

Coria, Ignacio Daniel ; Caratolli, Oscar ; Hernández Guiance, Sabrina N. ; Hamman, Diana

Estudio teórico-experimental de la adsorción y reducción catalítica de SO2 sobre Cr2O3/Al2O3 en presencia de CH4 a altas temperaturas

Energeia, Año 12, Nº 12, 2014

Este documento está disponible en la Biblioteca Digital de la Universidad Católica Argentina, repositorio institucional desarrollado por la Biblioteca Central "San Benito Abad". Su objetivo es difundir y preservar la producción intelectual de la Institución.

La Biblioteca posee la autorización del autor para su divulgación en línea.

Cómo citar el documento:

Coria, I. D., et al. Estudio teórico-experimental de la adsorción y reducción catalítica de SO2 sobre Cr2O3/Al2O3 en presencia de CH4 a altas temperaturas [en línea]. *Energeia*, 12(12), 2014. Disponible en: http://bibliotecadigital.uca.edu.ar/repositorio/revistas/estudio-teorico-experimental-adsorcion.pdf [Fecha de consulta:]

Estudio teórico-experimental de la adsorción y reducción catalítica de SO₂ sobre Cr₂O₃/Al₂O₃ en presencia de CH₄ a altas temperaturas

Director de línea: Dr. Ignacio Daniel Coria^{1,2} Investigadores: Lic. Oscar Caratolli², Ing. Sabrina N. Hernández Guiance^{1,2}, Mg. Diana Hamman²

Director de tesis: Dr. Eduardo E. Mola^{1,2} Co-directores: Dr. Víctor A. Ranea¹, Dra. I. Irurzun¹ Tesista: Ing. Sabrina N. Hernández Guiance^{1,2}

Becarios: Eliana Y. Lette, Emanuel Ayala, Fernanda Avigliano, Juliana galliano, Lara Cantarini, Lilén Lucero, María José Heredia, Mariel Maurutto, Melisa C. Castellarin, Micaela Avedaño, Yair F. Malik.

¹ Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA-CONICET, Universidad Nacional de La Plata, Diag. 113 y 64, Sucursal 4, C.C. 16, 1900 La Plata.

² Facultad de Química e Ingeniería "Fray Rogelio Bacon", Universidad Católica Argentina. Crespo 1650, 2000, Rosario, Argentina.

Resumen: Los óxidos de azufre y nitrógeno son liberados al aire desde el escape de vehículos motorizados, de la combustión del carbón, petróleo, o gas natural, y durante procesos tales como la soldadura al arco, galvanoplastía, grabado de metales y detonación de dinamita. Además, son empleados en la producción de lacas, tinturas y otros productos químicos, como combustibles para cohetes, en la nitrificación de compuestos químicos orgánicos y en la manufactura de explosivos.

Debido a la amplia aplicación en estas producciones industriales, estos óxidos constituyen dos de los gases más importantes toxicológicamente. Cuando entran en contacto con la atmósfera, son degradados rápidamente al reaccionar con otras sustancias químicas, que por acción de la luz solar lleva a la formación de ácidos sulfúricos y nítricos, principales constituyentes de la lluvia ácida. Por otra parte, estos óxidos reaccionan con la luz solar formando de ozono, y smog en el aire.

Respecto a los efectos que producen en los seres vivos, niveles bajos en aire pueden irritar los ojos, la nariz, la garganta, los pulmones, y posiblemente causar tos y una sensación de falta de aliento, cansancio y náusea. La exposición de animales preñados a los óxidos de azufre y nitrógeno ha producido efectos tóxicos en los fetos, además de alteraciones en el material genético de células de animales.¹ Por estos motivos, es de gran importancia desarrollar una tecnología que los elimine en forma económica, eficiente, y de bajo impacto al medio ambiente, la cual se compone principalmente, del catalizador Cr_2O_3/Al_2O_3 .

Para llevar a cado este trabajo, se realizaron espectros de desorción programada del SO_2 , con el propósito de determinar energías de activación de procesos de desorción. Esta información se comparó con cálculos teóricos, basados en DFT (Density Functional Theory) y generados en el seno del Grupo de Sistemas Complejos, con el propósito de determinar los sitios preferenciales de adsorción del SO_2 .

Se analizó experimentalmente la posible competencia por sitios de adsorción con otros gases como oxígeno. Se determinaron los sitios preferenciales de adsorción de S^o y la posible competencia con SO₂ experimentalmente y por cálculos basados en DFT. Bajo condiciones estequiométricas actualmente se investiga la reacción de reducción del SO₂, en presencia de hidrocarburos (principalmente CH₄) y de O₂ en función de la temperatura, con el fin de determinar la constante de velocidad de la reacción. Finalmente, en presencia de aire, se analizará la influencia del oxígeno sobre esta reacción.

Con el propósito de estudiar variaciones en la eficiencia del catalizador se realizarán ciclos de adsorción y desorción en atmósfera inerte y en presencia de oxígeno (suministrado por una corriente de aire). Además, se prevé hallar las energías de activación de la reacción global y reacciones intermedias, la tasa de producción de CO_2 dependiendo de las condiciones de experimentación, el balance de masa de carbono entre productos y reactivos, y el porcentaje de conversión CH_4 a CO_2 , el cual a nivel ambiental tiene un poder de efecto invernadero 21 veces menor que su reactivo.

Se continuará con los trabajos teóricos dentro del estudio de la adsorción disociativa de CH4

¹ Fuente: <u>http://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts175.html</u>

sobre Cr_2O_3 con O_2 previamente adsorbido, en estado molecular y en estado disociativo, y con S O_2 adsorbido previamente. Se investigará además la adsorción de CO, para hallar la energía de adsorción con la superficie y la estabilidad de las configuraciones optimizadas. Paso siguiente, se estudiará su interacción con un átomo de oxígeno coadsorbido y la posible formación de CO₂. Otra alternativa es que el CO sea adsorbido en forma inestable, por lo que un porcentaje de CO podría desorberse sin formar CO₂ o quedar adsorbido por algún tiempo y llegar a envenenar la superficie. Se investigará la disociación de SO₂, de O₂ y de CH₄ adsorbidos en forma individual. Se calcularan las energías de activación para la disociación parcial y total de la molécula SO₂ adsorbida. Se calculara la energía de activación para la disociación de la molécula O₂ adsorbida inicialmente en forma molecular. El objetivo de estudiar diferentes configuraciones geométricas para el sistema CH₄ disociado en Cr₂O₃ es hallar una energía de adsorción menor que la obtenida para este mismo sistema con el adsorbato sin disociar. Siguiente a esta etapa, se coadsorberá O₂ para estudiar la posible formación de CO₂.

