factor NF-κB (15, 99), all molecular processes
that are essential for the proliferation and survival of TCL cells.

Recently, we have also demonstrated that integrin αvβ3 is the
mTR in human TCL cells. Both T3 and T4 were able to induce in
vitro the proliferation of tumor, but not normal T lymphocytes
(99, 103), being the presence of physiological concentrations of
both hormones the most effective to trigger the growth of human
TCL cell lines (15). Thus, in a panel of 9 human TCL cell lines,
representing the different subtypes of the disease, we showed that
the proliferative actions triggered by THs were mediated by the
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FIGURE 2 | Non-genomic action of THs initiated at the surface receptor of TCL cells on the integrin αvβ3. THs induce signaling pathways triggered after binding to

integrin αvβ3 include the activation of NF-κB, thus leading to the production of angiogenic factors such as VEGF and to cell proliferation, cell survival and

angiogenesis. Figure adapted from Cremaschi et al. (122) with permission from Elsevier.

activation of integrin αvβ3. This effect was blocked when the
mRNA levels of the integrin αv, β3, or both were downregulated
using siRNA (15). Additionally, we have evidenced that these
effects were accompanied by the regulation of cell cycle markers.
According to this, it has been reported in breast cancer cells
that TETRAC inhibits the effects of THs on the integrin αvβ3
leading to an increment in the expression of proapoptotic genes,
demonstrating that THs non-genomic actions are required for
the survival of these cells (4, 121).

We identified the genetic programs activated by THs
through their actions on integrin αvβ3 in TCL cells. To
this aim we performed RNA sequencing techniques on TCL
cells and analyzed results using bioinformatic tools. We
found that genes involved in protein translation, lymphocyte
proliferation/differentiation, DNA replication and angiogenesis
were mobilized by THs through the mTR activation. Remarkably,
we found that the intracellular pathways activated by THs
through the mTR significantly induced the transcriptional levels
VEGFA and VEGFB genes. This induction was abrogated
by siRNA against integrin αvβ3 in TCL cells either from
immature or mature origins; and dependent on the activation
of the transcription factor NF-κB (15). Importantly, when we
performed these experiments in the presence of vitronectin, the
“natural” ligand of integrin αvβ3, we found that the pathways
triggered by THs are different.

It is important to note that it was also evident an association
between integrin αvβ3 and VEGF expression in samples from
patients with PTCL. By bioinformatic analysis of PTCL tissue
microarrays we found a positive correlation between the
transcriptional levels of integrin αv or β3 and those of VEGFA or

VEGFB. We also verified that the induction of VEGF production
in TCL that is regulated by THs functions in a paracrine or
autocrine manner. The induction of VEGF production mediated
by THs increased the migration of human endothelial cells,
and tumor cell proliferation. Moreover, the blocking antibody
against VEGF, bevacizumab, abrogated all the mentioned effects.
We also found that the proliferative action triggered by THs
on TCL cells was impaired by the inhibitor of VEGF receptor,
Axitinib, (15, 122). All these findings are resumed in Figure 2.
In sum, we found that the transcriptional programs initiated
by THs, through the activation of integrin αvβ3, stimulate cell
proliferation and favor cell survival of TCL, thus, contributing
to their malignant phenotype. Furthermore, they also lead to
the production and release of angiogenic factors, thus favoring
tumor dissemination.

Inhibition of Integrin αvβ3 Receptor for TCL
Treatment
As we have already mentioned, integrin αvβ3 is highly expressed
on activated tumor endothelial cells, but not on resting
endothelial cells and normal organ systems (11). In addition, this
membrane receptor is also highly expressed on tumor cells. This
characteristic makes integrin αvβ3 an attractive target for both
tumor cells and tumor vasculature.

