

Biblioteca digital de la Universidad Católica Argentina

Aprile, Santiago

Evaluación de los parámetros de claidad y rendimiento de la cebada cervecera en respuesta a la fertilización nitrogenada y fungicida en la localidad de Chacabuco, provincia de Buenos Aires

Trabajo Final de Ingeniería en Producción Agropecuaria Facultad de Ciencias Agrarias

Este documento está disponible en la Biblioteca Digital de la Universidad Católica Argentina, repositorio institucional desarrollado por la Biblioteca Central "San Benito Abad". Su objetivo es difundir y preservar la producción intelectual de la Institución

La Biblioteca posee la autorización del autor para su divulgación en línea.

Cómo citar el documento:

Aprile, S. 2014. Evaluación de los parámetros de calidad y rendimiento de la cebada cervecera en respuesta a la fertilización nitrogenada y fungicida en la localidad de Chacabuco, provincia de Buenos Aires [en línea]. Trabajo Final de Ingeniería en Producción Agropecuaria. Facultad de Ciencias Agrarias. Universidad Católica Argentina. Disponible en:

http://bibliotecadigital.uca.edu.ar/repositorio/tesis/evaluacion-parametros-calidad-chacabuco.pdf [Fecha de consulta:......]

PONTIFICIA UNIVERSIDAD CATÓLICA ARGENTINA

Facultad de Ciencias Agrarias

Ingeniería en Producción Agropecuaria

EVALUACION DE LOS PARAMETROS DE CALIDAD Y RENDIMIENTO DE LA CEBADA CERVECERA EN RESPUESTA A LA FERTILIZACION NITROGENADA Y FUNGICIDA EN LA LOCALIDAD DE CHACABUCO, PROVINCIA DE BUENOS AIRES.

Trabajo final de graduación para optar por el titulo de:

Ingeniero en Producción Agropecuaria

Autor: Santiago Aprile

Profesor Tutor: Ing. Agr. Inés Davérède, PhD

Fecha: 2014

Resumen

En los últimos diez años, la producción de cerveza ha aumentado en el orden de un 40 %, lo que trajo aparejado un aumento en la demanda de cebada maltera, aumentando en forma exponencial la superficie sembrada. El objetivo de este estudio fue determinar posibles diferencias de rendimiento y calidad en respuesta a la fertilización nitrogenada y fungicida en el cultivo de cebada cervecera. Los tratamientos evaluados fueron; 1 : control; 2 : 80 kg N ha⁻¹ en macollaje (Z22); 3: 80 kg N ha⁻¹ en macollaje (Z22) y aplicación de 20 kg N ha⁻¹ foliar tardía (Hoja bandera; Z39); 4: 80 kg N ha⁻¹ en macollaje (Z22), más aplicación de fungicida en hoja bandera (Z39) conjuntamente con una aplicación de 20kg N ha⁻¹ foliar tardía (Z39) y 5: 80 kg N ha⁻¹ en macollaje (Z22), más aplicación de fungicida en Z31, más aplicación de 20 kg N ha⁻¹ foliar en hoja bandera (Z39) junto a una segunda aplicación de fungicida en Z39. El experimento se llevó a cabo en el establecimiento "La Libertad" ubicado en el partido de Chacabuco perteneciente a la provincia de Buenos Aires. Se utilizó el diseño experimental de bloques completos aleatorizado (DBCA) con cuatro repeticiones. Con respecto al rendimiento, el tratamiento 5 resultó el de mayor rinde con un valor de 2248 kg ha⁻¹, superando en un 50.2 % al tratamiento testigo, mientras que no hubo diferencia entre una o dos aplicaciones de fungicida. En cuanto a la proteína, el tratamiento 3 promedió 13.5 %, superando en un 18.4 % al tratamiento testigo (11.4 %). Los demás tratamientos rondaron valores intermedios entre el de mayor y menor concentración proteica, superando en todos los casos los estándares para su comercialización. En cuanto al calibre, el porcentaje de granos bajo zaranda de 2.2 mm fue mayor en los tratamientos 2 y 3, promediando un 42.3 %; a su vez, estos tratamientos presentaron los menores porcentajes de granos retenidos en zaranda de 2.5 mm, con un valor promedio de 15.1 %. Por el contrario, los tratamientos 1-4 y 5 presentaron los menores porcentajes bajo zaranda de 2.2 mm con valores promedio de 19 % y los mayores porcentajes sobre zaranda de 2.5 mm, promediando un 34.8 %. En todos los casos, los valores obtenidos resultaron fuera de los estándares para su comercialización como cebada cervecera.

Índice

1)INTRODUCCIÓN	4
2)HIPÓTESIS ESTADÍSTICAS	7
3)OBJETIVOS	7
4)MATERIALES Y MÉTODOS	8
5)RESULTADOS	9
RENDIMIENTO	10
Proteína	10
Calibre < 2.2 mm	
Calibre > 2.5 mm	11
7)DISCUSIÓN	11
8)CONCLUSIÓN	13
9)BIBLIOGRAFIA	14
10)ANEXOS	16
INFORME ESTADÍSTICO	16
Estadística descriptiva	16
Análisis de Homocedasticidad	
Análisis de Normalidad	18
Comparación de las variables respuestas entre tratamientos	19
Precipitaciones	22
TEMPERATURAS	23
FOTOS	25

INTRODUCCION

El cultivo de cebada cervecera es el cuarto cereal del mundo por volumen de producción, detrás de maíz, arroz y trigo. Dentro de Sudamérica, la Argentina es el mayor productor de cebada, especializándose en cebada maltera cuya producción ha experimentado un crecimiento notable y sostenido desde fines de la década del 80. El aumento de la demanda de cebada maltera está directamente relacionado con el aumento de la producción mundial de cerveza que se ha incrementado casi un 40 % en los últimos 10 años con una proyección de crecimiento que pronostica superar los 20000 millones de hectolitros dentro de los próximos diez años. Es así que la superficie sembrada con este cereal de invierno creció en forma exponencial, compitiendo en los últimos años en forma evidente con el trigo, el cereal de invierno de mayor tradición de la Pampa Húmeda (Miralles y col., 2011).