Palabras clave: catalizador, quimisorción, pseudopotencial, energía de activación, espectrometría IR.

Abstract: The sulfur and nitrogen oxides are released into the air from motor vehicle exhaust, combustion of coal, oil, or natural gas, and during processes such as arc welding, electroplating, metal etching and detonation of dynamite. They are also used in the production of lacquers, dyes and other chemicals such as rocket fuels, nitration of organic chemicals and the manufacture of explosives.

Due to the wide application in these industrial productions, these oxides are two of the most important toxicologically gases. When in contact with the atmosphere, they are rapidly degraded by reacting with other chemicals, which by action of sunlight leads to the formation of sulfuric and nitric, major constituent of acid rain acids. Moreover, these oxides react with sunlight to form ozone and smog in the air.

Regarding the effects that occur in living beings, low levels in the air can irritate the eyes, nose, throat, lungs, and may cause coughing and shortness of breath, fatigue and nausea. The exposure of pregnant animals to sulfur and nitrogen oxides produced toxic effects in fetuses, in addition to alterations in the genetic material of animal cells. For these reasons, it is of great importance to develop a technology that eliminates economic, efficient, and low environmental impact, which is mainly composed of Cr_2O_3/Al_2O_3 catalyst.

In order to market this work, spectra SO_2 programmed desorption were performed in order to determine the activation energy of desorption process. This information was compared with theoretical calculations based on DFT (Density Functional Theory) and generated within the Complex Systems Group, in order to determine the preferential adsorption sites of SO2.

Possible competition for adsorption sites with other gases such as oxygen was experimentally analyzed. Preferential adsorption sites S^o and possible competition with SO₂ and experimentally based on DFT calculations were determined. Under stoichiometric conditions the reaction currently SO₂ reduction in the presence of hydrocarbons (mostly CH_4) and O_2 as a function of temperature, in order to determine the rate constant of the reaction is investigated. Finally, in the presence of air, the influence of oxygen this reaction will be discussed.

In order to study variations in catalyst efficiency of adsorption and desorption cycles in inert atmosphere and in the presence of oxygen (supplied by a current of air) is performed. In addition, it is expected to find the activation energies of the overall reaction and intermediate reactions, the rate of CO_2 production depending on experimental conditions, the mass balance of carbon between products and reactants, and the percentage of CH_4 to CO_2 conversion, environmental level which has a greenhouse to 21 times lower than its reactive.

We will continue with the theoretical work in the study of the dissociative adsorption of CH_4 on Cr_2O_3 with O_2 previously adsorbed in molecular state and dissociative state, and previously adsorbed SO_2 . CO adsorption was further investigated to find the energy of the surface adsorption and stability of the optimized configurations. Next step, we will study its interaction with coadsorbed atom oxygen and the possible formation of CO_2 . Another alternative is that the CO is adsorbed unstable, so that a percentage of CO could be desorbed without forming CO_2 or remain adsorbed for some time, and reach the surface poisoning. Dissociation of SO_2 , O_2 and CH_4 adsorbed be investigated individually. Activation energies for the partial and total dissociation of SO_2 adsorbed in molecular form initially be calculated. In order to study different geometrical configurations for the system CH4 is dissociated into Cr_2O_3 find lower adsorption energy than that obtained for the same system with the adsorbate undissociated. Next to this stage, will adsorb O_2 to study the possible formation of CO_2 .

Keywords: catalytic, chemisorption, pseudopotential, activation energy, IR spectrometry.

Introducción

La emisión de dióxido de azufre por chimeneas industriales constituye una de las principales problemáticas ambientales, con las consecuencias ya conocidas de problemas para la salud de la población y con efectos nocivos como la lluvia ácida. El proyecto consiste en desarrollar un proceso catalítico de reducción de SO_2 que reúna las siguientes características:

- a) Eficiente.
- b) Económico.
- c) No genere subproductos.

En las chimeneas industriales, la reducción del SO₂ ocurre por reacción con CH₄, a la vez que este último es oxidado a CO₂ por el O₂. Por este motivo ambos se emplean como reactivos. Esta conversión es de gran importancia a nivel ambiental debido a que cada molécula de CH₄ contamina como si se emitieran 21 moléculas de CO₂ a la atmósfera. Por lo tanto, al emitir CO₂ en su lugar, se provoca un efecto contaminante 21 veces menor.

En la primera etapa, se caracterizaron óxidos de metales de transición (Co, Ni, Fe, V, Mn, Cr y Mo) soportados en alúmina, con el objeto de hallar las condiciones aptas para lograr la mayor eficiencia en cada uno, mediante la adsorción del SO₂. El Cr₂O₃/Al₂O₃ resultó ser el mejor adsorbente de SO₂ entre los estudiados, el cual oxida, mediante este compuesto y en presencia de O₂, el gas CH₄ para obtener CO₂. Su uso se justifica además por su resistencia térmica, mecánica y su posibilidad de regeneración.

Dicha adsorción es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos, acompañado de un proceso de óxido-reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO_2 adsorbido disminuye con el incremento de la temperatura (a partir de los 650°C).

En la segunda etapa se apuntó al estudio de las propiedades ácido-base y redox en una misma superficie. En la tercera se estudió la influencia del O_2 , y sus modificaciones en la reacción entre SO_2 y CH_4 .

Objetivos:

En esta última etapa, los objetivos fueron los siguientes:

- Estudiar cambios en la reacción al pasar de escala laboratorio a planta piloto utilizando una columna metálica de mayor diámetro.
- Desarrollar el estudio teórico de la adsorción de O₂ y CO₂ sobre el mismo sustrato, y el estudio de la cinética de la reacción entre CH₄, SO₂ y el O₂ por medio del programa VASP (Vienna Ab-initio Simulation Package).
- Verificar, a través de los datos experimentales y teóricos y en colaboración con el Dr. V. A. Ranea y el Prof. E.
 E. Mola (INIFTA, UNLP), la presencia de especies sulfito y sulfato sobre la superficie del soporte.
- Estudiar la reducción del SO₂ con CH₄ en función de la temperatura para determinar la constante de velocidad de la reacción.
- Determinar variaciones en la eficiencia del catalizador mediante ciclos de adsorción y desorción, en presencia de oxígeno y de aire.
- Determinar sitios preferenciales de adsorción de S° y la posible competencia con SO₂ experimentalmente y por cálculos teóricos.

