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Abstract

Cystic Fibrosis (CF) is a disease caused by mutsitio the cystic fibrosis transmembrane
conductance regulato€CFTR) gene. Previously, we found several genes showidgferential
expression in CFDE cells (epithelial cells deriviein a CF patient). One corresponded to c-Src;
its expression and activity was found increase@HDE cells, acting as a signaling molecule
between the CFTR activity and MUC1 overexpresditere we report that bronchial 1B3-1 cells
(CF cells) also showed increased c-Src activity mamad to ‘CFTR-corrected’” S9 cells. In
addition, three different Caco-2 cell lines, eatdbly transfected with a different CFTR-specific
shRNAs, displayed increased c-Src activity. Tihép receptor antagonist ILLRN reduced the c-
Src activity of Caco-2/pRS26 cells (expressing & Rfspecific ShRNA). In addition, increased
mitochondrial and cellular ROS levels were detedte@€aco-2/pRS26 cells. ROS levels were
partially reduced by incubation with PP2 (c-Srciloior) or ILARN, and further reduced by
using the NOX1/4 inhibitor GKT137831. Thu#,.-13>c-Src andIL-13—>NOX signaling
pathways appear to be responsible for the produatiocellular and mitochondrial ROS in
CFTR-KD cells. In conclusion, IL{fl constitutes a new step in the CFTR signaling pathw
located upstream of c-Src, which is stimulatedalsowvith impaired CFTR activity.

1. Introduction

Cystic fibrosis (CF) is an autosomal recessiveatisd1] caused by mutations in the cystic
fibrosis transmembrane conductance regula®TR) gene [2-4]. CFTR is a cAMP regulated
and ATP gated-chloride channel [5]. Protein kinAgg’KA) [6], protein kinase C (PKC) [7], c-
Src (SRC) [8], and phosphatase PP2A regulate itsidk transport activity [9, 10].

Previously, applying differential display to cuka CFDE cells (tracheobronchial epithelial
cells of unknown genotype, derived from a CF pd}jeme found that several genes had altered
expression due to the CFTR failure of these c&lls]5]. Other laboratories found similar results
by using microarrays and different CF cellular medg6-18]. One of these differentially
expressed mMRNAs was further characterized and sponeled to c-Src; it was up-regulated in
CFDE cells (CF cells) or in CFDE/6RepCFTR cells {®Fcorrected CFDE cells) treated with
the CFTR inhibitors NPPB or glibenclamide [11]. &ddition, incubation of HT-29 cells (a
human colorectal adenocarcinoma cell line possgsstrCFTR) with glibenclamide resulted in

the up-regulation of c-Src [11]. These results ssted that c-Src expression and activity are



under CFTR regulation [11]. Two additional diffetiatly expressed genes corresponded to the
mitochondrial proteins CISD1 [13] and MTND4 [14]h& last protein was reported to be
essential for the assembly and activity of the ahitmdrial Complex | (mCx-1) [19].
Accordingly, we found later that the activity ofiglcomplex was reduced in cells with impaired
CFTR function [15], an effect originally observey Burton Shapiro [12, 20-23]. Noteworthy,
the Shapiro’s “mitochondrial theory” for cystic fisis was erroneously disregarded after the
CFTR was cloned and found to be a €@lannel. Many years later, due to the differerdigplay
results showing a reduced expression of mitochaht¥TND4 in CF cells, we further explored
the issue and confirmed Shapiro’s observations idaced mitochondrial Complex | (mCx-I)
activity in cells with impaired CFTR activity [125]1 24]. Recently, mitochondrial effects in CF
cells were also confirmed by Atlante et al. [25].dddition, we found that ILflwas able to
modulate the expression of CFTR [26, 27]. We ldemd that an autocrine ILBlloop was
responsible for this effect on mCx-I and for tinereased ROS levels observed in cells with
impaired CFTR activity [24].

The aim of the present work was to explore wetr not the autocrine ILBlloop present in
cells with impaired CFTR activity was responsibte the increased c-Src activity observed,
identifying in this way a new effector in the CFERJnaling pathway, upstream of c-Src. The
results obtained, using different cell models atrdtsgies, indicate that the impairment of the
CFTR activity in IB3-1 or Caco-2/pRS26 cells deteres increased c-Src activity levels
compared to S9 cells (CFTR-rescue IB3-1 cells) &ato-2/control cells, respectively. In
addition, the increased c-Src activity observe€ato-2/pRS26 cells (cells with KD-CFTR by
shRNA transfections) was reduced by incubation with IL-1 receptor antagonist IL1RN,
implying thatIL-1B is upstream of c-Src in the CFTR signaling pathwbgtal cellular and
mitochondrial ROS levels were also found elevatedCaco-2/pRS26 cells, and these effects
were significantly reduced by incubation with ILIR#e c-Src inhibitor PP2 or the NOX1/4
inhibitor GKT137831, suggesting that both, c-Srd &©OX1/4, contribute to the increased cROS
and mitoROS levels in these Caco-2/pRS26 cells wiraired CFTR activity.