La difusión del cultivo dependerá de la posibilidad de obtener altos rendimientos y buena calidad del grano. En Argentina, la totalidad del producto tiene dos destinos: la industria maltera y el mercado forrajero que absorbe el producto excedente o de mala calidad. La comercialización se realiza por medio de contratos, en los que se especifica la calidad que debe tener la mercadería. El incumplimiento de estas especificaciones provoca su rechazo para fines industriales, disminuyendo considerablemente su valor, lo que afecta la rentabilidad del cultivo y desalienta a los productores (Echagüe y col., 2001).

El uso de fertilizantes en cebada cervecera presenta varios aspectos que deben ser considerados para lograr el objetivo de altos rendimientos con buena calidad maltera, esto es, adecuado tenor proteico y calibre. Valores óptimos estarían entre 10-11%, aunque existe una tolerancia hasta un 12%. Por otro lado, las partidas deben contener un elevado porcentaje de granos gruesos y enteros, mayor a 85% sobre zaranda de 2,5 mm y menos de 3 % por debajo de zaranda de 2,2, ya que por encima de dicho valor la industria rebaja el precio (Echagüe y col., 2001).

La respuesta a la fertilización nitrogenada depende de la disponibilidad de nutrientes en el suelo, el nivel de agua útil acumulada en el suelo a la siembra del cultivar, de las condiciones ambientales (otras características del suelo, clima, enfermedades, etc.), de la variedad empleada y de las características de la fertilización (dosis, fertilizante empleado y momento de aplicación; Baethgen y col., 1995).

La fertilización nitrogenada, además de incrementar los rendimientos, puede afectar marcadamente el contenido proteico de los granos. La concentración de de proteínas en el grano es el resultado de la relación entre la acumulación de nitrógeno y de biomasa del grano. Cualquier factor ambiental que incremente más la acumulación de biomasa que la de nitrógeno determina una reducción en

la concentración proteica de de los granos. La fertilización nitrogenada puede incrementar ambos, aunque usualmente afecta más al nitrógeno acumulado en los granos que al peso total. Por consiguiente, la fertilización nitrogenada suele determinar incrementos en el contenido proteico de los granos (Matthiess y col., 2002).

El calibre de los granos es un estimador del peso de mil granos por lo que la fertilización nitrogenada suele determinar disminuciones del calibre de los granos (Stark y Brown, 1987). Esto se debe a que la fertilización nitrogenada aumenta el número de granos que provienen de macollos y a que se generan más granos en posiciones distales de la espiga que se caracterizan por un menor calibre (Ellis y Marshall, 1998). La curva de respuesta del calibre a la fertilización nitrogenada parece ser simple aunque ha sido menos estudiada: a mayor dosis de fertilizante nitrogenado generalmente disminuyen en forma lineal las fracciones de granos más gruesas (Stark y Brown, 1987) y se incrementan las más finas (Conry, 1994).

La fertilización nitrogenada durante siembra o macollaje producen incrementos en el contenido proteico de los granos (Loewy y Ron, 2000). Sin embargo, aplicaciones tempranas de N pueden incrementar el rendimiento y como consecuencia disminuir el contenido proteico, debido a la conocida relación inversa entre rendimiento y proteína (Echagüe y col., 2001). Cuando la aplicación se posterga solo hasta macollaje, el cultivo puede presentar deficiencias de N durante los primeros estadios y disminuciones del rendimiento si la disponibilidad inicial de nitratos es muy baja (Matthiess y col, 2002). En el norte de la provincia de Buenos Aires, en suelos con alta disponibilidad inicial de N, se observaron altos rendimientos con respuestas variables a la fertilización (Prystupa y col., 1998).

La aplicación fraccionada de N se ha visto como una alternativa para aumentar el rendimiento en cebada. En una red de ensayos realizada en Uruguay, Beathgen y col., (1995) observaron que entre el 80 y el 90 % de los casos resultaba conveniente dividir la dosis del fertilizante entre siembra y macollaje o inicios de encañazón, ya que aumentaban los rendimientos. Sin embargo, en ensayos realizados en la provincia de Buenos Aires, empleando la variedad Quilmes Palomar, no se encontraron diferencias en el rendimiento entre aplicar 30 kg de N ha⁻¹ en emergencia o macollaje o entre aplicar 60 kg de N ha⁻¹ todo en emergencia, todo en macollaje o mitad en emergencia y mitad en macollaje (Landriscini y col., 2004). En otros cuatro ensayos realizados en la provincia de Buenos Aires empleando la variedad Scarlett, la postergación o el fraccionamiento de la fertilización no afectó o disminuyó el rendimiento (Ferraris y col., 2006)

La postergación de la fertilización puede tener efecto sobre el contenido proteico de los granos. En general, cuanto más tarde se fertiliza, mayor es la probabilidad de que el contenido proteico de los granos aumente (Miralles y col., 2011). La postergación hasta macollaje de la aplicación de 30 kg de N ha⁻¹ produjo un

incremento promedio del contenido proteico de los granos del 0.06 %, mientras que el retraso de la aplicación hasta encañazón de 60 kg de N ha⁻¹ produjo un incremento promedio de 0.24% (Echague y col., 2001). En otro caso, Ferraris y col. (2006) observaron que la aplicación de fertilizante nitrogenado durante macollaje incrementó el contenido proteico de los granos más que la misma dosis aplicada en emergencia sólo en un ensayo en que la postergación de la fertilización redujo el rendimiento.

Una alternativa para balancear el rendimiento y la proteína de los granos podría ser la de complementar las fertilizaciones nitrogenadas, realizadas entre siembra y macollaje, con aplicaciones foliares durante antesis-espigazón. En Canadá, se ha observado que las aplicaciones durante esta etapa suelen producir aumentos del contenido proteico con pocos cambios del rendimiento (Bulman y Smith, 1993a; 1993b). En nuestro país, se ha observado que las aplicaciones durante esta etapa suelen producir aumentos del contenido proteico en trigo pan y trigo candeal (Bergh, 2000). En ensayos realizados en la provincia de Buenos Aires, empleando la variedad Scarlett, se observó que la fertilización durante espigazón incrementó el contenido proteico de los granos un 0.75%, lo que implica que por cada kilogramo de N aplicado en este momento el contenido proteico aumentó 0.0375% (Prystupa y col., 2008).