Materiales y métodos utilizados

Fase experimental: Los catalizadores se caracterizaron mediante difracción de Rayos X, XPS y BET, determinándose su estructura cristalina, composición, superficie específica y volumen de poros. Paso siguiente, fueron sometidos a ciclos de temperatura bajo atmósfera inerte para estudiar su estabilidad térmica y la posible variación de los sitios activos con la temperatura. Luego se realizaron espectros de desorción programada del SO2 con el propósito de determinar energías de activación en la desorción.

Se experimentó con diferentes masas de catalizador y caudales de los gases, se estudió la influencia del oxígeno, y la

regeneración del catalizador.

Actividades y metodología: el dispositivo experimental empleado se esquematiza y describe a continuación:

- Suministro de gases: Dentro del equipo de experimentación de hicieron circular los gases reactivos SO₂ CH₄ y/u O₂, cada uno en una concentración de 10ppm en N₂. Se suministraron en forma individual desde un tubo de gas y se regularon mediante dos mecanismos: una válvula reguladora de caudal y un rotámetro con un rango de 50-500 ml/min. Además de hizo circular, para las experiencias de desorción, un flujo de N₂ también mediante un tubo de gas y dosificado por una válvula reguladora de caudal y un rotámetro de 50-500 ml/min.
- Sitio de reacción: Para la experimentación se utilizó un reactor de lecho fijo, compuesto por cuarzo y de forma tubular, de 0,6 cm de diámetro y 100 cm de largo y con dos muescas internas para soportar el relleno. Previo al lecho se presenta la primera zona del reactor que es la zona de precalentamiento de los gases ingresantes. El mismo se dispuso dentro de un horno vertical con sección circular y aberturas superior e inferior para extraer para limpiar y recargar y colocar luego el tubo de reacción. El horno es regulable hasta 1473 K mediante un termopar de hierro constantán. Allí se tiene la segunda zona que es la zona de reacción, sección del tubo donde se ubica, sobre las muescas y entre dos capas de lana de cuarzo, el óxido soportado en alúmina.
- Zona de medición de concentración de SO₂ y CO₂: Por último se tiene la tercera zona que es la más externa y de descarga conectada en paralelo a dos registradores de gases. El primero, para detectar la concentración de SO₂, es un analizador de celda electroquímica específica *SafeLog 100, Quest Technologies* calibrado de modo que una concentración marcada de 3.5 representa 10ppm en concentración real, o sea, el total suministrado por el tubo. El segundo es un sensor infrarrojo que detecta CO₂, modelo *TES-1370 NDIR* con un rango de medición de 1 a 6000ppm. Luego la corriente se hizo burbujear en un frasco lavador con agua destilada para verificar la posible presencia de trióxido de azufre. Y por último se hizo burbujear la misma en una solución de hidróxido de potasio diluida, con el objeto de retener el dióxido de azufre remanente y evitar así la contaminación el aire presente en el laboratorio. Se estudiaron los óxidos de metales de transición del primer período, desde vanadio hasta níquel, soportados en alúmina.
- Preparación de muestras: Los óxidos se prepararon en el laboratorio por el método de impregnación a partir del nitrato de Cromo: Cr(NO₃)₃.9H₂O, marca FLUKA. El soporte empleado es gamma alúmina, la cual fue secada a 378 K durante 10 hs y luego calcinada a 873 K. Los catalizadores se caracterizaron mediante difracción de Rayos X, XPS y BET, determinándose el porcentaje de cristalinidad, el tipo de átomos y de enlace presentes en cada uno de ellos y su superfície específica.

Preparadas y caracterizadas, las muestras fueron sometidos a ciclos de temperatura bajo atmósfera inerte para estudiar su estabilidad térmica y la posible variación de los sitios activos con la temperatura. Al cabo de cada ciclo de temperatura, la muestra debió ser sometida a ensayos BET para determinar la posible variación de la superfície específica. Asimismo se evaluó la capacidad retentiva de SO2 para cada una de las muestras.

Fase teórica: La información experimental se combinó con cálculos teóricos, basados en DFT (Density Functional Theory), con el propósito de determinar los sitios preferenciales de adsorción del SO₂.

Para los sistemas adsorbato-sustrato, se empleó una supercelda hexagonal cuyas constantes de redes son: a = b = 4,954 y c = 20 Å. El modelo empleado para el sustrato se conforma de una capa de cinco subcapas (Cr-O₃-Cr) de espesor

separadas por una zona de vacío para evitar las interacciones entre las mismas. La superficie empleada es 1x1. Al sustrato se le permitió relajar las nueve capas atómicas externas del junto con los átomos de cada adsorbato. Se llevó a cabo la optimización de cada una de las moléculas de adsorbato en estado gaseoso (celda cúbica de 10 Å de lado). Se calcularon las geometrías óptimas y las frecuencias vibracionales. Los resultados fueron comparados con la bibliografía de referencia.

Resultados experimentales

Síntesis de resultados

Experiencia: 2.0. CH₄ + SO₂ + O₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Con el fin de llevar a cabo una experiencia en la que la medición de CO_2 sea lo más precisa posible, se procedió a cubrir una de las fuentes de muestreo del medidor, para evitar el contacto del detector de CO_2 con el CO_2 atmosférico. De este modo se logra una atmósfera con una concentración inicial nula de dicho gas dentro del equipo.

La experiencia arrojó los siguientes resultados, en los que la producción de CO_2 comenzó luego de los 1033 °K (760 °C) de temperatura. Esto se debe a que, en este punto, se comenzó a obtener la energía necesaria para llevar a cabo el proceso de combustión completo. La curva ([CO_2] vs Temperatura) comienza a ascender debido a que, a medida que aumenta la energía térmica, la eficiencia de conversión es mayor. Sin embargo, se llega a un punto en el que la reacción de combustión va disminuyendo su porcentaje de conversión provocando una caída en la cantidad de CO_2 producido hasta llegar al valor cero.

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $O_2 = 50 \text{ ml/min}$

 $SO_2 = 250 \text{ ml/min}$

T = 23 - 1000 °C = 296 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: Mediante cálculos de integración de área, se pudo calcular el área bajo la curva de producción de CO_2 . Se predijeron 1.368 ml de CO_2 , lo cual equivale a 2,33 mg o 3.19. 10^{19} moléculas.