Based on the proliferative and proangiogenic roles of THs
mediated by the integrin αvβ3 in TCL cells, we used preclinical
models to analyze whether these pathways could be capitalized
for the treatment of patients with TCL.We performed xenografts
of human TCL in NOD-SCID immunodeficient mice and we
evaluated the effect of integrin αvβ3 inhibition on tumor growth.
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The negative regulation of the integrins αv or β3 in TCL cells
by siRNA reduced the tumor volume and decreased the protein
levels of VEGF and the blood vessel area in TCL tumors (15, 122).
This suggests a decrease in the angiogenic potential of tumors
derived from cells that do not express the integrin αvβ3. We
then wondered whether integrin αvβ3 actions on lymphoma cells
could be therapeutically capitalized for the treatment of TCL
patients; and considering that PTCL-NOS is the most frequent
subtype, we developed a xenograft model of human PTCL-NOS
cells into SCID mice and evaluated the action of the selective
inhibitor of integrin αvβ3 cilengitide. We found that cilengitide
treatment reduced tumor volume by decreasing NF-κB pathway
activation and the microvascular lumen size, while increasing
tumor apoptosis (15). Moreover, similar effects were found in
mice bearing ALCL patient-derived tumors (PDX) xenografts
(15, 122). It is important to note that in mice treated with
cilengitide no toxic effects were observed. These results highlight
the importance of these mechanisms for the development of
a more effective and less toxic therapy for patients who suffer
these pathologies.

Cilengitide was the first integrin antagonist evaluated in
clinical phase I and II trials for the treatment of glioblastoma
and several other tumor types (123–125). No encouraging results
were found in patients with glioblastoma when using cilengitide
as a single agent. Some reasons for the unexpected clinical low
efficacy in glioblastoma could be related to the fast off-rate of
cilengitide from its targets, the rapid plasma clearance, or the
poor perfusion of the brain tumor environment (43). However, it
is important to note that a beneficial therapeutic action was found
when administered in association with standard radiotherapy or
chemotherapy (125, 126), and this was also found in other type
of tumors (127, 128).

There is not much information on the role of THs and
its action on integrin αvβ3 in other hematologic malignancies;
however it was shown that this integrin enhance the proliferation
of acute myeloid leukemia (AML) cells (129) and it is required for
AML cell survival (130). Furthermore, integrin αvβ3 expressed
on the worst prognostic AML cells mediates the interaction
with stroma cell-derived ligands in the bone marrow niche, thus
triggering a signaling cascade that is critical for the proliferation
of AML cells (131). Activated integrin αvβ3/β-catenin signaling
pathway in tumor microenvironment decreased the sensitivity of
AML cells to tyrosine kinase inhibitor sorafenib, as well (132).
Thus, inhibition of this integrin signaling pathway would also be
of potential therapeutic impact in AML.

CONCLUDING REMARKS

Integrins are crucial mediators for the survival and migration
of tumor cells, not only by acting directly on these cells,
but also through the influence they exert on the cells of the

microenvironment that surround the tumor. Due to the central
role that integrins play in tumor angiogenesis and metastasis,
they have become promising targets for the treatment of different
types of aggressive cancers.

In this sense, integrin αvβ3 has a crucial role in inducing
tumor cell migration and metastasis to distant organs. Moreover,
being the membrane receptor for thyroid hormone non-
genomic actions, integrin αvβ3 triggers intracellular pathways
leading to TCL proliferation and survival and to tumor growth
and vascularization via the production of angiogenic factors.
The selective inhibition of the integrin αvβ3 in different
subtypes of TCL results in the decrease of cell proliferation,
tumor growth and impaired angiogenesis. The lack or low
expression of integrin αvβ3 in non-active endothelial cells
and in normal lymphoid cells, important actors in antitumor
immune response, offers a rationale and attractive target for
TCL treatment.

Moreover, integrin αvβ3 may be an attractive therapeutic
tool for other neoplastic diseases. In fact, in patients with
advanced solid tumors, as breast, ovary, and pancreas cancers, the
benefit of medical induction of euthyroid hypothyroxinemia was
demonstrated (133–136). These studies were based on the fact
that integrin αvβ3 is overexpressed in these types of tumors, and,
by reducing T4 levels, the cancer cell proliferation and survival
and the tumor-related angiogenesis can be reduced, without
affecting other important metabolic processes that are mainly
regulated by T3 levels.
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