2. Materials and M ethods

2.1 Reagents — Dimethyl sulfoxide (DMSO) culture grade, luming-coumaric acid, protease

inhibitor cocktail (cat. No. P2714) and IL-1 recaptaintagonist (ILRN) were purchased from
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Sigma-Aldrich (St. Louis, MO). Nitroblue tetrazatiu(NBT) and 5-bromo-4-chloro-3-indolyl-
phosphate (BCIP) were from Promega (Madison, Wi}, @oomassie Brilliant Blue G-250 was
from Bio-Rad Laboratories (Hercules, CA). 4-Aming4bchlorophenyl)-7-(t-butyl) pyrazolo
[3,4-d] pyrimidine (PP2) were from Calbiochem (S2iego, CA). MitoSOX (Molecular Probes,
Cat. No. M36008), 2°,7 -dichlorofluorescein diatetéDCFH-DA, Molecular Probes, Cat. No.
D399) and ROX (glycine conjugate of 5-carboxy-X-damine, succinimidyl ester, Invitrogen)
were from Life Technologies Corporation (Carlsh&®). The NOX1/4 inhibitor GKT137831
was from MedChem Express (MCE, Monmouth Junctial), MIl other reagents were analytical
grade. Antibodies: goat anti-rabbit antibody codpie alkaline phosphatase (goat polyclonal, sc-
2007) and rabbit anti-Src antibody (rabbit polyebnsc-19) were from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA); anti-rabbittibady coupled to horseradish peroxidase
(polyclonal, W401B) was from Promega (Madison, Wigbbit anti-phospho-Tyr-418-Src
antibody (polyclonal, S1940) and rabbit anti-actintibody (polyclonal, A2066)) were from
Sigma-Aldrich.

2.2 Cell Cultures — I1B3-1 cells (a bronchial epithelial CF cell limeth AF508/W1282X CFTR
genotype) [28] and S9 cells (IB3-1 cells transdueeth an adeno-associated viral vector to
stably express wild type (wt) CFTR) [29] were puased from ATCC (www.atcc.org; the IB3-1
and S9 cells were then discontinued from ATCC aredreow provided by the John Hopkins
University). Caco-2 cells (ATCC; human colon caosira epithelial cells) expressing wt-CFTR
[30, 31] were previously selected and cloned aft@nsfections with four short hairpin RNA
interference (ShRNA) directed against differentioag of CFTR [15]. The plasmid were
constructed by OriGene Technologies, Inc. (RockyilJSA) and the four sense sequences were
pRS25: AAGAAATATGGAAAGTTGCAGATGAGGTT; pRS26: AAATATATCTTTGGT
GTTTCCTATGATG; pRS27: ACAACTGGAATCTGAAGGCAGGAGTCCAA pRS28: CT
TACTTTGAAACTCTGTTCCACAAAGCT. The sequence corresplorg to pRS-shGFP was
used as a control (pRSctrl), corresponding to a-eftective shRNA plasmid against GFP,
provided by OriGene. These cells were cultured ragldi pg/ml puromycin to the culture
medium for cells expansion, and without puromycuring the experiments. All cells were
cultured in DMEM/F12 (Life Technologies, GIBCO BRIproducts, Rockville, MD)
supplemented with 5% FBS (Internegocios S.A., Maéese Buenos Aires, Argentina), 100



units/ml penicillin, 100ug/ml streptomycin (Life Technologies, GIBCO BRL, ¢kwille, MD).
Cells were seeded at a density of 20.000 celfsionp100 dishes (~ 60 énCellStar dishes,
Greiner Bio-One) and cultured for 24 h in 10 mil@ ml/cnf) DMEM-F12 plus 5% FBS, at
37°C in a humidified air atmosphere containing 5@, Before treatments, cells were cultured
24 h in serum-free medium. The different treatmgi®B2, GKT137831 and IL-1 receptor
antagonist IL1RN) were performed in this secondh2g¢eriod, in serum free medium. The
experiments were performed in the absence of sé€fama period of 24-48 h) to avoid the
possible effects of serum components that mighpreeent in excess in the fetal bovine serum
compared to the human serum accessible to epitleeliis in the intact human tissue (growth

factors, etc.). The relevance of these effectspeaisted-out by Ye and Lotan [32].

2.3 Protein extraction — Cells were incubated as indicated above, washezktwith cold PBS,
scraped with cold extraction buffer (10 mM Tris g4, 100 mM NacCl, 0.1% SDS, 0.5% sodium
deoxycholate, 1% Triton X-100, 10% glycerol) contag the protease inhibitor cocktail (5 ml of
cocktail/20 g of cell extract) plus phosphatasehinbrs (2 mM NavVO,4, 1 mM NaF and 10 mM
NaPO,), and centrifuged at 14000 x g for 20 min at 4Y8e supernatant was stored at -80 °C

until use. The protein concentration was measusaty the method of Lowry et al. [33].

2.4 Western Blots— Western blots to quantify c-Src, p-c-Src and ractvere performed as
previously described for c-Src and p-P38 [11, Z4, Briefly, cytosolic extracts (30-5Qg of
proteins) were separated on a denaturing SDS-PATAEL (acrylamide/bis-acrylamide) and
transferred to nitrocellulose membranes usingrestea buffer containing 20% methanol (39 mM
glycine, 48 mM Tris-base, 0.037% SDS, pH 8.3) foh zat 100 V (constant voltage). The
membranes were blocked with 5% BSA 1 h in TBSTéufTBS pH 7 plus Tween-20 0.1% v/v)
and incubated with a polyclonal antibody raised irsgjaphospho-Tyr-418-Src (polyclonal,
S1940, from Sigma Aldrich, dilution 1:1000 in TB®Uffer). Results were visualized by using
an ImageQuant LAS 4000 system (GE Healthcare Lifeerfees, Piscataway, NJ). After
development by using the phospho-Tyr-418-Src adiibthe membranes were incubated with a
stripping buffer (62.5 mM Tris pH 6.8, 2% SDS, 1M B-mercaptoethanol) for 20 min at 50°C
and then washed 10 min using distilled water anch80with TBST buffer (changing the buffer

every 10 minutes), in order to remove the remairfingercaptoethanol. Stripped membranes



were blocked again as described and incubated avigpolyclonal anti-Src antibody (N-16;

dilution 1:1000 in TBST buffer) for 1 h. The membes were then washed three times with
TBST buffer, incubated with the secondary antibadg developed as before. Finally, as internal
control, the membranes were incubated with a pohall anti-actin antibody (Sigma-Aldrich,

A2066, dilution 1:1000 in TBST buffer) for 1 h, weel three times with TBST buffer, and then
incubated with the secondary antibody, and develope above. The band intensities were
quantified by using the Image J software (httiireb.nih.gov). c-Src activity is expressed as p-
c-Src/c-Src and p-c-Src/actin ratios and c-Src @sgion as c-Src/actin ratio. WBs for CFTR

were performed as previously described by Mailhat g34].