Experiencia: 2.1.1. CH₄ + SO₂ en fase gaseosa

Comentarios: Esta reacción (en ausencia de oxígeno) nos permitirá comparar el poder oxidante del O_2 y el SO_2 frente al CH₄. El par O_2 , CH₄ se estudiará en la reacción 2.1.2. Se tiene en cuenta la relación estequiométrica entre reactivos de 1:2

Caudales:

 $CH_4 = 150 \text{ ml/min}$

 $SO_2 = 300 \text{ ml/min}$

T = 23 - 700 °C = 296 - 973 K

Masa $Cr_2O_3/Al_2O_3 = 0$ g

Resultados: Mediante cálculos de integración de área, se pudo calcular el área bajo la curva de producción de CO_2 . Se predijeron 3.902 ml de CO_2 , lo cual equivale a 11,2 mg 1.53 $.10^{20}$ moléculas.

En base a las curvas anteriores, se calculó la energía de activación promedio de la reacción:

Experiencia	∆E (J/mol)	ΔE (eV)
2.1.1.a	281.402	7.657
2.1.1.f	333.957	9.087
2.1.1.g	289.468	7.877
2.1.1.h	340.443	9.264
2.1.1.i	371.876	10.119
Promedio (a-h)	311.318	8.471

Tabla 1 – Energías de activación de la formación de CO₂ a partir de la reacción de CH₄ y SO₂ en fase gaseosa

Experiencia: 2.1.2. CH₄ + O₂ en fase gaseosa

Comentarios: Se propone estudiar la reacción de combustión entre CH_4 y O_2 en fase gaseosa. El objetivo es determinar el grado de influencia de la temperatura en dicha reacción independientemente de la actividad aportada por el catalizador. Además, se pretende comparar el porcentaje de conversión de CH_4 a CO_2 en presencia de SO_2 y de O_2 y el mismo porcentaje en presencia de O_2 únicamente. De este modo, se podría averiguar de qué reactivo provienen los átomos de oxígeno pertenecientes al CO_2 , si provienen del SO_2 o el O_2 del medio.

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $O_2 = 200 \text{ ml/min}$

T = 23 - 1000 °C = 296 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0$ g

Resultados: No se detectó producción de CO₂

Experiencia: 2.3.1. CH₄ sobre Cr₂O₃/Al₂O₃

Comentarios: Se estudió la interacción del CH_4 sobre el catalizador en estudio. Previamente, se hizo pasar N_2 dentro del equipo de experimentación, con el fin de evitar la reacción del CH_4 con el oxígeno atmosférico.

Caudales :

 $\label{eq:ch4} \begin{array}{l} CH_4 = 250 \text{ ml/min} \\ T = 23 - 1000 \ ^\circ\text{C} = 296 - 1273 \text{ K} \\ \mbox{Masa } Cr_2O_3/Al_2O_3 = 0,025 \text{ g} \end{array}$

Resultados: No se detectó producción de CO₂.

Experiencia: 2.3.1.2. CH₄ + O₂ en fase gaseosa

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $O_2 = 200 \text{ ml/min}$

T = 23 - 1000 °C = 296 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0$ g

Resultados: No se detectó producción de CO_2 . Este resultado es esperado, ya que la oxidación del metano con oxígeno produce una reacción de combustión a partir de los 2273 K.

Experiencia: 2.3.2. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Se estudió la interacción del CH_4 con el SO_2 sobre el catalizador en estudio. El objetivo es saber el origen de los O_2 del CO_2 que se forma como producto. Estos pueden provenir tanto del SO_2 como del O_2 existente del medio.

La reacción es $CH_4 + 2SO_2 \rightarrow 2S^\circ + CO_2 + 2H_2O$

A pesar de que la relación estequiométrica entre los gases reactivos es de 1:1, se emplearán caudales iguales. En la próxima experiencia, se respetará dicha proporción.

Caudales:

 $CH_4 = 200 \text{ ml/min}$

 $SO_2 = 200 \text{ ml/min}$

T = 23 - 1000 °C = 296 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,020$ g

Resultados: Las curvas muestran un comportamiento muy similar desde el rango de temperatura ambiente hasta los 703 K.

Experiencia: 2.3.3. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Se estudió la interacción del CH₄ con SO₂ sobre el catalizador en estudio. El objetivo es saber el origen de los O₂ del CO₂ que se forma como producto. La reacción principal es CH₄ + $2SO_2 \rightarrow 2S^\circ + CO_2 + 2H_2O$. Se respeta la relación estequiométrica, de1:2.

Caudales:

CH₄ = 150 ml/min SO₂ = 300 ml/min T = 23 - 700 °C = 296 - 973 K

Masa $Cr_2O_3/Al_2O_3 = 0,010 \text{ g}$

Resultados: La producción de CO_2 es mucho menor en el intervalo de temperaturas que se está empleando en la presente serie de experiencias. Sin embargo, de detecta gas producido a partir de los 25 °C de temperatura. Se deduce que es probable que el comienzo de la reacción sea independiente de la presencia del catalizador empleado.

 El ascenso de la concentración de CO₂ en la reacción en fase gaseosa tiene un comportamiento muy similar al ascenso que se lleva a cabo en la primera y segunda experiencia sobre el catalizador, teniendo en cuenta la diferencia entre los valores obtenidos. Los valores de concentración difieren en 200 ppm aproximadamente, pero el comportamiento de las curvas son muy semejantes.

Experiencia: 2.3.4. CH₄ + O₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Se estudia la oxidación del CH_4 con O_2 sobre el catalizador en estudio. El objetivo es saber el origen de los O_2 del CO_2 que se forma, junto con las características generales de la presente reacción, tales como: cantidad de moléculas de CO_2 producidas, temperatura a la que comienza a producirse, variación de su concentración respecto de la temperatura (y al tener un coeficiente de calentamiento constante, una varia independiente podría ser el tiempo), y la cinética de reacción.

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $O_2 = 200 \text{ ml/min}$

T = 23 - 1000 °C = 296 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,010 \text{ g}$

Resultados:

1) Existe una diferencia entre la reacción $(SO_2 + CH_4)$ en Fase Gaseosa y sobre el catalizador Cr_2O_3 . En presencia del catalizador se observa un claro aumento en la producción de CO_2 a partir de los 435 oC

2) En la reacción O_2 + CH₄ no se observa producción alguna de CO₂ en fase gaseosa hasta temperaturas de 1273 K.

