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Abstract 

Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene. Previously, we found several genes showing a differential 

expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; 

its expression and activity was found increased in CFDE cells, acting as a signaling molecule 

between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells 

(CF cells) also showed increased c-Src activity compared to ‘CFTR-corrected’ S9 cells. In 

addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific 

shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-

Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased 

mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were 

partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by 

using the NOX1/4 inhibitor GKT137831. Thus, IL-1β�c-Src and IL-1β�NOX signaling 

pathways appear to be responsible for the production of cellular and mitochondrial ROS in 

CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, 

located upstream of c-Src, which is stimulated in cells with impaired CFTR activity. 

 

1. Introduction 

Cystic fibrosis (CF) is an autosomal recessive disease [1] caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene [2-4]. CFTR is a cAMP regulated 

and ATP gated-chloride channel [5]. Protein kinase A (PKA) [6], protein kinase C (PKC) [7], c-

Src (SRC) [8], and phosphatase PP2A regulate its chloride transport activity [9, 10].   

 Previously, applying differential display to cultured CFDE cells (tracheobronchial epithelial 

cells of unknown genotype, derived from a CF patient), we found that several genes had altered 

expression due to the CFTR failure of these cells [11-15]. Other laboratories found similar results 

by using microarrays and different CF cellular models [16-18]. One of these differentially 

expressed mRNAs was further characterized and corresponded to c-Src; it was up-regulated in 

CFDE cells (CF cells) or in CFDE/6RepCFTR cells (CFTR-corrected CFDE cells) treated with 

the CFTR inhibitors NPPB or glibenclamide [11]. In addition, incubation of HT-29 cells (a 

human colorectal adenocarcinoma cell line possessing wt-CFTR) with glibenclamide resulted in 

the up-regulation of c-Src [11]. These results suggested that c-Src expression and activity are 
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under CFTR regulation [11]. Two additional differentially expressed genes corresponded to the 

mitochondrial proteins CISD1 [13] and MTND4 [14]. The last protein was reported to be 

essential for the assembly and activity of the mitochondrial Complex I (mCx-I) [19]. 

Accordingly, we found later that the activity of this complex was reduced in cells with impaired 

CFTR function [15], an effect originally observed by Burton Shapiro [12, 20-23]. Noteworthy, 

the Shapiro’s “mitochondrial theory” for cystic fibrosis was erroneously disregarded after the 

CFTR was cloned and found to be a Cl- channel. Many years later, due to the differential display 

results showing a reduced expression of mitochondrial MTND4 in CF cells, we further explored 

the issue and confirmed Shapiro’s observations of a reduced mitochondrial Complex I (mCx-I) 

activity in cells with impaired CFTR activity [12-15, 24]. Recently, mitochondrial effects in CF 

cells were also confirmed by Atlante et al. [25]. In addition, we found that IL-1β was able to 

modulate the expression of CFTR [26, 27]. We later found that an autocrine IL-1β loop was 

responsible for this  effect on mCx-I and for the increased ROS levels observed in cells with 

impaired CFTR activity [24].  

   The aim of the present work was to explore whether or not the autocrine IL-1β loop present in 

cells with impaired CFTR activity was responsible for the increased c-Src activity observed, 

identifying in this way a new effector in the CFTR signaling pathway, upstream of c-Src. The 

results obtained, using different cell models and strategies, indicate that the impairment of the 

CFTR activity in IB3-1 or Caco-2/pRS26 cells determines increased c-Src activity levels 

compared to S9 cells (CFTR-rescue IB3-1 cells) and Caco-2/control cells, respectively. In 

addition, the increased c-Src activity observed in Caco-2/pRS26 cells (cells with KD-CFTR by 

shRNA transfections) was reduced by incubation with the IL-1 receptor antagonist IL1RN, 

implying that IL-1β is upstream of c-Src in the CFTR signaling pathway. Total cellular and 

mitochondrial ROS levels were also found elevated in Caco-2/pRS26 cells, and these effects 

were significantly reduced by incubation with IL1RN, the c-Src inhibitor PP2 or the NOX1/4 

inhibitor GKT137831, suggesting that both, c-Src and NOX1/4, contribute to the increased cROS 

and mitoROS levels in these Caco-2/pRS26 cells with impaired CFTR activity.  

 

2. Materials and Methods 
 

2.1 Reagents – Dimethyl sulfoxide (DMSO) culture grade, luminol, p-coumaric acid, protease 

inhibitor cocktail (cat. No. P2714) and IL-1 receptor antagonist (ILRN) were purchased from 
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Sigma-Aldrich (St. Louis, MO). Nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-

phosphate (BCIP) were from Promega (Madison, WI), and Coomassie Brilliant Blue G-250 was 

from Bio-Rad Laboratories (Hercules, CA). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo 

[3,4-d] pyrimidine (PP2) were from Calbiochem (San Diego, CA). MitoSOX (Molecular Probes, 

Cat. No. M36008), 2´,7´-dichlorofluorescein diacetate (DCFH-DA, Molecular Probes, Cat. No. 

D399) and ROX (glycine conjugate of 5-carboxy-X-rhodamine, succinimidyl ester, Invitrogen) 

were from Life Technologies Corporation (Carlsbad, CA). The NOX1/4 inhibitor GKT137831 

was from MedChem Express (MCE, Monmouth Junction, NJ). All other reagents were analytical 

grade. Antibodies: goat anti-rabbit antibody coupled to alkaline phosphatase (goat polyclonal, sc-

2007) and rabbit anti-Src antibody (rabbit polyclonal, sc-19) were from Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA); anti-rabbit antibody coupled to horseradish peroxidase 

(polyclonal, W401B) was from Promega (Madison, WI); rabbit anti-phospho-Tyr-418-Src 

antibody (polyclonal, S1940) and rabbit anti-actin antibody (polyclonal, A2066)) were from 

Sigma-Aldrich.  