Las enfermedades foliares afectan los rendimientos por una disminución en el índice de área foliar verde produciendo un desbalance en la relación fuente destino (Couretot y col., 2011). Dentro de la limitantes a la productividad que se presentan en el cultivo de cebada, las enfermedades que afectan al mismo en la zona norte de la provincia de Bs As son *Drechslera teres* "mancha en red", *Bipolaris sorokiniana* "mancha marrón o borrosa" y "roya de la hoja de cebada" causada por *Puccinia hordei* (Carmona, 2008).

Muchos fungicidas comerciales y algunos experimentales pueden reducir los niveles de mancha en red, así como también de otras enfermedades en cebada, aumentando el rendimiento en un orden del 20% (Carmona, 2008). Varias mezclas de Triazoles con Estrobirulinas son efectivas para el control de la escaldadura así como también de otras enfermedades en años con condiciones ambientales predisponentes. En un ensayo de evaluación de la mancha en red con diferentes fungicidas y genotipos, se produjeron aumentos en el rendimiento con valores de hasta 860 kg ha⁻¹ (Miralles y col., 2011).

En cuanto a las evaluaciones de calidad industrial, varios ensayos mostraron que las parcelas tratadas con funguicidas aumentaron el rendimiento, el peso y tamaño de los granos y la calidad maltera. En Uruguay y Brasil, las aplicaciones de fungicidas también generaron un impacto positivo en los rendimientos agronómicos y maltero, siendo en dichos países la mancha borrosa la principal enfermedad de objeto de control (Miralles y col., 2011). En una red de ensayos realizada por el INTA en nuestro país, el uso de fungicidas en espigazón no tuvo efectos sobre el calibre de los granos. Sin embargo, modificó la distribución de la

talla de los granos, evaluado según la fracción de granos retenida en diferentes zarandas (2,8-2,5-2,2-2,0 mm). Así, la aplicación de funguicidas provocó un incremento en la proporción de granos retenidos en la zaranda de 2,8 mm (Ross, 2011).

Hipótesis estadísticas

- H1) La aplicación de urea en macollaje produce un aumento en el rendimiento, la proteína y disminuye el calibre en comparación con el testigo.
- H2) La aplicación extra de nitrógeno foliar en hoja bandera (Z39) aumenta el rendimiento, la proteína y el calibre en comparación con una sola aplicación de nitrógeno en macollaje.
- H3) La aplicación de funguicida en hoja bandera (Z39) aumenta el rendimiento, la proteína y el calibre en comparación a una sola aplicación de funguicida en primer nudo (Z31).

Objetivos

Objetivo general:

Evaluar el rendimiento, proteína y calibre de la variedad de cebada cervecera C 61 en respuesta a la fertilización nitrogenada y aplicación de funguicida en diferentes momentos del cultivo.

Los objetivos específicos del trabajo son:

Evaluar:

- la respuesta en rendimiento, proteína y calibre a la aplicación tradicional de fungicida en hoja bandera
- la respuesta en rendimiento, proteína y calibre a una segunda aplicación de fungicida a principios de encañazón
- la respuesta en rendimiento, proteína y calibre a la aplicación de N en macollaje.
- la respuesta en rendimiento, proteína y calibre a la aplicación de N foliar tardía

Comparar:

- la respuesta en rendimiento, proteína y calibre a 2 aplicaciones de fungicida vs una aplicación en hoja bandera
- la respuesta en rendimiento, proteína y calibre de la aplicación de N en macollaje vs foliar tardía.

la respuesta en rendimiento, proteína y calibre de la aplicación de N en macollaje y en hoja bandera vs la aplicación de N en macollaje.

MATERIALES Y METODOS

El ensayo experimental se desarrolló en el establecimiento "La Libertad" ubicado en el partido de Chacabuco, perteneciente a la provincia de Buenos Aires.

Figura 1: Ubicación del Partido de Chacabuco en el mapa de la provincia de Buenos Aires.

Antes de la siembra se realizaron análisis de suelo de 0-20 y de 20-40 en los cuales se evaluó de 0-20; pH, Conductividad Eléctrica, Materia Orgánica, Fosforo extractable (Bray 1), Nitratos, Humedad y CIC y de 20-40; Nitratos, Humedad y Fosforo extractable (Bray1).

El lote en el cual se desarrolló el ensayo provenía de soja y se encontraba ocupado por hacienda con lo cual, la siembra, a fines de borrar el pisoteo, se realizó en forma convencional, efectuándose tres pasadas de disco, rastra y rolo.

El 22 de junio se sembró a una densidad de 130 kg ha⁻¹ con el fin de lograr 300 plantas/m², utilizándose una máquina Agrometal de 37 surcos a 17.5 cm. Se aplicaron 120 kg ha⁻¹ de PDA al costado y debajo de la semilla.. Los tratamientos a evaluar fueron:

- 1-Tratamiento TESTIGO
- 80 kg N ha⁻¹ en macollaje (Z22), 80 kg N ha⁻¹ en macollaje (Z22) y aplicación de 20 kg N ha⁻¹ foliar tardía (Hoja bandera; Z39).

- 4- 80 kg N ha⁻¹ en macollaje (Z22), más aplicación de fungicida en hoja bandera (Z39) conjuntamente con una aplicación de 20kg N ha⁻¹ foliar tardía (Z39).
- 5- 80 kg N ha⁻¹ en macollaje (Z22), más aplicación de fungicida en Z31, más aplicación de 20 kg N ha⁻¹ foliar en hoja bandera (Z39) junto a una segunda aplicación de fungicida en Z39.

La fertilización nitrogenada en macollaje se realizó al voleo, con 175 g de UREA por parcela equivalente a 80 kg N ha⁻¹, mientras que la aplicación foliar de 20 kg N ha⁻¹ se llevó a cabo aplicando 90 ml por parcela de Foliarsol U en conjunto con 90 ml de agua y se realizó con un pulverizador de mano.

En cuanto a la aplicación de nitrógeno foliar con fungicida, ésta también se hizo con un pulverizador de mano, y en este caso se aplicaron 90 ml de Foliarsol U junto con 90 ml de agua y se le agregaron 0.4 ml del fungicida Amistar Extra. En todos los casos, el caldo a pulverizar fue de 180 ml por parcela. En tanto, la aplicación del fungicida solo se realizó con el mismo rociador, utilizando un volumen de agua de 120 ml por parcela en conjunto 0.4 ml de Amistar Extra.