3) Los resultados permiten observar que, en presencia del catalizador, la Retención del SO₂ se alcanza y es eficiente a una temperatura de 500 °C. Por Retención entendemos un aumento significativo en la velocidad de la oxidación del metano y la consiguiente reducción (y retención) del SO₂

Experiencia: 2.3.6. CH4 + O2 sobre Cr2O3/Al2O3

Comentarios: Con el fin de estudiar esta zona de aumento del gas producto con mayor detalle (con comportamiento de raíz cuadrada), se programó un aumento "escalonado" de la temperatura. Se comienza desde los 50°C, y se asciende cada 15 °C hasta llegar al valor máximo de 230°C. En cada valor de temperatura, se mide la producción de CO_2 durante 7 minutos. Luego, con los datos recopilados se realizaron grafías del logaritmo neperiano de la concentración de CO_2 producido respecto del inverso de la temperatura en unidades Kelvin. Con este tipo de curvas.

Desde el punto de vista experimental, la cinética química consiste en la determinación de la constante de velocidad, el

orden de la reacción y la energía de activación; desde el punto de vista teórico consiste en proponer un mecanismo de reacción que incluye determinadas etapas para pasar de reactante a productos de reacción.

Se calcularon las energías de activación correspondientes a las gráficas de las experiencias recientes, las cuales consisten en estudiar la concentración de CO_2 producida respecto de la temperatura, tomada en intervalos de 5°K.

Experiencia: 2.4.1. CH4 + SO2 sobre Cr2O3/Al2O3

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $SO_2 = 400 \text{ ml/min}$

T = 50 - 400 °C = 323 - 673 K

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: En la presente gráfica se comparan las tres experiencias en las que se aumentó la temperatura de 50 a 230 °C. Las dos últimas tienen un comportamiento similar, por lo que es necesario continuar realizando experiencias en las que se mantengan las mismas condiciones de experimentación. Se recomienda sin embargo, acotar el intervalo de temperaturas de experimentación en el rango en el que el comportamiento de las curvas asciende en forma brusca.

Experiencia: 2.4.2. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: En etapas anteriores del presente trabajo, se detectó una tendencia a aumentar el CO2 producido en la oxidación de CH_4 en presencia de SO_2 sobre el catalizador de Cr_2O_3/Al_2O_3 , en el intervalo de temperatura de los 50 a los 200 °C. Luego de estas temperaturas, dicha concentración parece alcanzar un valor relativamente estable. El aumento programado de la temperatura empleado hasta el momento consiste en emplear un coeficiente de calentamiento lineal de 10.8 °K/min. En esta serie de experiencias, el intervalo de temperaturas fue reducido de 25 a 110 °C, con el fin de estudiar esta reacción en detalle.

El procedimiento consistió en armar un lecho de Cr_2O_3/Al_2O_3 , con una masa de 0,10 g. luego se hizo pasar SO_2 y CH_4 , respetando la relación estequiométrica 2:1. Mientras, se monitoreó la concentración de CO_2 producido a la salida del equipo junto con la posible concertación de SO_2 que pudiera atravesar el lecho sin reaccionar. El valor de CO_2 tomado para la recopilación de datos es aquél que se obtiene un vez que la concentración se estabiliza, para un valor de temperatura determinado. Los intervalos de muestreo fueron establecidos cada 5°C.

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $SO_2 = 200 \text{ ml/min}$

T = 25 - 110 °C = 298 - 383 K

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: Las experiencias realizadas en la serie 2.4.2 consistieron en la formación de CH_4 con SO_2 sobre Cr_2O_3/Al_2O_3 , durante el aumento escalonado de la temperatura. En cada valor se esperó el tiempo necesario hasta que se estabilizó la concentración de gas producto.

Analizando las 9 experiencias en las que se emplearon las condiciones mencionadas, hubo 5 que mantuvieron un comportamiento similar y otras 4 que se desviaron muy por debajo de las primeras. Por lo tanto, se concluye que se, hasta este punto, hay baja reproducibilidad de los datos. Las divergencias observadas pueden deberse a dos factores, los cuales son: 1. Irregularidades en la superficie del sustrato: tanto las dos capas de lana de cuarzo como la capa de catalizador deben estar distribuidos en forma homogénea, para evitar el desvío de los gases reactivos a través de grietas o zonas de menor espesor del lecho. 2. Irregularidades en la medición del equipo detector de CO_2 : tiene una precisión de 1ppm en un rango de humedad relativa de 30-95% y de temperatura de -20 a 60 °C. Se debe verificar este aspecto mediante la medición directa de CO_2 emitido por un tubo que contenga este reactivo, con una concentración previamente conocida.

Paso siguiente, se compararon las energías de activación para las experiencias de SO₂ y CH₄ sobre el catalizador:

Tabla 2 – Energías de activación de la formación de CO ₂ a partir de la reacción de CH ₄ y SO ₂ sobre Cr ₂ O ₃ /Al ₂ O ₃
(masa = 0,100 g)

Experiencia	∆E (J/mol)	ΔE (eV)
2.4.1.a	1.2766	0.035
2.4.2.a	2.2337	0.061
2.4.2.d	3.0685	0.083
2.4.2.e	1.8114	0.049
2.4.2.f	2.983	0.081
2.4.2.g	2.429	0.066
2.4.2.h	3.062	0.083
Promedio	2.409	0.066

Experiencia: 2.4.4. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: En las experiencias anteriores se observó que hay importantes divergencias en las curvas obtenidas. Se infiere que uno de los factores causantes es la presencia de CO_2 y O_2 ambiental en el equipo.

En las mismas, previamente se limpió el equipo con N_2 con el fin de eliminarlos. Por este motivo, en una nueva serie de experiencias se suministra CH4 en concentración de 10ppm diluida en N_2 , durante un intervalo de temperaturas de 12 a 900°C o hasta que la concentración de gas producto llegue a cero, mediante su ascenso lineal. Se busca hacer reaccionar la totalidad de CH₄ con el fin de verificar la precisión de las mediciones de CO₂ producido.