 

2.2 Cell Cultures – IB3-1 cells (a bronchial epithelial CF cell line with ∆F508/W1282X CFTR 

genotype) [28] and S9 cells (IB3-1 cells transduced with an adeno-associated viral vector to 

stably express wild type (wt) CFTR) [29] were purchased from ATCC (www.atcc.org; the IB3-1 

and S9 cells were then discontinued from ATCC and are now provided by the John Hopkins 

University). Caco-2 cells (ATCC; human colon carcinoma epithelial cells) expressing wt-CFTR 

[30, 31] were previously selected and cloned after transfections with four short hairpin RNA 

interference (shRNA) directed against different regions of CFTR [15]. The plasmid were 

constructed by OriGene Technologies, Inc. (Rockville, USA) and the four sense sequences were 

pRS25: AAGAAATATGGAAAGTTGCAGATGAGGTT; pRS26: AAATATCATCTTTGGT 

GTTTCCTATGATG; pRS27: ACAACTGGAATCTGAAGGCAGGAGTCCAA; pRS28: CT 

TACTTTGAAACTCTGTTCCACAAAGCT. The sequence corresponding to pRS-shGFP was 

used as a control (pRSctrl), corresponding to a non-effective shRNA plasmid against GFP, 

provided by OriGene. These cells were cultured adding 1 µg/ml puromycin to the culture 

medium for cells expansion, and without puromycin during the experiments. All cells were 

cultured in DMEM/F12 (Life Technologies, GIBCO BRL products, Rockville, MD) 

supplemented with 5% FBS (Internegocios S.A., Mercedes, Buenos Aires, Argentina), 100 
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units/ml penicillin, 100 µg/ml streptomycin (Life Technologies, GIBCO BRL, Rockville, MD). 

Cells were seeded at a density of 20.000 cells/cm2 in p100 dishes (~ 60 cm2, CellStar dishes, 

Greiner Bio-One) and cultured for 24 h in 10 ml (0.167 ml/cm2) DMEM-F12 plus 5% FBS, at 

37°C in a humidified air atmosphere containing 5% CO2. Before treatments, cells were cultured 

24 h in serum-free medium. The different treatments (PP2, GKT137831 and IL-1 receptor 

antagonist IL1RN) were performed in this second 24 h period, in serum free medium. The 

experiments were performed in the absence of serum (for a period of 24-48 h) to avoid the 

possible effects of serum components that might be present in excess in the fetal bovine serum 

compared to the human serum accessible to epithelial cells in the intact human tissue (growth 

factors, etc.). The relevance of these effects was pointed-out by Ye and Lotan [32].     

 

2.3 Protein extraction – Cells were incubated as indicated above, washed twice with cold PBS, 

scraped with cold extraction buffer (10 mM Tris pH 7.4, 100 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate, 1% Triton X-100, 10% glycerol) containing the protease inhibitor cocktail (5 ml of 

cocktail/20 g of cell extract) plus phosphatase inhibitors (2 mM Na3VO4, 1 mM NaF and 10 mM 

Na2PO7), and centrifuged at 14000 x g for 20 min at 4°C. The supernatant was stored at -80 °C 

until use.  The protein concentration was measured using the method of Lowry et al. [33].        

   

2.4 Western Blots– Western blots to quantify c-Src, p-c-Src and actin, were performed as 

previously described for c-Src and p-P38 [11, 24, 27]. Briefly, cytosolic extracts (30-50 µg of 

proteins) were separated on a denaturing SDS-PAGE (11% acrylamide/bis-acrylamide) and 

transferred to nitrocellulose membranes using a transfer buffer containing 20% methanol (39 mM 

glycine, 48 mM Tris-base, 0.037% SDS, pH 8.3) for 2 h at 100 V (constant voltage). The 

membranes were blocked with 5% BSA 1 h in TBST buffer (TBS pH 7 plus Tween-20 0.1% v/v) 

and incubated with a polyclonal antibody raised against phospho-Tyr-418-Src (polyclonal, 

S1940, from Sigma Aldrich, dilution 1:1000 in TBST buffer). Results were visualized by using 

an ImageQuant LAS 4000 system (GE Healthcare Life Sciences, Piscataway, NJ). After 

development by using the phospho-Tyr-418-Src antibody, the membranes were incubated with a 

stripping buffer (62.5 mM Tris pH 6.8, 2% SDS, 100 mM β-mercaptoethanol) for 20 min at 50°C 

and then washed 10 min using distilled water and 30 min with TBST buffer (changing the buffer 

every 10 minutes), in order to remove the remaining β-mercaptoethanol. Stripped membranes 
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were blocked again as described and incubated with a polyclonal anti-Src antibody (N-16; 

dilution 1:1000 in TBST buffer) for 1 h. The membranes were then washed three times with 

TBST buffer, incubated with the secondary antibody and developed as before. Finally, as internal 

control, the membranes were incubated with a polyclonal anti-actin antibody (Sigma-Aldrich, 

A2066, dilution 1:1000 in TBST buffer) for 1 h, washed three times with TBST buffer, and then 

incubated with the secondary antibody, and developed as above. The band intensities were 

quantified by using the Image J software (http://rsbweb.nih.gov). c-Src activity is expressed as p-

c-Src/c-Src and p-c-Src/actin ratios and c-Src expression as c-Src/actin ratio. WBs for CFTR 

were performed as previously described by Mailhot et al. [34]. 

 

2.5 Reverse Transcription and Quantitative Real-time PCR (qRT-PCR) for CFTR- Real-time 

PCRs (RT-PCR) were performed as previously described [15]. qRT-PCR reactions were carried 

out in triplicates (intra-assay and inter-assay triplicates). The final quantification values are 

expressed as the mean of the Relative Quantification (RQ) for each biological triplicate. 