La dimensión de las parcelas fue de 5 m de largo por 2 de ancho por lo tanto cada parcela conto con una superficie de 10 m².

La variedad utilizada fue C 61, una variedad nueva de las cuales existen pocos ensayos. En primera instancia, se realizó el conteo de plantas por m² de cada parcela obteniéndose 248 pl m⁻². Luego, se realizó en cada momento estipulado el tratamiento correspondiente a cada parcela.

Finalmente, una vez cumplido el ciclo, en madurez se cosechó a mano 2 m² de cada parcela y las espigas se desgranaron con una máquina estática. Una vez obtenidos los granos, se enviaron a laboratorio a fin de evaluar humedad, calibre, proteína y rendimiento.

RESULTADOS

Los resultados se vieron afectados en gran medida por las condiciones meteorológicas. El régimen pluviométrico presenta un promedio de 1104 mm anuales según datos históricos de precipitación de 35 años, registrados en el establecimiento. Los meses de menor registro son junio, julio y agosto mientras que los mayores valores se presentan en primavera y verano. Durante el ensayo se registraron un total de 818 mm (junio-diciembre), superando en 281 mm al promedio histórico para estos meses, el cual contabiliza 537 mm.

En cuanto a las temperaturas estas presentaron valores elevados por encima de la media histórica. Las condiciones meteorológicas evidenciaron un año húmedo y cálido, lo que favoreció a una alta incidencia y severidad de enfermedades.

Por otra parte, previo a la siembra se realizaron análisis de suelo de 0-20 cm y de 20-40 cm los cuales arrojaron los siguientes resultados:

Tabla 1: Propiedades químicas del suelo del ensayo a dos profundidades

Muostro				De	eterminacione	S			
Muestra	MO (%)	CIC (cmolc/kg)	N-NO3 (ppm)	P Bray (ppm)	PH	Na(cmolc/kg)	P.S.I (%)	C.E (ds/m)	Humedad(%)
0-20	3.64	15.6	14.3	5.6	6.1	0.36	2.3	0.09	23.4
20-40	3.46		12.6	7.1	6.6				24.5

Rendimiento

El tratamiento que recibió urea en macollaje, fungicida en Z31 y nitrógeno foliar junto a una segunda aplicación de fungicida en Z39 (T5) fue el de mayor rendimiento, promediando 2248 kg ha⁻¹, superando significativamente al tratamiento testigo (T1) y a los que recibieron sólo fertilización nitrogenada (T2 y 3), obteniendo un rinde 50.3 % superior al testigo (Tabla 2). Sin embargo, el tratamiento testigo no fue distinto al tratamiento que recibió una sola aplicación de fungicida (T4).

El tratamiento 4 promedió 1877 kg ha⁻¹, superando en 30.4 % al tratamiento 2 con aplicación de urea en macollaje. No hubo diferencias significativas entre el tratamiento 1, 3 y 4. Los tratamientos 1, 2 y 3 no mostraron diferencias significativas.

Proteína

Respecto a la concentración de proteína, el tratamiento que recibió N en macollaje y hoja bandera promedió 13.5%, superando en 18.4% a los tratamientos testigo,2 y 5, en tanto no mostró diferencias con el tratamiento 4 que recibió también fungicida en hoja bandera, el cual promedió 13.4% de tenor proteico. El tratamiento 5 promedio 12.7%, difiriendo significativamente con 1 y 3, siendo 11,4% mayor y 5.9% menor, respectivamente. A su vez, este tratamiento no mostró diferencias significativas con 2 y 4. Por último, el tratamiento 2 con urea al macollaje promedio 12.2 % y superó en 7% al testigo.

Calibre < 2.2 mm

Para el calibre de los granos bajo zaranda de 2.2 mm, el mayor porcentaje promedió 42.3% para los tratamientos con urea sola o combinada con N foliar (2 y 3) habiendo diferencia significativas con 1, 4 y 5, (118%), los cuales promediaron 19 % y no mostraron diferencias significativas entre ellos (Tabla 2).

Calibre > 2.5 mm

El porcentaje de granos retenidos en la zaranda de 2.5 mm fue mayor en los tratamientos 1, 4 y 5, los cuales no mostraron diferencias entre éstos, pero si con los tratamientos 2 y 3 que recibieron N pero no fungicida. Estos tres tratamientos anteriores promediaron 34.8%, superando en un 130.5% a los tratamientos 2 y 3, los cuales promediaron 15.1% y no tuvieron diferencias significativas entre sí (Tabla 2).

Tabla 2: Efecto de los tratamientos sobre rendimiento, proteína y dos valores de calibre de los granos.

Trat.	Rendimiento (Kg/ha)	Proteina (%)	Calibre < 2,2 mm. (%)	Calibre > 2,5 mm. (%)
1	1495 AB	11.4 A	19.4 <mark>A</mark>	30.8 B
2	1439 A	12.2 B	44.5 B	14.5 A
3	1485 AB	13.5 D	40.1 B	15.7 A
4	1877 BC	13.4 CD	19.0 A	37.1 B
5	2248 C	12.7 BC	21.1 A	36.5 B
p-valor	0.021	0.0004	0.0002	0.0008

Media con letras iguales no son significativamente diferentes (p>0.10).

DISCUSION

El rendimiento observado en este ensayo fue bajo, menor al promedio de la zona, lo cual puede ser atribuido a las abundantes precipitaciones en primavera, las cuales provocaron alta incidencia y severidad de enfermedades, y a las altas temperaturas, que se sucedieron durante el llenado de grano.