2.5 Reverse Transcription and Quantitative Real-time PCR (qRT-PCR) for CFTR- Real-time
PCRs (RT-PCR) were performed as previously destiib8]. gRT-PCR reactions were carried
out in triplicates (intra-assay and inter-assaplitates). The final quantification values are

expressed as the mean of the Relative QuantifitdR®)) for each biological triplicate.

2.6 Reactive oxygen species (ROS)- Mitochondrial (mitoROS) and cellular ROS (cRAO&)els
were measured by using the fluorescent probes @i¥&nd DCFH-DA, respectively, in 96
well black plates (Greiner Bio-One, Germany; 655089 previously reported [24]. The cells
were cultured 24 h in serum-free medium as indecateove for 24 h in the presence of different
concentrations of PP2, a specific Src family kinaseibitor (0, 1, 5, 10 and 20 pM), of
GKT137831, a NOX1/4 inhibitor (inhibits both NOXhé NOX4; used at 0, 2.5, 5,10 and 20
uM) or ILIRN (O, 2.5, 5, 15, 30 ng/ml). To measungochondrial ROS, at the end of the
incubation, DMEM-F12 medium was changed to Hanksglium containing 5 uM of MitoSOX
and incubated at 37°C in a 5% &4 incubator for 10 min. For cROS, cells wereubated in
Hank’s medium containing 10 uM of DCFH-DA and inatdd at 37°C in a 5% GQ@ir
incubator for 40 min. Then, cells were washed With ml of Hank’s buffer three times and the
fluorescence was measured in a fluorescence @atier (NOVOstar BMG LABTECH GmbH
Ortenberg, Germany) at 37 °C. Filters were Ex =510 nm, Em = 580 £ 10 nm for MitoSOX
and Ex = 510 £ 10 nm, Em = 540 + 10 nm for DCF, esatlings were performed by using 10

cycles (3 flashes per well and cycle; excitatiod areasurements were done from the bottom of



the plate). DCFH-DA is de-esterified intracellulardand, upon oxidation, turns into highly
fluorescent 2’,7’-dichlorofluorescein (DCF).

2.7 CFTR transport activity in shRNA-transfected cells - The fluorescent probe SPQ (6-methoxy-
N-[3-sulfopropyl]quinolinium) was used to measuhe tCFTR chloride transport activity, as
SPQ fluorescence is quenched by chloride. This mdettas used previously by our laboratory
[15, 35]. Briefly, a Hitachi's slice holder was atled to form a perfusion chamber, allowing to
measure CFTR activity by using fluorescence spphtitometry. Caco-2 cells were grown in
p60 plates containing at least 4 rectangular cdiper§22x8 mm, from Hitachi) in DMEM-F12
medium plus 5% FBS. The coverslips were pre-treatéfl a coating solution (10 pg/ml
fibronectin, 4.4 pg/ml collagen, 1.5 pg/ml BSA,DMEM/F12). Then, cells were cultured for
24 h in serum-free DMEM/F12 medium and incubated i®/§ mM SPQ (dissolved in serum-
free DMEM/F12), washed three times with PBS and dfer (135 mM Nal, 10 mM Glucose,

1 mM CaSQ, 1 mM MgSQ, 10 mM HEPES, 2.4 mM ¥PQ,, and 0.6 mM KHPQ,, pH 7.4)
and maintained at 37 °C for 30 min. Each covensigs then placed in a separated culture dish
and maintained under light-protecting conditionsr fheasurements, the coverslips containing
confluent monolayer cells were inserted in a hokpecially designed by Hitachi for the F2000
spectrophotometer, and immersed into a quartz uvebdntaining Nal buffer, inside the
fluorescence spectrophotometer. The coverslip holdes previously modified with a drill to
allow the insertion of two cannulas of differenautieter and length. These cannulas, coupled to a
peristaltic pump, were used to perfuse the qudrganber. All measurements were carried out at
37 °C, under perfusion and stirring. The selectagtelengths for SPQ were Ex844 nm and Em
=443 nm. To measure the baseline fluorescence ¢eliy, were perfused with Nal buffer for 100
s. Then, the cells were sequentially perfused WithNaNQ buffer (135 mM NaN@ 10 mM
Glucose, 1 mM CaSQ1 mM MgSQ, 10 mM HEPES, 2.4 mM POy, 0.6 mM KHPO,, pH
7.4), a cocktail containing CFTR activators (bufiaNO3 containing 200 uM dibutyryl cAMP,
200 pM IBMX and 20 puM isoproterenol) and the quenghbuffer (5 uM valinomycin in Nal
buffer). Perfusion times were 200 s, 200 s and 40@espectively. The stock solutions of
valinomycin, IBMX, dibutyryl cAMP and isoproterenelere prepared at 1000 X in culture-
grade DMSO (Sigma-Aldrich). The collected data waldted as F-Fq vs. time (F: fluorescence;