 

2.6 Reactive oxygen species (ROS)-  Mitochondrial (mitoROS) and cellular ROS (cROS) levels 

were measured by using the fluorescent probes MitoSOX and DCFH-DA, respectively, in 96 

well black plates (Greiner Bio-One, Germany; 655090) as previously reported [24]. The cells 

were cultured 24 h in serum-free medium as indicated above for 24 h in the presence of different 

concentrations of PP2, a specific Src family kinase inhibitor (0, 1, 5, 10 and 20 µM), of 

GKT137831, a NOX1/4 inhibitor (inhibits both NOX1 and NOX4; used at 0, 2.5, 5,10 and 20 

µM) or IL1RN (0, 2.5, 5, 15, 30 ng/ml). To measure mitochondrial ROS, at the end of the 

incubation, DMEM-F12 medium was changed to Hanks´s medium containing 5 µM of MitoSOX 

and incubated at 37ºC in a  5% CO2/air incubator for 10 min. For cROS, cells were incubated in 

Hank´s medium containing 10 µM of DCFH-DA and incubated at 37ºC in a 5% CO2/air 

incubator for 40 min. Then, cells were washed with 0.2 ml of Hank´s buffer three times and the 

fluorescence was measured in a fluorescence plate reader (NOVOstar BMG LABTECH GmbH 

Ortenberg, Germany) at 37 ºC. Filters were Ex = 510 ± 10 nm, Em = 580 ± 10 nm for MitoSOX 

and Ex = 510 ± 10 nm, Em = 540 ± 10 nm for DCF, and readings were performed by using 10 

cycles (3 flashes per well and cycle; excitation and measurements were done from the bottom of 
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the plate). DCFH-DA is de-esterified intracellularly and, upon oxidation, turns into highly 

fluorescent 2’,7’-dichlorofluorescein  (DCF). 

 

2.7 CFTR transport activity in shRNA-transfected cells - The fluorescent probe SPQ (6-methoxy-

N-[3-sulfopropyl]quinolinium) was used to measure the CFTR chloride transport activity, as 

SPQ fluorescence is quenched by chloride. This method was used previously by our laboratory 

[15, 35]. Briefly, a Hitachi's slice holder was adapted to form a perfusion chamber, allowing to 

measure CFTR activity by using fluorescence spectrophotometry. Caco-2 cells were grown in 

p60 plates containing at least 4 rectangular coverslips (22×8 mm, from Hitachi) in DMEM-F12 

medium plus 5% FBS. The coverslips were pre-treated with a coating solution (10 µg/ml 

fibronectin, 4.4 µg/ml collagen, 1.5 µg/ml BSA, in DMEM/F12). Then, cells were cultured for 

24 h in serum-free DMEM/F12 medium and incubated ON in 5 mM SPQ (dissolved in serum-

free DMEM/F12), washed three times with PBS and NaI buffer (135 mM NaI, 10 mM Glucose, 

1 mM CaSO4, 1 mM MgSO4, 10 mM HEPES, 2.4 mM K2HPO4, and 0.6 mM KH2PO4, pH 7.4) 

and maintained at 37 °C for 30 min. Each coverslip was then placed in a separated culture dish 

and maintained under light-protecting conditions. For measurements, the coverslips containing 

confluent monolayer cells were inserted in a holder specially designed by Hitachi for the F2000 

spectrophotometer, and immersed into a quartz cuvette containing NaI buffer, inside the 

fluorescence spectrophotometer. The coverslip holder was previously modified with a drill to 

allow the insertion of two cannulas of different diameter and length. These cannulas, coupled to a 

peristaltic pump, were used to perfuse the quartz chamber. All measurements were carried out at 

37 °C, under perfusion and stirring. The selected wavelengths for SPQ were Ex = 344 nm and Em 

= 443 nm. To measure the baseline fluorescence (Fb), cells were perfused with NaI buffer for 100 

s. Then, the cells were sequentially perfused with the NaNO3 buffer (135 mM NaNO3, 10 mM 

Glucose, 1 mM CaSO4, 1 mM MgSO4, 10 mM HEPES, 2.4 mM K2HPO4, 0.6 mM KH2PO4, pH 

7.4), a cocktail containing CFTR activators (buffer NaNO3 containing 200 µM dibutyryl cAMP, 

200 µM IBMX and 20 µM isoproterenol) and the quenching buffer (5 µM valinomycin in NaI 

buffer). Perfusion times were 200 s, 200 s and 100 s, respectively. The stock solutions of 

valinomycin, IBMX, dibutyryl cAMP and isoproterenol were prepared at 1000 X in culture-

grade DMSO (Sigma-Aldrich). The collected data were plotted as F-Fq vs. time (F: fluorescence; 
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Fq: fluorescence value obtained after quenching the SPQ fluorescence by adding NaI plus 

valinomycin, at the end of SPQ fluorescence quenching).  

 

2.8 Confocal Microscopy – Caco-2 cells were seeded on cell chambered coverglasses (4-

chamber, Nunc, Cat. No. 155383, Lab-Tek, Thermo Fisher Scientific, Rochester, NY) and 

cultured in DMEM F12 containing 5% FBS. Before ROS measurements, cells were cultured 24 h 

in serum free media. To measure mitochondrial ROS, at the end of the incubation, the DMEM-

F12 medium was changed to Hanks´s medium containing 5 µM of MitoSOX and incubated at 37 

ºC in a 5% CO2/air incubator for 10 min. For cROS, cells were incubated in Hank´s medium 

containing 10 µM of DCFH-DA and incubated at 37 ºC in a 5% CO2/air incubator for 40 min. 