Los mayores rendimientos se obtuvieron en aquellos tratamientos que recibieron aplicaciones de nitrógeno (N) foliar y fungicida (4 y 5). A su vez, no hubo diferencia entre realizar una o dos aplicaciones de fungicida. Esto coincide con ensayos realizados durante las campañas 2008/09 2009/10 2010/11 por Ross y otros (2011), donde observaron que el N foliar aumentó en forma significativa el rendimiento. A su vez, en los tratamientos con aplicación de N en macollaje la diferencia no fue significativa, incluso el tratamiento 2 resultó con un menor rendimiento al testigo, de manera que los rendimientos se relacionaron de forma poco estrecha con la disponibilidad de N en macollaje. Similares resultados obtuvieron Ross y otros (2011), en una red de ensayos en Bellocq, en el cual obtuvieron nula respuesta con respecto al rendimiento a la fertilización nitrogenada en macollaje. Observando los tratamientos 1, 2 y 3, los cuales resultaron en los menores rendimientos, podríamos inclinarlos a la idea que la aplicación de fungicida aumentó el rendimiento, sin embargo esta diferencia no fue significativa con el tratamiento 3. A su vez, el aumento en rendimiento por la

aplicación de fungicida contra el tratamiento 3 fue de 392 kg ha⁻¹ y coincide con datos publicados por Miralles y col., (2011) en donde en un ensayo de evaluación de fungicidas sobre genotipos infectados por mancha en red, la aplicación de fungicidas produjo un aumento en el rendimiento de hasta 860 kg ha.⁻¹

Con respecto a la proteína, las parcelas que recibieron N en macollaje más una segunda aplicación nitrogenada foliar en Z39 mostraron los porcentajes más elevados de proteína, coincidiendo con Prystupa y otros (2008), que constataron, en una red de ensayos en la provincia de Buenos Aires, que la fertilización nitrogenada suele determinar incrementos en el contenido proteico de los granos. A su vez, en los ensayos de la red que recibieron fungicida no se observaron incrementos en el contenido proteico.

Tomando en cuenta las normas de calidad para la comercialización del cultivo, se obtuvieron altos porcentajes de proteína en todos los tratamientos. En este caso, serían solo aceptable para su comercialización como cervecera los tratamientos testigo, con urea en macollaje (2) y con urea en macollaje mas nitrógeno foliar conjuntamente con dos aplicaciones de fungicida (5).

Finalmente, con lo que respecta al calibre de los granos, el tratamiento 2 con N en macollaje y el tratamiento 3 con N en macollaje y foliar en Z39 presentaron el mayor porcentaje calibre bajo zaranda de 2.2 mm, promediando 42.3 %. Este resultado coincide con lo expresado por Stark y Brown, (1987), donde afirman que la fertilización nitrogenada suele determinar disminuciones del calibre de los granos. Ellis y Marshall (1998) afirman que la fertilización nitrogenada aumenta el número de granos que provienen de macollos ya que se generan más granos en posiciones distales de la espiga que se caracterizan por un menor calibre.

En contraposición a lo ocurrido con el agregado de N sin fungicida, las parcelas que recibieron fungicida obtuvieron un aumento en la proporción de granos retenidos en la zaranda de 2,5 mm, datos que coinciden con lo expresado por Ross (2011) donde el fungicida aumentó la superficie fotosintéticamente activa, permitiendo mayor cantidad de fotoasimilados y en consecuencia granos de mayor tamaño.

El tratamiento testigo presentó un bajo porcentaje de granos bajo zaranda de 2.2 mm y mayor porcentaje de granos retenidos en la zaranda mayor a 2.5 mm, a causa de una menor sobrevivencia de macollos y un menor desarrollo de la espiga con formación de granos más grandes.

CONCLUSION

La fertilización nitrogenada y la aplicación de fungicida afectaron tanto el rendimiento como la calidad de la cebada. El mayor rendimiento se obtuvo en el tratamientos que recibió además de fertilización en macollaje, una segunda aplicación de fertilizante foliar y fungicida (T5) el cual promedió un rendimiento de 2248 kg ha⁻¹ superando en forma significativa en 753 kg ha⁻¹ al tratamiento testigo (T1), en 809 kg ha⁻¹ al tratamiento con urea solo en macollaje (T2) y en 763 kg ha⁻¹ al tratamiento que recibió además de urea en macollaje una segunda aplicación de N foliar en Z39 (T3). Por otra parte, el tratamiento que recibió una sola aplicación de fungicida (T4) promedió un rinde de 1877 kg ha⁻¹ y no fue significativamente superior al tratamiento testigo (T1), superando a éste en 382 kg ha⁻¹.

En cuanto a los parámetros de calidad, se pudo ver que con respecto a la proteína, el tratamiento con N en macollaje y foliar tardía (T3) resultó el de mayor tenor proteico, promediando 13.5% y superando significativamente en 2.1 puntos al tratamiento testigo, en 1.3 puntos al tratamiento con urea solo en macollaje (T2) y en 0.8 puntos al tratamiento que además de urea en macollaje recibió una segunda aplicación de N en Z39 y dos aplicaciones de fungicida (T5). El tratamiento que recibió una sola aplicación de fungicida (T4) no difirió significativamente del de mayor tenor proteico, siendo 0.1 puntos menor.

Con respecto al calibre, se pudo observar que los mejores resultados se obtuvieron en el tratamiento testigo (T1), el tratamiento con una sola aplicación de fungicida (T4) y el tratamiento con doble aplicación de fungicida (T5), promediando un 34.8% retenido en zaranda de 2.5 mm y 19% debajo de zaranda de 2.2 mm. En tanto los tratamientos que no recibieron fungicida (T2) y (T3) presentaron un promedio de 15.1% retenido en zaranda de 2.5 mm y un 42.3% bajo zaranda de 2.2 mm.