Fqg: fluorescence value obtained after quenching SR€ fluorescence by adding Nal plus

valinomycin, at the end of SPQ fluorescence queng)hi

2.8 Confocal Microscopy — Caco-2 cells were seeded on cell chambered degses (4-
chamber, Nunc, Cat. No. 155383, Lab-Tek, ThermbeisScientific, Rochester, NY) and
cultured in DMEM F12 containing 5% FBS. Before R@8asurements, cells were cultured 24 h
in serum free media. To measure mitochondrial R&@%h)e end of the incubation, the DMEM-
F12 medium was changed to Hanks’s medium contabplyl of MitoSOX and incubated at 37
°C in a 5% C@air incubator for 10 min. For cROS, cells wereubated in Hank’s medium
containing 10 uM of DCFH-DA and incubated at 37iAG 5% CQ/air incubator for 40 min.
Then, cells were washed with 0.4 ml of Hank’s utifieee times and cell images were obtained
by using a LSM510 Zeiss confocal microscope. TedeDCF and MitoSOX, laser lines of 488
and 543 nm were used, with filters LP505 and LP&®0 respectively. Images were taken with a
20X objective. The adjustments of the confocal peters were maintained between the
different line cells to compare the intensity ok tkignal. For quantification we used Live
Histogram from the ImageJ software (http://imagkjgov/). Ten fields were averaged in three

independent experiments (n=3, inter-assay).

2.9 Satistics — Unless otherwise indicated, the assays wereoqmeeid at least by duplicates
(intra-assay duplicates) and the experiments wepeated at least three times (inter-assay
replicates, n=3), as specified in each figure lelgdihe results were expressed as mean + SEM
(n), obtained from inter-assay calculations. Ong-ABIOVA and the Tukey's test were applied
to calculate significant differences among samdes0.05) and the Student’s (William Gosset)
t-test was used to obtain the significance leveRb * indicate significant differences (p<0.05).

EDso for ILLRN and PP2 were calculated using a signaldae-response curve (Hill plot).

3. Results

3.1 c-Src protein expression and activity in bronchial epithelial 9 and I1B3-1 cells- First, we
measured the total c-Src protein expression (tot8fc/actin) and activity (p-c-Src/actin) in
bronchial epithelial IB3-1 (FQ) and S9 cells (IB3AFTR-corrected” cells). As shown in Figure

8



1A (WB) and 1B (quantification), IB3-1 cells incukd in serum-free medium for 48 h, had
increased levels (p<0.05) of c-Src activity (p-c/&ctin) (175 £ 27 % (n=3)) compared S9 cells
(100 £ 15 % (n=3)). On the other hand, the tot&rc-protein levels of S9 and IB3-1 cells,
expressed as c-Src/actin (Fig. 1A and 1C), didshotv significant differences. When the results
were expressed as p-c-Src/c-Src activity, a sicpnifi difference (p<0.05) was also observed
between IB3-1 and S9 cells (Fig. 1A and 1D). Talagether, these results suggest that the basal
c-Src activity is increased in IB3-1 cells, whichve impaired CFTR activity [28, 29].

3.2 Levels of c-Sc activity in Caco-2 cells transfected with shRNAs specifics for CFTR- To
further support the results showing that cells witipaired CFTR expression/activity have
increased c-Src activity, we then used Caco-2 tellssfected with a control plasmid (pRSctrl)
or with four different plasmids (pRS25, pRS26, pRSRRS28), containing each a CFTR-
specific ShRNA sequence. These transfected celle sa&ected and cloned from single cells to
obtain stable CFTR knock-downs.

As shown in Figure 2A, a significant (p<0.05) retioe in the CFTR mRNA levels was
observed in Caco-2/pRS25, pRS26 and pRS27 cellso(@@RS25 41 + 6 % (n=3); Caco-
2/pRS26 59 + 3 % (n=3); CacCo-2/pRS27 49 + 6 % )pH=tBansfected with CFTR-shRNA,
compared to Caco-2/pRSctrl cells (100 = 9 % (n£@)@ last transfected with a control plasmid).
Cells transfected with pRS28 shRNA did not havaiced CFTR mRNA levels. As shown in
Figure 2B (WB) and 2C (quantification), CFTR protéevels were also significantly (p<0.05)
reduced in Caco-2/pRS25, pRS26 and pRS27 cells.CHER shRNAs induced a significant
increase of p-c-Src/actin (p<0.05) (Fig. 3A and &Baco-2/pRS25 (135 + 4 % (n=3)), Caco-
2/pRS26 (144 + 7 % (n=3)) and Caco-2/pRS27 (140 % Tn=3)) cells compared to Caco-
2/pRSctrl control (100 + 5 % (n=3)) cells. The totaSrc levels (c-Src/actin) did not show
significant differences after 24 h in serum-freediagFig. 3A and 3C). On the other hand, Caco-
2/pRS28, which did not show a decreased CFTR egioresompared to Caco-2/pRSctrl, also
did not show increased c-Src activity. Noteworthg, shown in Fig. 3A, there is an inverse
relationship between the levels of total c-Src #mallevels of p-c-Src (most evident in pRS27
cells); it seems that the cells try to compendageldw levels of total c-Src increasing the active
c-Src (p-c-Src). When the results were expressgda@Src/c-Src activity, significant differences
(p<0.05) were observed between shRNA cells andra@locglls (Fig. 3A and 3D). In addition, a



significant correlation (p<0.05) between p-c-Srtifags. mMRNA CFTR (Fig. 3E) and p-c-Src/c-

Src vs. MRNA CFTR (Fig. 3F) was observed betweesdtcell lines. Therefore, this model

system, in which the mRNA expression of CFTR waduced, also showed increased c-Src
activity, as it was observed for IB3-1 and S9 céfig. 1). Taken together, the results obtained
with 1B3-1/S9 and Caco-2/Caco-2-shRNA cells, ang pinevious results obtained with CFDE

and CFDE/6RepCFTR cells [11], we can conclude ttetdown-regulation of CFTR expression

(Caco-2/pRS25-27 CFTR-shRNA cells), the CFTR matei(IB3-1 and CFDE cells [11]) or the

CFTR activity inhibition (CFDE cells plus glibenaiéde [11]), induce increased levels of c-Src
activity.