Then, cells were washed with 0.4 ml of Hank´s buffer three times and cell images were obtained 

by using a LSM510 Zeiss confocal microscope. To detect DCF and MitoSOX, laser lines of 488 

and 543 nm were used, with filters LP505 and LP560 nm, respectively. Images were taken with a 

20X objective. The adjustments of the confocal parameters were maintained between the 

different line cells to compare the intensity of the signal. For quantification we used Live 

Histogram from the ImageJ software (http://imagej.nih.gov/). Ten fields were averaged in three 

independent experiments (n=3, inter-assay). 

 

2.9 Statistics – Unless otherwise indicated, the assays were performed at least by duplicates 

(intra-assay duplicates) and the experiments were repeated at least three times (inter-assay 

replicates, n=3), as specified in each figure legend. The results were expressed as mean ± SEM 

(n), obtained from inter-assay calculations. One-way ANOVA and the Tukey's test were applied 

to calculate significant differences among samples (α= 0.05) and the Student’s (William Gosset) 

t-test was used to obtain the significance level for R2. * indicate significant differences (p<0.05). 

ED50 for IL1RN and PP2 were calculated using a sigmoidal dose-response curve (Hill plot). 

 
 
 
3. Results 
 

3.1 c-Src protein expression and activity in bronchial epithelial S9 and IB3-1 cells- First, we 

measured the total c-Src protein expression (total c-Src/actin) and activity (p-c-Src/actin) in 

bronchial epithelial IB3-1 (FQ) and S9 cells (IB3-1 “CFTR-corrected” cells). As shown in Figure 
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1A (WB) and 1B (quantification), IB3-1 cells incubated in serum-free medium for 48 h, had 

increased levels (p<0.05) of c-Src activity (p-c-Src/actin) (175 ± 27 % (n=3)) compared S9 cells 

(100 ± 15 % (n=3)). On the other hand, the total c-Src protein levels of S9 and IB3-1 cells, 

expressed as c-Src/actin (Fig. 1A and 1C), did not show significant differences. When the results 

were expressed as p-c-Src/c-Src activity, a significant difference (p<0.05) was also observed 

between IB3-1 and S9 cells (Fig. 1A and 1D). Taken together, these results suggest that the basal 

c-Src activity is increased in IB3-1 cells, which have impaired CFTR activity [28, 29].  

 

3.2 Levels of c-Src activity in Caco-2 cells transfected with shRNAs specifics for CFTR- To 

further support the results showing that cells with impaired CFTR expression/activity have 

increased c-Src activity, we then used Caco-2 cells transfected with a control plasmid (pRSctrl) 

or with four different plasmids (pRS25, pRS26, pRS27, pRS28), containing each a CFTR-

specific shRNA sequence. These transfected cells were selected and cloned from single cells to 

obtain stable CFTR knock-downs.  

As shown in Figure 2A, a significant (p<0.05) reduction in the CFTR mRNA levels was  

observed in Caco-2/pRS25, pRS26 and pRS27 cells (Caco-2/pRS25 41 ± 6 % (n=3); Caco-

2/pRS26 59 ± 3 % (n=3); CacCo-2/pRS27 49 ± 6 % (n=3)), transfected with CFTR-shRNA, 

compared to Caco-2/pRSctrl cells (100 ± 9 % (n=3)) (the last transfected with a control plasmid). 

Cells transfected with pRS28 shRNA did not have reduced CFTR mRNA levels. As shown in 

Figure 2B (WB) and 2C (quantification), CFTR protein levels were also significantly (p<0.05) 

reduced in Caco-2/pRS25, pRS26 and pRS27 cells. The CFTR shRNAs induced a significant 

increase of p-c-Src/actin (p<0.05) (Fig. 3A and 3B) in Caco-2/pRS25 (135 ± 4 % (n=3)), Caco-

2/pRS26 (144 ± 7 % (n=3)) and Caco-2/pRS27 (140 ± 7 % (n=3)) cells compared to Caco-

2/pRSctrl control (100 ± 5 % (n=3)) cells. The total c-Src levels (c-Src/actin) did not show 

significant differences after 24 h in serum-free media (Fig. 3A and 3C). On the other hand, Caco-

2/pRS28, which did not show a decreased CFTR expression compared to Caco-2/pRSctrl, also 

did not show increased c-Src activity. Noteworthy, as shown in Fig. 3A, there is an inverse 

relationship between the levels of total c-Src and the levels of p-c-Src (most evident in pRS27 

cells); it seems that the cells try to compensate the low levels of total c-Src increasing the active 

c-Src (p-c-Src). When the results were expressed as p-c-Src/c-Src activity, significant differences 

(p<0.05) were observed between shRNA cells and control cells (Fig. 3A and 3D). In addition, a 
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significant correlation (p<0.05) between p-c-Src/actin vs. mRNA CFTR (Fig. 3E) and p-c-Src/c-

Src vs. mRNA CFTR (Fig. 3F) was observed between these cell lines.  Therefore, this model 

system, in which the mRNA expression of CFTR was reduced, also showed increased c-Src 

activity, as it was observed for IB3-1 and S9 cells (Fig. 1). Taken together, the results obtained 

with IB3-1/S9 and Caco-2/Caco-2-shRNA cells, and the previous results obtained with CFDE 

and CFDE/6RepCFTR cells [11], we can conclude that the down-regulation of CFTR expression 

(Caco-2/pRS25-27 CFTR-shRNA cells), the CFTR mutations (IB3-1 and CFDE cells [11]) or the 

CFTR activity inhibition (CFDE cells plus glibenclamide [11]), induce increased levels of c-Src 

activity.     

From these four cell lines, for the following assays, we selected the pRS26 clone since these 

cells showed the highest p-c-Src/actin levels, although the differences between pRS25, pRS26 

and pRS27 were minimal and non-significant (Fig. 3B). To corroborate that the CFTR knock 

down in the pRS26 cells was effective, the CFTR activity was measured by using the chloride 

sensitive probe SPQ (Figure 3G). As shown in Figure 3H, the halide efflux (area under the 

curves) was significantly (p<0.05) reduced in Caco-2/pRS26 cells (73 ± 3 % (n=3)) compared to 

control cells (100 ± 5 % (n=3)). 