BIBLIOGRAFIA

- Baethgen, W.T., Christianson, C.B and Garcia Lamothe, A., 1995. Nitrogen fertilizer affects on growth, grain yield, and yield components of malting barley. Field. Crop Res. 43, pp. 87-89
- Bergh, R., Baez, A., Quattrocchio, A. y Zamora, M., 2000. Fertilización nitrogenada para calidad en trigo candeal. Informaciones Agronómicas 7, pp. 13-16.
- Bulman, P. y Smith, D.L., 1993a. Grain protein response of spring barley to high rates and post-anthesis application of fertilizer nitrogen. Agron. J. 85, pp. 1109-1113.
- Bulman, P. y Smith, D.L.,1993b. Yield and yield component response of spring barley to fertilizer nitrogen. Agron. J. 85, pp. 226-231.
- Carmona, M.,2008. Manual para la Identificación y Manejo de las Enfermedades del Cultivar de Cebada. Horizonte A, Buenos Aires.
- Carmona, M., 2008. Ubicación estratégica de fungicidas para el control de las enfermedades foliares de la cebada en http://www.adp. com.uy/informes/
- Conry, M.J., 1994. Comparative effect of six cultivars at four rates of nitrogen on the yield, grain nitrogen and screenings content of Blenheim spring malting barley in Ireland.J. Agric. Sci., Camb. 125, pp. 183-188.
- Couretot, L., Ferraris, G., Mousegne, F., 2011. Experiencias en el control químico de enfermedades foliares de trigo y cebada en la zona Norte de la Pcia de Bs AS.
- Echagüe, M., Landriscini, M.R., Venanzi, S, Lázzari, A., 2001. Fertilización nitrogenada en cebada cervecera. Informaciones Agronómicas del Cono Sur, Nº10.
- Ellis, R.P. and Marshall, B., 1998. Growth, yield and grain quality of barley (Hordeum vulgare L) in response to nitrogen uptake. Plant development and rate of germination. J.Exp. Bot. 49, pp. 1021-1029.
- Ferraris, G., Falconi, R. y Camozzi, M.E., 2006. Efectos de la fertilización con nitrogeno en cebada cervecera. En: Trigo. Resultados de Unidades demostrativas Del proyecto Regional Agricola, años 2003-06. CERBAN. Areas de desarrollo rural EEA INTA Pergamino y Villegas, pp. 450-453.
- Landriscini, M.R., Suñer, L.G. y Lazzari, M.A., 2004. Aplicación de urea en dos momentos alternativos del ciclo de la cebada cervecera. VI Congreso

- Nacional de Trigo y IV Simposio Nacional de Cereales de Siembra Otoño –Invernal. Bahía Blanca, Pcia. de Buenos Aires, pp. 363-364.
- Loewy, T. y Ron, M.M., 2000. Fertilización de cebada cervecera con nitrógeno yfósforo en el SO bonaerense. I Comparación directa con trigo. 17 Congreso Argentino de la Ciencia del Suelo, Mar del Plata, abril de 2000.
- Matthiess, W., Serre, M., y Cattaneo, M., 2002. Fertilización nitrogenada en una variedad de cebada cervecera de alto potencial de rendimiento en la Argentina. Anales de la XXII Reunião Anual de Pesquisa de Cevada. Passo Fundo, Brasil.
- Miralles, D.J., Benech-Arnold, R.L., Abeledo, L.G., 2011. Cebada Cervecera. Buenos Aires, Orientación grafica editora, pag X.
- Prystupa, P., Scheiner, J.D., Martínez, D., Lavado, R.S., 1998. Fertilización nitrogenada de cebada cervecera en dos ambientes del norte de la provincia de Bs.As. IV Congreso Nacional de Trigo. Actas 3-57
- Prystupa, P., Ferraris, G., Bergh, T., Lowey, T., Ventimiglia, L., Couretot, L. y Gutierrez Boem, F.H., 2008. Fertilización de cebada cervecera. cv Scarlett. IV. Estimación de la respuesta del contenido proteico a la fertilización nitrogenada. XXI Congreso Argentino de Ciencias de Suelo. Potrero de Funes, Pcia. De San Luis. p. 239.
- Ross, F., 2011. Densidad, fertilización y uso de funguicida en cebada cv Scarlett en http://inta.gob.ar/documentos/densidad-fertilizacion-y-uso-de-funguicida-en-cebada-cv-scarlett-1/
- Ross, F., J. Massigoge y M. Zamora. 2011. Fertilización de cebada cervecera en ambientes con tosca en el sur de Buenos Aires, Argentina. Informaciones Agronómicas de Hispanoamérica, N° 3: 9-13
- Stark, J.C. and Brown, B.D., 1987. Estimating nitrogen requirements for irrigated malting barley. Comm. Soil Sci. Plant Anal 18, pp. 433-444.

Anexos

Informe estadístico

Estadística descriptiva

Para cada variable en estudio se detalla en las siguientes tablas las repeticiones, la media, el desvío estándar, coeficiente de variabilidad, el mínimo y el máximo, por tratamiento.

Medidas resumen

Tratamiento	Va	ariabl	.e			n	Media	D.E.	Var(n-1)	Mín	Máx
1	Rendimiento	corr	х	hum	Kg/	4	1495.53	330.10	108968.72	1140.10	1789.10
2	Rendimiento	corr	х	hum	Kg/	4	1439.03	169.39	28693.70	1272.20	1621.00
3	Rendimiento	corr	х	hum	Kg/	4	1485.55	369.61	136613.83	935.70	1734.70
4	Rendimiento	corr	х	hum	Kg/	4	1877.05	132.19	17475.42	1682.30	1974.30
5	Rendimiento	corr	х	hum	Kg/	4	2247.93	490.65	240738.17	1896.40	2952.40

Medidas resumen de la variable rendimiento (kg/ha)

Medidas resumen

Tratamiento	Variable	n	Media	D.E.	Var(n-1)	Mín	Máx
1	Proteina %	4	11.44	0.62	0.38	10.77	12.12
2	Proteina %	4	12.21	0.71	0.50	11.52	13.19
3	Proteina %	4	13.55	0.75	0.56	12.93	14.60
4	Proteina %	4	13.38	0.54	0.29	12.58	13.73
5	Proteina %	4	12.75	0.34	0.12	12.43	13.20

Medidas resumen de la variable proteína (%)

Medidas resumen

Tratamiento	Vari		n	Media	D.E.	Var(n-1)	Mín	Máx		
1	Calibre	<	2.2	mm	4	19.38	4.55	20.67	14.00	24.10
2	Calibre	<	2.2	mm	4	44.55	5.38	28.95	39.20	51.90
3	Calibre	<	2.2	mm	4	40.10	9.89	97.86	33.30	54.80
4	Calibre	<	2.2	mm	4	19.03	5.20	27.01	13.90	25.10
5	Calibre	<	2.2	mm	4	21.08	7.53	56.74	10.10	27.20

Medidas resumen de la variable calibre < 2,2 mm (%)

Medidas resumen

Tratamiento	Variable				n	Media	D.E.	Var(n-1)	Mín	Máx
1	Calibre	>	2.5	mm	4	30.85	4.40	19.39	26.00	35.50
2	Calibre	>	2.5	mm	4	14.53	2.79	7.76	10.70	17.30
3	Calibre	>	2.5	mm	4	15.70	5.87	34.43	6.90	18.70
4	Calibre	>	2.5	mm	4	37.10	8.48	71.99	27.30	46.60
5	Calibre	>	2.5	mm	4	36.55	9.30	86.49	30.40	50.40

Medidas resumen de la variable calibre > 2,5 mm (%)

Análisis de Homocedasticidad

Se calcula para cada variable el p-valor mediante la prueba de Levene para comprobar si se cumple con el principio de Homocedasticidad.