From these four cell lines, for the following assaye selected the pRS26 clone since these
cells showed the highest p-c-Src/actin levels,caighh the differences between pRS25, pRS26
and pRS27 were minimal and non-significant (Fig).3Bo corroborate that the CFTR knock
down in the pRS26 cells was effective, the CFTRvagtwas measured by using the chloride
sensitive probe SPQ (Figure 3G). As shown in Figgie the halide efflux (area under the
curves) was significantly (p<0.05) reduced in Ca24oRS26 cells (73 + 3 % (n=3)) compared to
control cells (100 £ 5 % (n=3)).

3.3 Effects of the IL1R antagonist (ILLRN) on the c-Src activity of Caco-2/pRS26 cellss Taken

into account previous results in which the IBHRNA and protein secretion were increased in
Caco-2/pRS26 cells compared to Caco-2/pRSctrl {4l we hypothesized that secreted [B-1
could be involved in the increased activity of ¢-8bserved in cell lines with impaired CFTR,
through an autocrine effect. As shown in Figure(¥¥B8) and 4B (quantification), incubation of
Caco-2/pRS26 cells with increasing concentratiohLef receptor antagonist (ILLRN) [36-38]
significantly decreased (p<0.05) p-c-Src/actin Ieve Caco-2/pRS26 cells, almost reaching the
values of control cells. On the other hand, alttotigere was also a tendency to a reduced total
c-Src expression in Caco-2/pRS26 cells treated witreased IL1RN concentrations, the
differences did not reached significance (Fig. 48Bpwever, under these conditions (48 h
incubation in serum free media), a significant efiéince was observed between the c-Src basal
levels of Caco-2/pRS26 cells and Caco-2/pRSctlt ¢€ig. 4C), which were not observed when
24 h of incubation were used (Fig. 3C). The dospease curve obtained for ILILRN as p-c-

10



Src/actin in Caco-2/pRS26 cells is shown in FigtiBe(EDso= 3.2 + 1.2 ng/ml, n=3, £0.83, ~
0.17 nM). These results are in consonance withpoevious results regarding dn-18 loop
responsible for ROS overproduction in cells withpaited CFTR activity [24], and with the
results reported by Verhaeghe et al. in CFT-2 &#iBE (cells with mutated CFTR), regarding
the presence of an autocrine IB-tbop [39]. The results suggest that cells with @&npd CFTR
expression or activity increase the p-c-Src lewkle to an autocrine/paracrine effect of k-1
These results also imply that Il3-1is upstream of c-Src in the CFTR signaling pathway
connecting CFTR and c-Src: impaired-CFPRL-13 - c-Src.

The role ofiL-1B on c-Src stimulation was further supported by #mults obtained on p-c-Src
using exogenous ILBL(Fig. 4E and 4F). In Caco-2/pRSctrl cells;1B induced a significant
activation of p-c-Src (2 fold). However, in pRS2élls the effect was less obvious and did not
reach significance, since the p-c-Src basal vaaresalready high. As a control, the mRNA
expression of ILLIR1 was measured; not significafiergnces were observed between pRS26
and pRSctrl cells (Fig. 4G). On the other hand, 28R&d pRS27, but not pRS26 cells, showed a
significant rise in ILLIR1 mRNA levels (Figure SI)1RN also significantly affected the c-Src
activity (p-c-Src levels) in Caco-2/pRS25 and CaguRS27 cells, compared to pRSctrl cells
(Figure S2), further supporting the equivalent lssobtained with pRS26 cells (Fig. 4B).

3.4 Reactive oxygen species (ROS) levels in Caco-2/pR26 CFTR-shRNA cells. To evaluate the
possible significance of the increased c-Src legberved in Caco-2 shRNA cells, we measured
the levels of reactive oxygen species (ROS), whaiehknown to be increased in CF cells [40-42]
and have a profound impact in the cellular phydiopiagy [43]. Even though the reduction in
the CFTR mRNA (Fig. 2A) and transport activity (F®G, H) of Caco-2/pRS26 were relatively
small (~ 50% and ~30% respectively), a significas¢ in ROS levels was observed for these
cells. As shown in Figure 5, we observed by corfagaroscopy that cellular ROS (cROS) (Fig.
5A and 5B) and mitochondrial ROS (mitoROS) (Fig & 5D) were significantly increased
(p<0.05) in Caco-2/pRS26 compared to Caco-2/pRSmils. In addition, after 24 h of
incubation in the presence of PP2, a significaducgon of the cROS and mitoROS levels of
Caco-2/pRS26 cells was obtained (Fig. 5E and 5k¢ BED,, obtained for PP2 were 1.1 + 0.5
uM for DCF fluorescence and 1.3 + Qui for MitoSOX fluorescence, which are similar taeth

value obtained by Ma et al. [44] in pancreatic eaineells, in which the cleavage of Notch-1
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stimulated by TNF was reduced by PP2 incubatior]. [#4 is shown in Fig. 5G and 5H,
increased concentrations of ILIRN (0 to 30 ng/ndpaeduced cROS and mitoROS in Caco-
2/pRS26 cells, reaching the mitoROS levels simildues to those of pRSctrl cells when cells
were incubated in the presence of ILIRN at 30 ngihé effect on cROS was less pronounced
(at ILARN 30/ng/ml did not reach control valuesh @e other hand, the possible effect of
NOX1/4 on thdL-1p induced ROS generation was explored. The incubatipRS26 cells with
increased concentrations of GKT137831, a NOX1 aX# selective inhibitor, produced a
clear inhibitory effect on both cROS and mitoROSg(fe S3). These results suggest that
NOX1/4 have a key role in the generation of ROSEg%in pRS26 cells. Whether the ¢c-Src and
the NOX effects represent effects derived from [per@r consecutive actions in these cells
remain to be determined.