 

    

3.3 Effects of the IL1R antagonist (IL1RN) on the c-Src activity of Caco-2/pRS26 cells-  Taken 

into account previous results in which the IL-1β mRNA and protein secretion were increased in 

Caco-2/pRS26 cells compared to Caco-2/pRSctrl cells [24], we hypothesized that secreted IL-1β 

could be involved in the increased activity of c-Src observed in cell lines with impaired CFTR, 

through an autocrine effect. As shown in Figure 4A (WB) and 4B (quantification), incubation of 

Caco-2/pRS26 cells with increasing concentration of IL-1β receptor antagonist (IL1RN) [36-38] 

significantly decreased (p<0.05) p-c-Src/actin levels in Caco-2/pRS26 cells, almost reaching the 

values of control cells. On the other hand, although there was also a tendency to a reduced total 

c-Src expression in Caco-2/pRS26 cells treated with increased IL1RN concentrations, the 

differences did not reached significance (Fig. 4C). However, under these conditions (48 h 

incubation in serum free media), a significant difference was observed between the c-Src basal 

levels of Caco-2/pRS26 cells and Caco-2/pRSctrl cells (Fig. 4C), which were not observed when 

24 h of incubation were used (Fig. 3C). The dose-response curve obtained for IL1RN as p-c-
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Src/actin in Caco-2/pRS26 cells is shown in Figure 4D (ED50= 3.2 ± 1.2 ng/ml, n=3, R2=0.83, ~ 

0.17 nM). These results are in consonance with our previous results regarding an IL-1β  loop 

responsible for ROS overproduction in cells with impaired CFTR activity [24], and with the 

results reported by Verhaeghe et al. in CFT-2 and 16-HBE (cells with mutated CFTR), regarding 

the presence of an autocrine IL-1β loop [39]. The results suggest that cells with impaired CFTR 

expression or activity increase the p-c-Src levels due to an autocrine/paracrine effect of IL-1β. 

These results also imply that IL-1β is upstream of c-Src in the CFTR signaling pathway 

connecting CFTR and c-Src: impaired-CFTR� IL-1β � c-Src.  

   The role of IL-1β on c-Src stimulation was further supported by the results obtained on p-c-Src 

using exogenous IL-1β (Fig. 4E and 4F).  In Caco-2/pRSctrl cells, IL-1β induced a significant 

activation of p-c-Src (2 fold). However, in pRS26 cells the effect was less obvious and did not 

reach significance, since the p-c-Src basal values are already high. As a control, the mRNA 

expression of IL1R1 was measured; not significant differences were observed between pRS26 

and pRSctrl cells (Fig. 4G). On the other hand, pRS25 and pRS27, but not pRS26 cells, showed a 

significant rise in IL1R1 mRNA levels (Figure S1). IL1RN also significantly affected the c-Src 

activity (p-c-Src levels) in Caco-2/pRS25 and Caco-2/pRS27 cells, compared to pRSctrl cells 

(Figure S2), further supporting the equivalent results obtained with pRS26 cells (Fig. 4B). 

 

3.4 Reactive oxygen species (ROS) levels in Caco-2/pRS26 CFTR-shRNA cells. To evaluate the 

possible significance of the increased c-Src levels observed in Caco-2 shRNA cells, we measured 

the levels of reactive oxygen species (ROS), which are known to be increased in CF cells [40-42] 

and have a profound impact in the cellular physiopathology [43]. Even though the reduction in 

the CFTR mRNA (Fig. 2A) and transport activity (Fig. 3 G, H) of Caco-2/pRS26 were relatively 

small (~ 50% and ~30% respectively), a significant rise in ROS levels was observed for these 

cells. As shown in Figure 5, we observed by confocal microscopy that cellular ROS (cROS) (Fig. 

5A and 5B) and mitochondrial ROS (mitoROS) (Fig 5C and 5D) were significantly increased 

(p<0.05) in Caco-2/pRS26 compared to Caco-2/pRSctrl cells. In addition, after 24 h of 

incubation in the presence of PP2, a significant reduction of the cROS and mitoROS levels of 

Caco-2/pRS26 cells was obtained (Fig. 5E and 5F). The ED50 obtained for PP2 were 1.1 ± 0.5 

µM for DCF fluorescence and 1.3 ± 0.4 µM for MitoSOX fluorescence, which are similar to the 

value obtained by Ma et al. [44] in pancreatic cancer cells, in which the cleavage of Notch-1 
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stimulated by TNF was reduced by PP2 incubation [44]. As is shown in Fig. 5G and 5H, 

increased concentrations of IL1RN (0 to 30 ng/ml) also reduced cROS and mitoROS in Caco-

2/pRS26 cells, reaching the mitoROS levels similar values to those of pRSctrl cells when cells 

were incubated in the presence of IL1RN at 30 ng/ml. The effect on cROS was less pronounced 

(at IL1RN 30/ng/ml did not reach control values). On the other hand, the possible effect of 

NOX1/4 on the IL-1β induced ROS generation was explored.  The incubation of pRS26 cells with 

increased concentrations of GKT137831, a NOX1 and NOX4 selective inhibitor, produced a 

clear inhibitory effect on both cROS and mitoROS (Figure S3). These results suggest that 

NOX1/4 have a key role in the generation of ROS species in pRS26 cells. Whether the c-Src and 

the NOX effects represent effects derived from parallel or consecutive actions in these cells 

remain to be determined.  

   It should be pointed-out here that even small changes in the CFTR mRNA levels and activity in 

KD cells produced significant changes in c-Src activity (24 h in serum-free medium) and 

expression (48 h in serum-free medium), and strong changes in the levels of cROS and mitoROS. 