Análisis de la varianza

V	ariable		N	Rª P	a Aj	CV			
RABS Rendimiento corr x hu 20 0.41 0.06 76.4									
Cuadro de Análisis de la Varianza (SC tipo III)									
F.V.	SC	gl	CM	F	p-va	alor			
Modelo.	204536.79	7	29219.5	4 1.18	0.3	3820			
Bloque	116655.48	3	38885.1	6 1.57	0.2	2480			
Tratamiento	87881.31	4	21970.33	3 0.89	0.5	5009			
Error	297307.41	12	24775.62	2					
Total	501844.20	19							

Prueba de Levene de la variable Rendimiento (Kg/ha)

Análisis de la varianza

Vε	ariable		N	Rs	Rs	Αj	CV	
RABS	Proteina	ф	20	0.34	0.	.00	70.54	

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo.	0.32	7	0.05	0.88	0.5507
Bloque	0.08	3	0.03	0.51	0.6808
Tratamiento	0.24	4	0.06	1.15	0.3794
Error	0.62	12	0.05		
Total	0.94	19			

Prueba de Levene de la variable Proteina (%)

Análisis de la varianza

	Variabl	Le			N	Rª	Rs	Αj	CV
RABS	Calibre	<	2.2	mm	20	0.33	0.	.00	82.12

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	_
Modelo.	63.62	7	9.09	0.83	0.5830	
Bloque	32.56	3	10.85	0.99	0.4305	
Tratamiento	31.07	4	7.77	0.71	0.6017	
Error	131.60	12	10.97			
Total	195.22	19				_

Prueba de Levene de la variable Calibre < 2,2 mm

Análisis de la varianza

	Variab!	Le			N	Rª	RФ	Αj	CV	
RABS	Calibre	>	2.5	mm	20	0.27	0.	.00	82.84	

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	_
Modelo.	57.21	7	8.17	0.65	0.7124	-
Bloque	21.17	3	7.06	0.56	0.6533	
Tratamiento	36.03	4	9.01	0.71	0.5999	
Error	152.02	12	12.67			
Total	209.22	19				

Prueba de Levene de la variable Calibre > 2,5 mm (%)

Análisis de Normalidad

Mediante la prueba de Shapiro - Wilks se calcula el p-value para cada variable, para ver si se cumple con el principio de normalidad

Shapiro-Wilks (modificado)

Variable			Media	D.E.	₩×	p(Unilateral D)
RDUO Rendimiento c	orr x hu	20	0.00	266.51	0.96	0.7681

Prueba de Shapiro-Wilks (modificado) para la variable Rendimiento (kg/ha)

Shapiro-Wilks (modificado)

```
        Variable
        n
        Media
        D.E.
        W*
        p(Unilateral D)

        RDUO
        Proteina
        %
        20
        0.00
        0.40
        0.92
        0.2040
```

Prueba de Shapiro-Wilks (modificado) para la variable Proteina (%)

Shapiro-Wilks (modificado)

```
        Variable
        n
        Media
        D.E.
        W*
        p(Unilateral D)

        RDUO Calibre < 2.2 mm</td>
        20
        0.00
        5.23
        0.96
        0.7253
```

Prueba de Shapiro-Wilks (modificado) para la variable Calibre < 2,2 mm (%)

Shapiro-Wilks (modificado)

```
Variable n Media D.E. W* p(Unilateral D)
RDUO Calibre > 2.5 mm 20 0.00 5.52 0.94 0.5393
```

Prueba de Shapiro-Wilks (modificado) para la variable Calibre > 2,5 mm (%)

Comparación de las variables respuestas entre tratamientos

Para cada variable se realiza el análisis de la varianza calculándose el p-value que indicara si al menos uno de los promedios de los distintos tratamientos difiere con el del otro. Además, se muestran los resultados del test de Fisher en donde se obtiene la DMS (diferencia mínima significativa) y el p-value, el cual indicara si existe o no diferencias significativas entre los tratamientos, asignándose automáticamente las letras de significancia correspondiente.

Análisis de la varianza

Variable					N	Rª	Rs	Αj	C7	7
Rendimiento	corr	х	hum	Kg/	20	0.62	0.	.40	19.	62

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo.	2196251.90	7	313750.27	2.79	0.0570	_
Bloque	247976.16	3	82658.72	0.74	0.5510	
Tratamiento	1948275.74	4	487068.94	4.33	0.0213	
Error	1349493.34	12	112457.78			
Total	3545745.25	19				

Test:LSD Fisher Alfa=0.10 DMS=422.62723

Error: 112457.7784 gl: 12

Tratamiento	Medias	n	E.E.			
2	1439.03	4	167.67	Α		
3	1485.55	4	167.67	Α	В	
1	1495.53	4	167.67	Α	В	
4	1877.05	4	167.67		В	С
5	2247.93	4	167.67			С

Medias con una letra común no son significativamente diferentes (p > 0.10)

ANOVA (Analisis de la varianza) y Test de Fisher para la variable Rendimiento (Kg/ha).

Análisis de la varianza

Variable N R* R* Aj CV Proteina % 20 0.83 0.73 3.97

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo.	14.52	7	2.07	8.22	0.0009	
Bloque	2.49	3	0.83	3.29	0.0579	
Tratamiento	12.02	4	3.01	11.91	0.0004	
Error	3.03	12	0.25			
Total	17.55	19				

Test:LSD Fisher Alfa=0.10 DMS=0.63314

Error: 0.2524 gl: 12

Tratamiento	Medias	n	E.E.			
1	11.44	4	0.25 A			
2	12.21	4	0.25	В		
5	12.75	4	0.25	В	С	
4	13.38	4	0.25		С	D
3	13.55	4	0.25			D

Medias con una letra común no son significativamente diferentes (p > 0.10)

ANOVA (Analisis de la varianza) y Test de Fisher para la variable Proteina (%).