Caudales:

 $CH_4 = 50 \text{ ml/min}$

$SO_2 = 250 \text{ ml/min}$

T = 25 - 110 °C = 298 - 383 K

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: Hay salida de CO_2 desde el comienzo. En la primera experiencia, la detección CO_2 llegó a cero. Sin embargo, en la siguiente no se logró este comportamiento. Además reobserva que la producción de CO_2 aumenta con la temperatura y se estabiliza a valores crecientes en los dos días siguientes, lo cual es motivo de incertidumbres. Los motivos pueden ser los siguientes:

- Hay una fisura en la columna, que se dilata al aumentar la temperatura permitiendo la entrada de aire.
- La entrada al detector está permitiendo la entrada de aire al sistema. Por lo tanto, se revisarán nuevamente todas las conexiones a la columna: las entradas al sistema y la conexión al detector. Luego se repetirán las experiencias con CH₄. Si se siguen obteniendo divergencias en las curvas de CO₂ se enviará a reparar la comuna de cuarzo.
- Avalan estas hipótesis el hecho de que, en experiencias anteriores, donde se emplearon los gases reactivos CH₄ + O₂, no se obtuvo producción de CO₂ hasta altas temperaturas (el detector de CO₂ se mantuvo en cero).

Experiencia: 2.5. $CH_4 + SO_2$ sobre Cr_2O_3/Al_2O_3

Comentarios: Se emplearon los tres gases reactivos, con proporciones estequiométricas: $CH_4 : SO_2 : O_2 = 1:1:0$. Se comenzó a temperatura ambiente, se midió la concentración de CO_2 emitida en ese valor junto con la concentración de SO_2 y se continuó con el ascenso escalonado de la temperatura. Cada 5K, se realizó una medición simultánea de ambos gases. Previo al comienzo de la experiencia, no se limpió la superficie del catalizador con un pasaje de N_2 , ya que se busca trabajar con las condiciones en las que se encontraría dicho Cr_2O_3/Al_2O_3 al operar en una chimenea del tipo industrial (presión atmosférica, altas y variables temperaturas, contacto con gases atmosféricos como O_2 , CO_2 , etc)

Caudales:

 $CH_4 = 100 \text{ ml/min}$

 $SO_2 = 100 \text{ ml/min}$

T = 25 - 350 °C = 298 - 573 K

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: Durante cada una de las experiencias, sólo se registró emisión de SO_2 luego de los 493K en la experiencia 2.5.b, y en las otras dos a partir de los 548K, con una concentración de 0.1 ppm. Al llegar a los 623K, este valor llega en

las experiencias a y c a 0.3 y en la experiencia b a 0.6. Se observa emisión de CO_2 a partir de los 443 K. las experiencias a y c muestran curvas similares, con un valor de concentración máxima emitida de 113 ppm. Hay ascenso de dichas curvas hasta llegar a los 540K, donde hay una tendencia a estabilizarse.

Experiencia: 2.3.5: CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Se comenzó el suministro de N_2 a temperatura ambiente. Luego, se continuó con el ascenso lineal de este parámetro, hasta llegar a los 323K. Durante este proceso, se midió la concentración de CO_2 emitida, proveniente de los gases atmosféricos adsorbidos en la superficie catalítica (además de una fracción contenida en el aire ambiental contenido dentro de la columna de cuarzo). Al llegar a los 323K, se verificó la ausencia total de concentración de CO_2 registradas en el medidor. Luego, se dejó atemperar el equipo nuevamente a 298K, para luego comenzar con la experiencia.

Se realizaron 12 experiencias, en donde se empleó una muestra de catalizador por cada una. Previamente a realizarlas, se llevó a cabo la "limpieza" de la superficie catalítica, mediante el suministro de N₂ conjuntamente con un ascenso de temperatura en el sitio de reacción (ver Pre-tratamiento de las muestras). Paso siguiente, se suministraron los gases O_2 y CH₄ (en relación estequiométrica, 1:2) a flujo constante, junto con el aumento escalonado de temperatura. Para tal fin, se comenzó a 298 K, se midió la concentración de CO₂ emitida en ese valor una vez estabilizada, y se continuó con el ascenso escalonado de la temperatura, cada 5K.

Caudales:

 $CH_4 = 160 \text{ ml/min}$

 $O_2 = 80 \text{ ml/min}$

 $T = 25 - 50 \circ C = 298 - 323 K$

Masa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Resultados: Se realizaron 12 experiencias, en donde se empleó una muestra de catalizador por cada una. Previamente a realizarlas, se llevó a cabo la "limpieza" de la superficie catalítica, mediante el suministro de N₂ conjuntamente con un ascenso de temperatura en el sitio de reacción (ver Pre-tratamiento de las muestras). Paso siguiente, se suministraron los gases O_2 y CH_4 (en relación estequiométrica, 1:2) a flujo constante, junto con el aumento escalonado de temperatura. Para tal fin, se comenzó a 298 K, se midió la concentración de CO_2 emitida en ese valor una vez estabilizada, y se continuó con el ascenso escalonado de la temperatura, cada 5K. Luego se calculó la energía de activación, mediante las gráficas de ln CO_2 versus la inversa de la temperatura a la que se tomó cada punto (de concentración de gas emitido).

Experiencia: 3.1. CH₄ sobre Cr₂O₃/Al₂O₃

Comentarios: se propone estudiar la reacción de combustión del CH_4 sobre el sustrato, con el fin de estudiar la afinidad de este gas con los oxígenos del sustrato. En caso de que esto ocurra, habría producción de CO_2 .

Caudales :

 $CH_4 = 250 \text{ ml/min}$

T = 25 - 1000 °C = 298 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,025 \text{ g}$

Resultados : No se registró salida de CO_2 , lo que puede significar que el CH_4 no pudo desprender átomos de oxígeno del sustrato para formar CO_2 .

Experiencia: 3.2. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Comentarios: Se propone estudiar la reacción de combustión entre CH_4 y SO₂, con el fin de saber el origen de los O₂ del CO₂ que se forma como producto. Éstos pueden provenir tanto del SO₂ (empleado en esta experiencia en fase gaseosa), como del O2 existente del medio, el cual se incluirá en la próxima experiencia.

Caudales:

 $CH_4 = 200 \text{ ml/min}$

SO₂ = 200 ml/min T = 25 - 1000 °C = 298 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,020 \text{ g}$

Resultados: Se observa producción de CO_2 a partir de temperatura ambiente, junto con un comportamiento similar de las mismas desde los 65 °C (338 K) hasta los 415 °C (668 K) aproximadamente. Luego de esta temperatura, se observan importantes desviaciones en la producción de CO_2 entre las dos primeras experiencias y la tercera.