Taken together, as occurs with MUC1 in CFDE cells [11], these results indicate that c-Src 

constitutes an intermediate molecule in the CFTR-signaling mechanism, connecting here the 

CFTR failure with increased cellular and mitochondrial ROS levels. On the other hand, IL-1β acts 

as a bridge connecting the CFTR failure and the increased c-Src activity.  

 
4. Discussion 

 Using different cell lines (IB3-1 and Caco-2/pRS26) and strategies to inhibit the CFTR 

activity (∆F508-CFTR, or shRNA), we found here that the c-Src activity, measured as p-

Src/actin, is increased in cells with impaired CFTR activity. First, using IB3-1 cells (∆F508 

mutation in CFTR), we found a significant increase in the c-Src basal activity compared to S9 

cells (IB3-1 cells ectopically expressing wt-CFTR). Then, to rule out the possibility of 

differences due to clonal selections or some other epiphenomena in the IB3-1 transduced cells, 

we used a different cell model and strategy to reduce the CFTR activity: Caco-2 cells (colon 

carcinoma cells expressing wt-CFTR) stably transfected with four different shRNA specific for 

CFTR. In agreement with the results obtained using IB3-1 and S9 cells, these Caco-2 KD-CFTR 

cells also showed a significant rise in c-Src activity. These results strongly suggest that cells with 

impaired CFTR activity have an increased c-Src activity, in agreement with previous results were 

we used CFDE CF cells (of unknown genotype) and the same cells treated with CFTR inhibitors 
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[11]. Interestingly, Huang et al. [45] found defective c-Src activation in IB3-1 cells compared to 

C38 cells (IB3-1 CFTR-corrected cells) and in CF15 (human nasal epithelial cell line) compared 

to Beas 2B cells (normal, non-CF, human bronchial epithelial cell line).  However, these cells 

were cultured and stimulated adding serum or serum supplements containing an undefined 

composition of growth factors and other components, with unknown effects over CFTR 

expression and activity (or over other cells responses, including c-Src activation). For this reason, 

as pointed-out by Lotan et al. [32], we preferred to use serum-free medium.  However, serum-

free medium conditions are not free of consequences, since serum starvation can trigger 

apoptosis [46] and increased ROS production [47]. Therefore, the results obtained here should be 

taken with care, since these cells could be under exacerbated oxidative stress. Nevertheless, both 

control and CF impaired cells were cultured here under the same conditions, and the differences 

should reflect the influence of the CFTR activity. 

We have shown previously that cells with impaired CFTR activity overexpress IL-1β, which 

in turn is responsible for the increased ROS levels and the reduced mitochondrial Complex I 

(mCx-I) activity of Caco-2/pRS26cells, a process mediated by NF-κB and p38, and not 

influenced by JNK or ERK1/2 [24]. This autocrine IL-1β loop, which can be disrupted by using 

the IL-1 receptor (IL1R) antagonist IL1RN (IL-1Ra or anakinra) [24], explains the elevated NF-

κB found in cells with impaired CFTR activity [48], which may also have a role in tumor 

progression  [49], as occurs with c-Src [50]. The relevance of IL-1β signaling in CF and its 

disruption by using IL1RN [24], has been recently corroborated in vivo by Iannitti et al., using a 

murine model and human genetic epidemiology, in which the pathogenic NLRP3 activity in CF 

could be negatively regulated by anakinra (IL1RN) [51]. Therefore, we hypothesized that the 

increased c-Src levels found in CF cells could be also due to the autocrine IL-1β signaling. The 

results obtained in the presence of IL1RN are in agreement with this idea: increased 

concentrations of IL1RN resulted in a reduction of p-c-Src in Caco-2/pRS26cells to values 

comparable to Caco-2/pRS26cells controls cells (Fig 4A and B). Also, increased concentrations 

of IL1RN significantly decreased both cytoplasmic and mitochondrial ROS (Fig. 5G and 5H), 

reaching a complete reversal of mitoROS induction at the higher IL1RN concentration (30 

ng/ml). 

   The possible consequences of a persistent high basal value of c-Src activity in CF cells on the 

cellular physiopathology are numerous and complex. In this regard, we have shown previously 
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that the increased c-Src activity of CFDE cells induce a rise in MUC1 mRNA and protein 

expression [11]. On the other hand, Fiorotto et al. [52] have shown that the TLR4 

phosphorylation by c-Src was significantly increased in cholangiocytes from Cftr-KO mice [52]. 

c-Src is also involved in the mechanism that determines P. aeruginosa invasion to epithelial cells 

[53], and in regulating the fast gate of the CFTR in airway epithelial Calu-3 cells [8]. In addition, 

many cellular functions affected in cystic fibrosis, such as apoptosis [54-58], cytokine secretion 

and signaling [59-61], and the levels of reactive oxygen species [12, 24, 42], were also known to 

be under c-Src modulation in other cell systems. However, a direct link between these cellular 

functions and c-Src has not been extensively explored for CF cells [62]. In these regard, we show 

here increased cellular and mitochondrial ROS levels in Caco-2/pRS26 cells (expressing shRNA 

against CFTR) compared to control cells (Caco-2/pRSctrl), and that the cellular and 

mitochondrial ROS levels of Caco-2/pRS26 and Caco-2/pRSctrl cells can be significantly 

reduced by incubation with PP2, an inhibitor of the Src family of protein tyrosine kinases. 