It should be pointed-out here that even smalhges in the CFTR mRNA levels and activity in
KD cells produced significant changes in c-Src \digti (24 h in serum-free medium) and
expression (48 h in serum-free medium), and stotragges in the levels of cROS and mitoROS.
Taken together, as occurs with MUC1 in CFDE cel§]|[ these results indicate that c-Src
constitutes an intermediate molecule in the CFIgRaing mechanism, connecting here the
CFTR failure with increased cellular and mitochaaldROS levels. On the other hanid1p acts

as a bridge connecting the CFTR failure and theeamed c-Src activity.

4. Discussion

Using different cell lines (IB3-1 and Caco-2/pRy2td strategies to inhibit the CFTR
activity (AF508-CFTR, or shRNA), we found here that the c-&ctivity, measured as p-
Src/actin, is increased in cells with impaired CFag&ivity. First, using IB3-1 cellsAF508
mutation in CFTR), we found a significant incre@se¢he c-Src basal activity compared to S9
cells (IB3-1 cells ectopically expressing wt-CFTR)hen, to rule out the possibility of
differences due to clonal selections or some o#fpgshenomena in the IB3-1 transduced cells,
we used a different cell model and strategy to cedilne CFTR activity: Caco-2 cells (colon
carcinoma cells expressing wt-CFTR) stably trantsfiéevith four different shRNA specific for
CFTR. In agreement with the results obtained u#331 and S9 cells, these Caco-2 KD-CFTR
cells also showed a significant rise in c-Src atgtivi hese results strongly suggest that cells with
impaired CFTR activity have an increased c-Srovdgfiin agreement with previous results were

we used CFDE CF cells (of unknown genotype) ands#me cells treated with CFTR inhibitors
12



[11]. Interestingly, Huang et al. [45] found defgetc-Src activation in IB3-1 cells compared to
C38 cells (IB3-1 CFTR-corrected cells) and in;£fhuman nasal epithelial cell line) compared
to Beas 2B cells (normal, non-CF, human bronchpdhelial cell line). However, these cells
were cultured and stimulated adding serum or sesupplements containing an undefined
composition of growth factors and other componemtgh unknown effects over CFTR
expression and activity (or over other cells regesnincluding c-Src activation). For this reason,
as pointed-out by Lotan et al. [32], we preferreduse serum-free medium. However, serum-
free medium conditions are not free of consequensgxe serum starvation can trigger
apoptosis [46] and increased ROS production [4f@gré&fore, the results obtained here should be
taken with care, since these cells could be unxiacezbated oxidative stress. Nevertheless, both
control and CF impaired cells were cultured herdenrthe same conditions, and the differences
should reflect the influence of the CFTR activity.

We have shown previously that cells with impaird@T® activity overexpress ILEL which
in turn is responsible for the increased ROS lewasld the reduced mitochondrial Complex |
(mCx-I) activity of Caco-2/pRS26¢cells, a processdrated by NFR«B and p38, and not
influenced by JNK or ERK1/2 [24]. This autocritielp loop, which can be disrupted by using
the IL-1 receptor (IL1R) antagonist ILIRN (IL-1Ra @nakinra) [24], explains the elevated NF-
kB found in cells with impaired CFTR activity [48Jyhich may also have a role in tumor
progression [49], as occurs with c-Src [50]. Tleéevance ofiL-1p signalingin CF and its
disruption by using ILIRN [24], has been recenttyroboratedn vivo by lannitti et al., using a
murine model and human genetic epidemiology, inctithe pathogenic NLRP3 activity in CF
could be negatively regulated by anakinra (ILLRB)][ Therefore, we hypothesized that the
increased c-Src levels found in CF cells could Ise due to the autocrine ILB1signaling. The
results obtained in the presence of ILIRN are imeament with this idea: increased
concentrations of IL1IRN resulted in a reductionpe€-Src in Caco-2/pRS26¢cells to values
comparable to Caco-2/pRS26cells controls cells #Agand B). Also, increased concentrations
of ILIRN significantly decreased both cytoplasmi@anitochondrial ROS (Fig. 5G and 5H),
reaching a complete reversal of mitoROS inductibrthe higher ILIRN concentration (30
ng/ml).

The possible consequences of a persistent lagal lvalue of c-Src activity in CF cells on the

cellular physiopathology are numerous and comgiexhis regard, we have shown previously
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that the increased c-Src activity of CFDE cellsuicel a rise in MUC1 mRNA and protein
expression [11]. On the other hand, Fiorotto et [&2] have shown that the TLR4
phosphorylation by c-Src was significantly increshge cholangiocytes from Cftr-KO mice [52].
c-Src is also involved in the mechanism that deiteesP. aeruginosa invasion to epithelial cells
[53], and in regulating the fast gate of the CFhRiirway epithelial Calu-3 cells [8]. In addition,
many cellular functions affected in cystic fibrgsssich as apoptosis [54-58], cytokine secretion
and signaling [59-61], and the levels of reactixggen species [12, 24, 42], were also known to
be under c-Src modulation in other cell systemswéier, a direct link between these cellular
functions and c-Src has not been extensively eggléor CF cells [62]. In these regard, we show
here increased cellular and mitochondrial ROS keirelCaco-2/pRS26 cells (expressing shRNA
against CFTR) compared to control cells (Caco-2dRS and that the cellular and
mitochondrial ROS levels of Caco-2/pRS26 and Cdp&3ctrl cells can be significantly
reduced by incubation with PP2, an inhibitor of thec family of protein tyrosine kinases.
However, even in the presence of PP2, some difterdretween the ROS levels of Caco-
2/pRS26 and Caco-2/pRSctrl control cells remains. tBe other hand, an ILBANOX1/4
pathway [63] seem to be present, since the incoati Caco-2/pRS26 cells with the NOX1/4
selective inhibitor GKT137831, intriguingly reducedth cytoplasmic (DCF fluorescence) and
mitochondrial (MitoSOX fluorescence) ROS (Suppletaen Figure S3), and with a stronger
inhibition compared to the effects of PP2 (c-Srhilitor). Thus, the PP2 and GKT137831
results suggest that two pathways contribute to R@%ration in CFTR-KD cells: CFTR --| IL-
18 & c-Src> ROS and CFTR --| ILL 2> NOX1/4 > ROS. c-Src may actually stimulate
NOX, in turn producing a rise in the cRos and R{@S, as occurs with HT29 colon carcinoma
cells [64]. In addition, the cytoplasmic/RE ROS hitifpe transported into mitochondria and vice
versa, affecting both the MitoSOX and the DCF fesmence. Alternatively, a mitochondrial
NOX induced by c-Src [65] could account for theeets of GKT137831 over mitoROS. These
possible alternatives are illustrated in FigureFGrther studies are needed to understand the
mechanisms involved in the overproduction of ROSHTR-impaired cells.
5. Conclusions