Experiencia: 2.6. CH₄ + SO₂ sobre Cr₂O₃/Al₂O₃

Caudales:

 $CH_4 = 100 \text{ ml/min}$ $SO_2 = 100 \text{ ml/min}$ $O_2 = 50 \text{ ml/min}$ T = 25 - 350 °C = 298 - 573 KMasa $Cr_2O_3/Al_2O_3 = 0,100 \text{ g}$

Experiencia: 3.1. CH₄ sobre Cr₂O₃/Al₂O₃

Comentarios: se propone estudiar la reacción de combustión del CH_4 sobre el sustrato, con el fin de estudiar la afinidad de este gas con los oxígenos del sustrato. En caso de que esto ocurra, habría producción de CO_2 .

Caudales :

 $CH_4 = 250 \text{ ml/min}$

T = 25 - 1000 °C = 298 - 1273 K

Masa $Cr_2O_3/Al_2O_3 = 0,025 \text{ g}$

Resultados : No se registró salida de CO_2 , lo que puede significar que el CH_4 no pudo desprender átomos de oxígeno del sustrato para formar CO_2 .

Resultados experimentales conjuntos: Línea de investigación y trabajo de Tesis Doctoral

Energías de activación global para la formación de CO_2 sobre Cr_2O_3/Al_2O_3 :

En base a los datos obtenidos, y utilizando una ecuación del tipo Arrhenius, se realizaron las tablas con los valores de energía de activación, para la formación de CO2 a partir de la reacción de CH_4 y SO_2 sobre Cr_2O_3/Al_2O_3 (masa = 0,100 g), como se presentó anteriormente:

Tabla 3 – Energías	de activación	de la formació	n de CO ₂
--------------------	---------------	----------------	----------------------

Experiencia	∆E (eV)
2.4.2.a	0.037
2.4.2.f	0.05
2.4.2.g	0.044
E promedio	0.044

Termodesorción de SO₂:

Se observa un máximo alrededor de 1143K en el espectro TPD de SO_2 sobre la muestra de Cr_2O_3 policristalino. Se utiliza un alto cubrimiento de SO_2 , cerca de 1 ML. En estas condiciones, la temperatura del pico parece ser casi independiente del cubrimiento.

La temperatura se elevó según la expresión $T = T_0 t + \beta$, con una tasa de calentamiento $\beta = 0,12$ K/s, de 373 a 1273 K. En este intervalo se observa sólo un pico de desorción. Se realiza una estimación de la barrera de energía, Eb, para la desorción de SO₂ Cr₂O₃ policristalino mediante la ecuación de Polanyi-Wigner. El valor calculado de Eb =- 3,12 eV.

Gráfica 1 – Desorción de SO₂ sobre Cr₂O₃/Al₂O₃

Para la presente gráfica, se empleó una experiencia de desorción con las siguientes condiciones experimentales: Caudal SO2 = 10 ppm en N2. Velocidad de calentamiento: $\beta = 0.12 \circ C / s$ de 100 a 1.000 $\circ C$. Masa Cr₂O₃/Al₂O₃ = 0.075 g.

Superficie que ocupa una molécula de SO₂ sobre la superficie de Cr_2O_3/Al_2O_3 :

En base a los estudios BET realizados sobre el Cr_2O_3 , su superficie específica es 150 m²/g. Se calculó la masa de gas diluido en N₂ que circuló a través del lecho de sustrato en cada experiencia, que es la máxima cantidad de SO₂ que puede quedar retenida.

Se halló el factor de corrección del medidor de gases (si el medidor tiene un mínimo margen de error, la dilución será la misma que la concentración en ppm medida a la salida del tubo de suministro de gas) y se correlacionó con los datos medidos en el laboratorio. La masa de SO_2 que sale es aquella que no quedó retenida en el lecho, ya sea por saturación o porque la temperatura disminuyó en gran medida la coeficiencia de adsorción de las moléculas. Finalmente, calcularon los parámetros de red de la celda hexagonal.

Condiciones experimentales:

- Masa $Cr_2O_3/Al_2O_3 = 0$ gr
- Caudal $SO_2 = 300$ ml/min
- Intervalo de temperatura = 298 973 K.

Tabla 4 – superficie que ocupa una molécula de SO₂ sobre el sustrato

Experiencia	Superficie SO ₂	Parámetro de red
149	17.68 Å ²	4.20 Å
151	21.77 Å ²	4.67 Å
152	19.28 Å ²	4.39 Å
promedio	19.58 Ų	4.42 Å

Los valores son comparados con los de la superficie (0001). Los parámetros de red superficiales son a = b = 4.954 Å (R. Wyckoff, Crystal Structures, Second Edition Interscience, New York, 1965). Una molécula de SO₂ se adsorbe sobre esta superficie, obteniéndose un cubrimiento de monocapa.

El área calculada para esta superficie romboidal es 24.54 Å. Este valor es algo mayor que el obtenido experimentalmente (19.58 Å). De esta manera se comparan se comparan los resultados experimentales y teóricos del área ocupada por una molécula de SO₂.

Resultados teóricos:

Energía vs distancia vertical relativa:

La gráfica 7 muestra la energía relativa calculada en función de la distancia de la molécula de SO_2 a la superficie. No muestra evidencia de una barrera de energía para la adsorción. Con una energía de activación nula para la adsorción de SO_2 se puede comparar el cálculo de adsorción de energía DFT + U, Ea = -3,09 eV, con la barrera de energía para la desorción, Eb =- 3,12 eV, obtenidos del espectro TPD y de la ecuación Polanyi-Wigner. El buen acuerdo entre estos

valores podría ser interpretado como un apoyo de la formación de especies sulfito sobre la superficie de Cr_2O_3 policristalino después de la adsorción de SO_2 .

Sistema S- Cr_2O_3 : se adsorbió un átomo de azufre sobre la superfície en 5 sitios: Sobre un átomo de cromo de la primera capa, obteniéndose una energía de adsorción de -0.594 eV, sobre un cromo de la tercera capa, y sobre el oxígeno de la segunda, la cuarta y la quinta capa.

Referencias: Color de las esferas:

Rojo = oxígeno del sustrato.

Celeste = cromo del sustrato.

Amarillo = oxígeno del adsorbato.

Verde = azufre.

Fucsia = carbono.

Naranja = hidrógeno.

Imagen 1 – Adsorción de S sobre Cr₂O₃ (0001)

*Sistema SO*₂- *Cr*₂*O*₃: hay dos configuraciones de adsorción estables, con energías de adsorción: $E_a = -3.09 \text{ eV} \text{ y} - 2.79 \text{ eV}$, llamadas sitio 4 y 3.