However, even in the presence of PP2, some difference between the ROS levels of Caco-

2/pRS26 and Caco-2/pRSctrl control cells remains. On the other hand, an IL-1β/NOX1/4 

pathway [63] seem to be present, since the incubation of Caco-2/pRS26 cells with the NOX1/4 

selective inhibitor GKT137831, intriguingly reduced both cytoplasmic (DCF fluorescence) and 

mitochondrial (MitoSOX fluorescence) ROS (Supplementary Figure S3), and with a stronger 

inhibition compared to the effects of PP2 (c-Src inhibitor). Thus, the PP2 and GKT137831 

results suggest that two pathways contribute to ROS generation in CFTR-KD cells: CFTR --| IL-

1β � c-Src � ROS and CFTR --| IL-1β � NOX1/4 � ROS.  c-Src may actually stimulate 

NOX, in turn producing  a rise in the cRos and mitoROS, as occurs with HT29 colon carcinoma 

cells [64]. In addition, the cytoplasmic/RE ROS might be transported into mitochondria and vice 

versa, affecting both the MitoSOX and the DCF fluorescence. Alternatively, a mitochondrial 

NOX induced by c-Src [65] could account for the effects of GKT137831 over mitoROS. These 

possible alternatives are illustrated in Figure 6. Further studies are needed to understand the 

mechanisms involved in the overproduction of ROS in CFTR-impaired cells. 

5. Conclusions 

Figure 6 summarizes the results obtained here. The wt-CFTR channel activity, using a yet 

unknown mechanism, probably involving Cl- as a second messenger [66], produces a signal that 

keeps the pathway IL-1β � c-Src at low levels of activity. By the contrary, the impairment of the 
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CFTR activity or expression, determines a rise in the c-Src activity and in the cellular and 

mitochondrial ROS levels, mediated through an autocrine effect of IL-1β. This autocrine effect of 

IL-1β, affecting c-Src expression/activity, might have profound effects on cells, including increased 

MUC1 expression [11], NF-κB and ROS levels [24], decreased mitochondrial Complex I activity 

[12, 14, 15], increased inflammasome activity [51], and angiogenesis [67]. Thus, IL-1β 

constitutes an additional element in the CFTR signaling pathway, located upstream of c-Src. In 

addition, two pathways (parallel or consecutive) seem to contribute to total ROS, one involving 

c-Src and the second involving the NOX activities inhibited by GKT137831.  
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Figure Legends 

 

Fig. 1. c-Src activity in S9 and IB3-1 cells. S9 and IB3-1 cells were incubated 24 h in 5% FBS 

and 48 h in serum-free DMEM/F12 medium. After incubation, cells were collected and proteins 

extracted to determine c-Src levels by WBs, as indicated in M&M. (A) Representative WB of 

phospho-Tyr-418-c-Src (p-c-Src) and total c-Src of whole cellular lysates. (B) Densitometric 

quantification of p-c-Src/actin. (C) Densitometric quantification of c-Src/actin. (D) Densitometric 

quantification of p-c-Src/c-Src. The results were expressed as percentage (%) relative to S9 

values (mean ± SE, n=3, inter-assay values of three independent experiments). * indicates 

p<0.05. 

 

Fig. 2. CFTR expression in Caco-2 cells transfected with shRNA for CFTR. Cells were 

incubated 24 h in 5% FBS and 24 h in serum-free medium. After incubation, total RNA or total 

proteins were extracted and the CFTR RNA and protein levels determined by using real-time 

PCR or WBs. (A) mRNA CFTR levels in Caco-2/pRSctrl, Caco-2/pRS25, Caco-2/pRS26, Caco-

2/pRS27 and Caco-2/pRS28 cells. (B) Representative WB of CFTR of whole cellular lysates. (C) 

Densitometric quantification of CFTR/actin. The results were expressed as percentage (%) 

relative to Caco-2/pRSctrl values (mean ± SE, n=3, inter-assay). * indicates p<0.05 compared to 

Caco-2/pRSctrl cells. 

 

Fig. 3. c-Src activity in Caco-2 cells transfected with shRNA for CFTR. Caco-2/pRSctrl and 

Caco-2/pRS26 cells were incubated 24 h in 5% FBS and 24 h in serum-free media. Then, levels 

or c-Src and p-c-Src were measured by WB. (A) Representative WB of phospho-Tyr-418-Src (p-

c-Src) and total c-Src of whole cellular lysates. (B) Densitometric quantification of p-c-Src/actin. 

(C) Densitometric quantification of c-Src/actin. (D) Densitometric quantification of p-c-Src/c-

Src. (E) Correlation between p-c-Src/actin vs. CFTR mRNA, R2 = 0.90, p<0.05.  (F) Correlation 

between p-c-Src/c-Src vs. CFTR mRNA, R2 = 0.98, p<0.01. (G) CFTR channel halide transport 

activity of Caco-2/pRSctrl (black) and Caco-2/pRS26 cells (grey). Arrows indicate the points of 

buffers addition. F, indicates fluorescence values; Fq, are the fluorescence values after SPQ 

quenching by adding NaI plus valinomycin. (H) Changes in the halide efflux between Caco-
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2/pRSctrl and Caco-2/pRS26 cells were represented as the areas under the curve (total halide 

efflux). The results were expressed as percentage (%) relative to Caco-2/pRSctrl values (mean ± 

SE, n=3, inter-assay). * indicates p<0.05 compared to Caco-2/pRSctrl cells. 

 

Fig. 4. c-Src activity in Caco-2 cells transfected with shRNA for CFTR treated with IL-1 

receptor antagonist (IL1RN). Caco-2/pRSctrl and Caco-2/pRS26 cells were cultured 24 h in 5% 

FBS and 24 h in serum-free medium before treatments for another 24 h, as indicated below. Cells 

were incubated with different concentrations of IL1RN (0, 2.5, 5, 15 and 30 ng/ml) (A) 

Representative WB of phospho-Tyr-418-Src (p-c-Src) and total c-Src of whole cellular lysates. 

(B) Densitometric quantification of p-c-Src/actin. (C) Densitometric quantification of c-Src/actin. 