Figure 6 summarizes the results obtained here.vith@FTR channel activity, using a yet
unknown mechanism, probably involving @k a second messenger [66], produces a signal that
keeps the pathway ILB1> c-Src at low levels of activity. By the contratlge impairment of the
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CFTR activity or expression, determines a riseha ¢-Src activity and in the cellular and
mitochondrial ROS levels, mediated through an auteceffect of IL-B. This autocrine effect of
IL-1B, affecting c-Src expression/activitiight have profound effects on cells, includingreased
MUC1 expression [11], NikB and ROS levels [24], decreased mitochondrial Qerpactivity
[12, 14, 15], increased inflammasome activity [58hd angiogenesis [67]. Thus, IB-1
constitutes an additional element in the CFTR digggathway, located upstream of c-Src. In
addition, two pathways (parallel or consecutivegrsdo contribute to total ROS, one involving
c-Src and the second involving the NOX activitiesibited by GKT137831.
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Figure Legends

Fig. 1. c-Src activity in S9 and IB3-1 cells. S9 and IB8€lls were incubated 24 h in 5% FBS
and 48 h in serum-free DMEM/F12 medium. After inatibn, cells were collected and proteins
extracted to determine c-Src levels by WBs, ascatéid in M&M. (A) Representative WB of
phospho-Tyr-418-c-Src (p-c-Src) and total c-Srcwdiole cellular lysates. (B) Densitometric
quantification of p-c-Src/actin. (C) Densitometgicantification of c-Src/actin. (D) Densitometric
quantification of p-c-Src/c-Src. The results wesgressed as percentage (%) relative to S9
values (mean + SE, n=3, inter-assay values of timdependent experiments). * indicates
p<0.05.

Fig. 2. CFTR expression in Caco-2 cells transfected wiiRMA for CFTR. Cells were
incubated 24 h in 5% FBS and 24 h in serum-freeimnedAfter incubation, total RNA or total
proteins were extracted and the CFTR RNA and prdevrels determined by using real-time
PCR or WBs. (A) mRNA CFTR levels in Caco-2/pRSdt§co-2/pRS25, Caco-2/pRS26, Caco-
2/pRS27 and Caco-2/pRS28 cells. (B) Represent#fiBeof CFTR of whole cellular lysates. (C)
Densitometric quantification of CFTR/actin. The uks were expressed as percentage (%)
relative to Caco-2/pRSctrl values (mean + SE, nrt&r-assay). * indicates p<0.05 compared to

Caco-2/pRSctrl cells.

Fig. 3. c-Src activity in Caco-2 cells transfected wittR8IA for CFTR. Caco-2/pRSctrl and
Caco-2/pRS26 cells were incubated 24 h in 5% FBE24nh in serum-free media. Then, levels
or c-Src and p-c-Src were measured by WB. (A) Reprative WB of phospho-Tyr-418-Src (p-
c-Src) and total c-Src of whole cellular lysatd®). Densitometric quantification of p-c-Src/actin.
(C) Densitometric quantification of c-Src/actin.)(Densitometric quantification of p-c-Src/c-
Src. (E) Correlation between p-c-Src/actin vs. CFIRNA, R = 0.90, p<0.05. (F) Correlation
between p-c-Src/c-Src vs. CFTR mRNA2 4R0.98, p<0.01. (G) CFTR channel halide transport
activity of Caco-2/pRSctrl (black) and Caco-2/pR3S28s (grey). Arrows indicate the points of
buffers addition. F, indicates fluorescence values, are the fluorescence values after SPQ

quenching by adding Nal plus valinomycin. (H) Chesidgn the halide efflux between Caco-
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2/pRSctrl and Caco-2/pRS26 cells were represergetthea areas under the curve (total halide
efflux). The results were expressed as percentyeadlative to Caco-2/pRSctrl values (mean +

SE, n=3, inter-assay). * indicates p<0.05 compé#wegdaco-2/pRSctrl cells.

Fig. 4. c-Src activity in Caco-2 cells transfected withR&A for CFTR treated with IL-1
receptor antagonist (ILLRN). Caco-2/pRSctrl andd=2pRS26 cells were cultured 24 h in 5%
FBS and 24 h in serum-free medium before treatnfen@nother 24 h, as indicated below. Cells
were incubated with different concentrations of RN (0, 2.5, 5, 15 and 30 ng/ml) (A)
Representative WB of phospho-Tyr-418-Src (p-c-&m) total c-Src of whole cellular lysates.
(B) Densitometric quantification of p-c-Src/act{@) Densitometric quantification of c-Src/actin.
The results were expressed as percentage (% )\eetatiCaco-2/pRSctrl values (mean + SE, n=3,
inter-assay). * indicates p<0.05 compared to Cdp&326 untreated cells. (D) Dose-response
curve for ILIRN in Caco-2/pRS26 cells (&2 3.2 + 1.2 ng/ml or ~ 0.17 nM;?R 0.83). Cells
were incubated with 5 ng/ml ILBL (E) Representative WB of phospho-Tyr-418-Src{prc) of
whole cellular lysates. (F) Densitometric quanéfion of p-c-Src/actin. (G) mRNA IL1R1 levels
in Caco-2/pRSctrl and Caco-2/pRS26.