A pesar de haber una diferencia de 0,3 eV, no hay diferencias estructurales entre ellos alrededor de la molécula adsorbida. En estas geometrías, las longitudes de enlace son 5% más largas que en la geometría del SO₂ en fase gaseosa pero un 1% más cortas que los enlaces del SO₃^{2–} en fase gaseosa. La formación de un enlace O superficial-S se presentan con una longitud de 1,77 Å, un 17% más largo que las otras dos distancias S-O y más corto que la longitud de enlace Cr-O, con 2.02 Å (se pierde después de la formación en superficie).

Después de la adsorción, el ángulo O-S-O es 13° menor que el valor calculado en la fase de gas (119°), pero mucho más cercano al valor de 112 ° calculado para el SO_3^{2-} en fase cercanos el valor O-S-O de la especie SO_3^{2-} .

Imagen 2 – Adsorción de SO₂ sobre Cr₂O₃ (0001)

*Sistema O*₂-*Cr*₂*O*₃: Se ubicó la molécula de O_2 a diferentes distancias de la superficie, partiendo de dos configuraciones: estado molecular y disociativo, obteniéndose una cobertura de monocapa.

<u>SO₂ molecular sobre Cr₂O₃</u>: la configuración más estable corresponde a una

 $E_a = -1.567 \text{ eV}.$

 O_2 disociativo sobre Cr_2O_3 : la configuración más estable corresponde a una

 $E_a = -1.397 \text{ eV}.$

Sistema CH₄-Cr₂O₃: la configuración más estable corresponde a una $E_a = 1.42$ eV (adsorción inestable), donde la molécula mantiene su integridad y si geometría inicial. En relación con los resultados experimentales, no se forma CO₂ en la interacción entre CH₄ como único reactivo y Cr₂O₃, por lo que no hay formación de CO₂ a partir de los oxígenos superficiales.

correspondiente a una adsorción estable, es una fisisorción. Coincide con los resultados experimentales, donde hay formación y emisión de CO₂ desde temperatura ambiente.

Imagen 5 - Adsorción de CO₂ sobre Cr₂O₃ (0001)

Conclusiones finales

- Se observa un importante incremento en la eficiencia de adsorción del catalizador ante un aumento de su masa.
- La eficiencia de adsorción promedio del catalizador disminuye a una velocidad promedio de 0.32% por hora. También disminuye luego de cada desorción con N₂ a 750 °C.
- Si la masa es muy baja, de 0,01 g, la retención de SO₂ a 250 ml/min es muy baja.
- Cuando se hace pasar 250 ml/min de O₂ previo a las experiencias de retención, se observa que la capacidad de retención de SO₂ disminuye hasta volverse nula.
- La capacidad de retención de SO₂ disminuye con el número de readsorciones sucesivas.
- El pasaje de O₂ previo a las experiencias de retención disminuye significativamente la retención de SO₂. por cálculos teóricos se verifica que el O₂ ocupa los espacios disponibles en la superfície.

Bibliografía:

Haase, J. Structural studies of SO₂ adsorption on metal surfaces, Matter 9, J. Phys., Condens, pp. 1647-1670, 1997.

Hunter y Wright. Conversión de SO_2 en S en la ruta de purificación de gases de chimenea, Chemical Engineering, 1997.

Irurzun, I. M., Imbihl, R., Vicente, J. L. Y Mola, E. E. An análisis of turbulent states in the $NH_3 + NO$ reaction on Pt (100), Chem. Phys. Lett. N° 389, pp. 212-217, 2004.

Jong, S. C., Sang, C. P., Hee, S. K. Deok, S. L., y In, S. N. Removal of SH₂ and/or SO₂ by catalytic conversion technologies, Catalysis Today N° 35, pp. 37-43, 1997.

Michaelides, A., Ranea, V. A. de Andrés, P. L. y King D. A. General model for water monomer adsorption on closepacked transition and noble metal surfaces, Physical Review Letters, Vol. 90, N° 21, pp. 21-102, 2003.

Mola, E. E., Irurzun, I. M., Vicente, J. L. y King. D. A. *Mesoscopic pattern formation in catalytic processes by an extension of the mean field approach*, Surface Review and Letters, Vol. 10, N° 1, pp. 23-38, 2003.

Mola, E. E., King, D. A., Rafti, M., Irurzun I. M., y Vicente, J. L. Extended the Mean Field Approach (EMFA) to pattern formation in surface chemical reactions, Surface Review and Letters, Vol. 11, N° 1, 2004.

Mola, E. E., Ranea, V. A., y Vicente, J. L. Underlayer chemisorption of C on Al (111), Surface Science, Vol. 418, N° 2, pp. 367-375, 1998.

Mola, E. E., Ranea, V. A., y Vicente, J. L. *Theoretical model of diatomic molecules interacting on a two-dimentional lattice*, Physical Review E., Vol. 60, N° 5, p. 5130, 1999.

Mulligan, D. y Berk, D. Reduction of sulphur dioxide with methane over selectedtransition metal sulfides, Ind. Eng. Chem. Res., Vol. 28, N° 7, pp. 926-931, 1989.

Nowotny, J. y Dufour, L. C. Surface and near surface chemistry of oxide materials, Elsevier Science, Netherlands, pp. 101-124.

Ranea, V. A., Mola, E. E., y Vicente, J. L. A theoretical study of water chemisorption on the (001) plane of V_2O_5 , Surface Science, Vol. 442, pp. 498-506, 1999.

Ranea, V. A., Vicente, J. L., Mola, E. E., Arnal, P., Thomas, H., y Cambaro, L. Adsorption of H_2O on the (001) plane of V_2O_5 : chemisorption site identification, Surface Science, Vol. 463, pp. 115-124, 2000.

Sarlis, J. y Berk, D. *Reduction of sulphur dioxide with methane over activated alumina*, Ind. Eng. Chem. Res., Vol. 27, N° 10, pp. 1951-1954, 1998.

Vicente, J. L., Maltz, A. y Mola, E. E. *Heterogeneous catalysis reaction on a 2x2 lattice*, Surface Science, Vol. V, 400, pp. 197-202, 1998.

Ziolek, M., Kujawa, J., Saur, O., Aboulayt, A., Lavalley, J. C. Influence of sulphur dioxide adsorption on the surface properties of metal oxides, J. Mol. Catal. A., Chemical Nº 112, pp. 125-132, 1996.