The results were expressed as percentage (%) relative to Caco-2/pRSctrl values (mean ± SE, n=3, 

inter-assay). * indicates p<0.05 compared to Caco-2/pRS26 untreated cells. (D) Dose-response 

curve for IL1RN in Caco-2/pRS26 cells (ED50= 3.2 ± 1.2 ng/ml or ~ 0.17 nM; R2= 0.83). Cells 

were incubated with 5 ng/ml IL-1β. (E) Representative WB of phospho-Tyr-418-Src (p-c-Src) of 

whole cellular lysates. (F) Densitometric quantification of p-c-Src/actin. (G) mRNA IL1R1 levels 

in Caco-2/pRSctrl and Caco-2/pRS26. 

 

Fig. 5. Cellular ROS (cROS) and Mitochondrial ROS (mitoROS) in Caco-2/pRSctrl and Caco-

2/pRS26 cells are modulated by the c-Src inhibitor PP2 and the IL1R1 antagonist IL1RN. Caco-

2/pRSctrl and Caco-2/pRS26 cells were cultured 24 h in 5% FBS and 24 h in serum-free medium 

before treatments for another 24 h (A,B) cROS were measured by using the fluorescent probe 

DCFH-DA by confocal microscopy. (C,D) mitoROS levels were measured by using the 

fluorescent probe MitoSOX by confocal microscopy. Ten fields were averaged in each case. 

(E,F) Cells were incubated 24 h in serum-free medium and 24 h in the presence of different 

concentrations of the c-Src inhibitor PP2 (0, 1, 5, 10 and 20 µM). (E) cROS levels in Caco-

2/pRSctrl and Caco-2/pRS26 cells. (F) mitoROS levels in Caco-2/pRSctrl and Caco-2/pRS26 

cells.. (G-H) Cells were incubated 24 h in serum-free medium and 24 h in the presence of 

different concentrations of IL1RN (0, 2.5, 5, 15 and 30 ng/ml). (G) cROS levels in Caco-

2/pRSctrl and Caco-2/pRS26 cells.. (H) mitoROS levels in Caco-2/pRSctrl and Caco-2/pRS26 

cells. * indicates p<0.05 compared to Caco-2/pRS26 untreated cells, (n=3, inter-assay). 
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Fig. 6. The graphic summarizes the results obtained. The down-modulation of the CFTR activity, 

either by using shRNA or CFTR ∆F508 mutation, upregulates c-Src activity. The increased c-Src 

activity in Caco-2/pRS26 cells is due to an IL-1β autocrine loop, inhibited by IL1RN. IL-1β is 

upstream of c-Src in the CFTR signaling pathway CFTR --| IL-1β � c-Src � ROS. A parallel 

pathway of CFTR --| IL-1β � NOX1/4�ROS signaling is also involved in the response an 

impaired CFTR activity. NOX1 is mostly a cellular membrane protein; however, depending on 

the cell type, NOX4 can be located in the plasma membrane, focal adhesions, the nucleus, or the 

endoplasmic reticulum. The intermediate molecule connecting CFTR and IL-1β 

expression/secretion is yet unknown. (--| red, inhibition; � blue, stimulation; ? unknown 

signaling mechanism).  

 

Fig. S1. IL1R1 mRNA expression in Caco-2 cells transfected with shRNA for CFTR (Caco-

2/pRSctrl, Caco-2/pRS25, Caco-2/pRS26 and Caco-2/pRS27). Cells were cultured 24 h in 5% 

FBS and 24 h in serum-free medium before RNA extraction. The results were expressed as 

percentage (%) relative to Caco-2/pRSctrl values (mean ± SE, n=3, inter-assay). * indicates 

p<0.05 compared to Caco-2/pRSctrl cells. 

 

Fig. S2.  IL-1β  receptor antagonist (IL1RN) effect on c-Src activity. Caco-2 cells transfected 

with shRNA for CFTR were incubated 24 h in serum-free medium and treated for 24 h with 30 

ng/ml IL1RN. (A) Representative WB corresponding to phospho-Tyr-418-Src (p-c-Src) from 

whole cellular lysates of Caco-2/pRSctrl cells. (B) Densitometric quantification of p-c-Src/actin. 

(C) Representative WB corresponding to p-c-Src from Caco-2/pRS25 cells. (D) Densitometric 

quantification of p-c-Src/actin. The results were expressed as percentage (%) relative to Caco-

2/pRS25 values (mean ± SE, n=3, inter-assay). * indicates p<0.05 compared to Caco-2/pRS25 

untreated cells (E) Representative WB corresponding to p-c-Src of Caco-2/pRS27 cells. (F) 

Densitometric quantification of p-c-Src/actin. The results were expressed as percentage (%) 

relative to Caco-2/pRS27 values (mean ± SE, n=3, inter-assay). * indicates p<0.05 compared to 

Caco-2/pRS27 untreated cells. 

 

Fig. S3. Effect of the NOX1/4 inhibitor GKT137831 on cellular and mitochondrial ROS (cROS 

and mitoROS). Caco-2/pRSctrl and Caco-2/pRS26 cells were incubated 24 h in serum-free 
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medium and 24 h in the presence of different concentrations of the NOX1/4 inhibitor 

GKT137831 (0, 2.5, 5, 10 and 20 µM). (A) Cellular ROS levels (DCF fluorescence) in Caco-

2/pRSctrl and Caco-2/pRS26 cells. * indicates p<0.05 compared to Caco-2/pRS26 untreated 

cells, (n=3, inter-assay). (B) Mitochondrial ROS levels (MitoSOX fluorescence) in Caco-

2/pRSctrl and Caco-2/pRS26 cells. * indicates p<0.05 compared to Caco-2/pRS26 untreated 

cells, (n=3, inter-assay). 
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Highlights  

• c-Src activity is increased in cells with impaired CFTR activity 

• The IL1R antagonist IL1RN (anakinra) restores normal c-Src levels 

• An IL-1β  loop is involved in this effect over c-Src 

• IL-1β/c-Src and NOX1/4 pathways increase ROS levels in CFTR-KD cells  