Fig. 5. Cellular ROS (cROS) and Mitochondrial ROS (mitoR@&Caco-2/pRSctrl and Caco-

2/pRS26 cells are modulated by the c-Src inhittB2 and the IL1LR1 antagonist ILLRN. Caco-
2/pRSctrl and Caco-2/pRS26 cells were cultured #43% FBS and 24 h in serum-free medium
before treatments for another 24 h (A,B) cROS weeasured by using the fluorescent probe
DCFH-DA by confocal microscopy. (C,D) mitoROS levelvere measured by using the
fluorescent probe MitoSOX by confocal microscopgnTiields were averaged in each case.
(E,F) Cells were incubated 24 h in serum-free mmdand 24 h in the presence of different
concentrations of the c-Src inhibitor PP2 (0, 1,18,and 20 puM). (E) cROS levels in Caco-
2/pRSctrl and Caco-2/pRS26 cells. (F) mitoROS kevel Caco-2/pRSctrl and Caco-2/pRS26
cells.. (G-H) Cells were incubated 24 h in serugefimedium and 24 h in the presence of
different concentrations of ILIRN (0, 2.5, 5, 15daBO ng/ml). (G) cROS levels in Caco-

2/pRSctrl and Caco-2/pRS26 cells.. (H) mitoROS Iewe Caco-2/pRSctrl and Caco-2/pRS26

cells. * indicates p<0.05 compared to Caco-2/pR@&#éeated cells, (n=3, inter-assay).
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Fig. 6. The graphic summarizes the results obtained.dber-modulation of the CFTR activity,
either by using shRNA or CFTRF508 mutation, upregulates c-Src activity. Theeased c-Src
activity in Caco-2/pRS26 cells is due to an Ig-dutocrine loop, inhibited by ILIRN. ILBLis
upstream of c-Src in the CFTR signaling pathway RF] IL-13 = c-Src> ROS. A parallel
pathway of CFTR --| IL-f &> NOX1/4>ROS signaling is also involved in the response an
impaired CFTR activity. NOX1 is mostly a cellularrmbrane protein; however, depending on
the cell type, NOX4 can be located in the plasmanbrane, focal adhesions, the nucleus, or the
endoplasmic reticulum. The intermediate moleculennescting CFTR and IL{1
expression/secretion is yet unknown. (--| red, Gitlwn; - blue, stimulation; ? unknown

signaling mechanism).

Fig. S1. ILLR1 mRNA expression in Caco-2 cells transfectdth shRNA for CFTR (Caco-

2/pRSctrl, Caco-2/pRS25, Caco-2/pRS26 and CacoSZgRR Cells were cultured 24 h in 5%
FBS and 24 h in serum-free medium before RNA ekitac The results were expressed as
percentage (%) relative to Caco-2/pRSctrl valuesafm+ SE, n=3, inter-assay). * indicates

p<0.05 compared to Caco-2/pRSctrl cells.

Fig. S2. IL-1p receptor antagonist (ILLRN) effect on c-Src atyiviCaco-2 cells transfected
with shRNA for CFTR were incubated 24 h in serueefmedium and treated for 24 h with 30
ng/ml IL1RN. (A) Representative WB correspondingpioospho-Tyr-418-Src (p-c-Src) from
whole cellular lysates of Caco-2/pRSctrl cells. @)nsitometric quantification of p-c-Src/actin.
(C) Representative WB corresponding to p-c-Src fil©ato-2/pRS25 cells. (D) Densitometric
quantification of p-c-Src/actin. The results werpressed as percentage (%) relative to Caco-
2/pRS25 values (mean £ SE, n=3, inter-assay). fcatds p<0.05 compared to Caco-2/pRS25
untreated cells (E) Representative WB corresponding-c-Src of Caco-2/pRS27 cells. (F)
Densitometric quantification of p-c-Src/actin. Thesults were expressed as percentage (%)
relative to Caco-2/pRS27 values (mean + SE, n=8r4imssay). * indicates p<0.05 compared to

Caco-2/pRS27 untreated cells.

Fig. S3. Effect of the NOX1/4 inhibitor GKT137831 on cekwmland mitochondrial ROS (cROS
and mitoROS). Caco-2/pRSctrl and Caco-2/pRS26 cedise incubated 24 h in serum-free
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medium and 24 h in the presence of different comagons of the NOX1/4 inhibitor
GKT137831 (0, 2.5, 5, 10 and 20 pM). (A) Cellula®® levels (DCF fluorescence) in Caco-
2/pRSctrl and Caco-2/pRS26 cells. * indicates pS0cOmpared to Caco-2/pRS26 untreated
cells, (n=3, inter-assay). (B) Mitochondrial ROSvdls (MitoSOX fluorescence) in Caco-
2/pRSctrl and Caco-2/pRS26 cells. * indicates pS0cOmpared to Caco-2/pRS26 untreated

cells, (n=3, inter-assay).
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Highlights

e ¢-Src activity is increased in cells with impaired CFTR activity

e The IL1R antagonist ILIRN (anakinra) restores normal c-Src levels

e AnlIL-1B loopisinvolved in this effect over c-Src

e IL-1B/c-Src and NOX1/4 pathways increase ROS levels in CFTR-KD cells