Análisis de la varianza

Variable N R* R* Aj CV
Calibre < 2.2 mm 20 0.84 0.74 22.85

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo.	2652.47	7	378.92	8.74	0.0007	_
Bloque	173.25	3	57.75	1.33	0.3101	
Tratamiento	2479.23	4	619.81	14.29	0.0002	
Error	520.44	12	43.37			
Total	3172.92	19				

Test:LSD Fisher Alfa=0.10 DMS=8.29963

Error: 43.3702 gl: 12

Tratamiento	Medias	n	E.E.	
4	19.03	4	3.29 A	
1	19.38	4	3.29 A	
5	21.08	4	3.29 A	
3	40.10	4	3.29	В
2	44.55	4	3.29	В

Medias con una letra común no son significativamente diferentes (p > 0.10)

ANOVA (Analisis de la varianza) y Test de Fisher para la variable Calibre < 2.2 mm. (%).

Análisis de la varianza

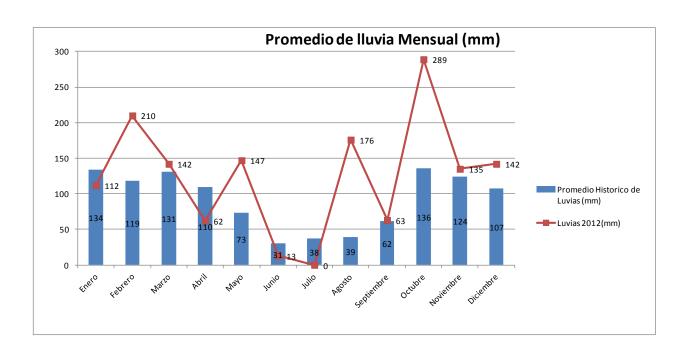
Variable N R* R* Aj CV
Calibre > 2.5 mm 20 0.78 0.65 25.77

Cuadro de Análisis de la Varianza (SC tipo III)

					-	
F.V.	SC	gl	CM	F	p-valor	
Modelo.	2047.11	7	292.44	6.07	0.0034	
Bloque	81.77	3	27.26	0.57	0.6481	
Tratamiento	1965.34	4	491.34	10.19	0.0008	
Error	578.42	12	48.20			
Total	2625.53	19				

Test:LSD Fisher Alfa=0.10 DMS=8.74973

Error: 48.2018 gl: 12


Tratamiento	Medias	n	E.E.		
2	14.53	4	3.47	A	
3	15.70	4	3.47	A	
1	30.85	4	3.47		В
5	36.55	4	3.47		В
4	37.10	4	3.47		В

Medias con una letra común no son significativamente diferentes (p > 0.10)

ANOVA (Analisis de la varianza) y Test de Fisher para la variable Calibre > 2.5 mm. (%)

Precipitaciones

	Meses													
Años	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total	
1978	306	92	147	84	21	14	85	20	134	141	154	183	138	
1979	38	42	124	12	26	32	35	51	3	60	128	83	63	
1980	57	91	290	195	55	48	60	17	30	128	158	93	122	
1981	238	71	84	102	61	33	30	2	20	135	99	82	95	
1982	128	179	86	133	102	44	43	10	196	79	100	45	114	
1983	188	131	83	94	106	10	10	55	74	183	88	168	119	
1984	187	383	108	58	34	35	12	38	81	209	121	74	134	
1985	108	76	62	137	125	13	62	41	85	275	255	100	133	
1986	184	57	81	172	168	38	8	49	57	223	227	26	129	
1987	126	247	169	86	38	5	142	29	30	76	111	157	121	
1988	26	55	280	56	0	6	42	2	71	56	81	82	75	
1989	25	151	169	52	55	40	45	41	10	81	107	186	96	
1990	236	106	251	129	52	0	46	31	43	227	127	67	131	
1991	134	85	127	123	118	104	30	84	89	145	117	206	136	
1992	180	50	79	65	47	108	47	64	63	72	90	106	97	
1993	223	17	165	337	149	109	17	30	47	226	148	120	158	
1994	128	41	18	72	115	47	32	27	43	124	20	101	76	
1995	123	66	106	284	20	18	10	2	20	195	119	54	101	
1996	91	172	19	221	35	0	18	31	109	141	218	225	128	
1997	7 308	107	44	91	74	71	. 35	81	26	244	222	198	150	
1998	132	137	92	134	108	3	23	15	11	71	111	130	96	
1999	142	111	118	35	22	14	18	38	56	72	39	88	75	
2000	51	117	42	245	289	44	0	20	75	128	167	39	121	
2001	249	77	425	77	50	36	28	125	133	216	162	77	165	
2002	104	48	244	72	155	5	16	155	59	194	151	183	138	
2003	67	262	127	154	. 37	16	126	24	31	49	133	136	116	
2004	1 66	9	61	135	100	3	23	60	6	52	153	169	83	
2005	121	61	139	58	3	35	49	77	50	45	82	31	75	
2006	169	110	117	100	4	44	. 33	0	47	301	37	106	106	
2007	109	194	215	117	56	28	2	5	80	103	63	86	105	
2008	120	147	90	2	. 0	24	31	2	38	92	84	11	64	
2009	10	102	40	94	26	5	93	7	144	106	149	249	102	
2010	183	247	144	56	106	16	37	3	124	81	40	45	108	
2011	138	92	83	61	47	25	31	3	35	74	62	3	65	
2012	112	210	142	62	147	13	0	176	63	289	135	142	149	
2013	27	132	158	40	94	12	36	0	35	0	223	15	77	
omedio	134	119	131	110	73	31	. 38	39	62	136	124	107	110	

Temperaturas

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

					DEP.	HEAT	COOL								
		MEAN	MEAN		FROM	DEG	DEG					MAX	MAX	MIN	MIN
YR	MO	MAX	MIN	MEAN	NORM	DAYS	DAYS	HI	DATE	LOW	DATE	>=32	<=0	<=0	<=-18
07	1														
07															
07	3														
07	4	24.6	17.1	20.4	0.0	0	1	24.6	30	17.1	30	0	0	0	0
07	5	16.2	3.7	9.7	0.0	272	5	23.3	4	-4.9	30	0	0	5	0
07	6	15.1	0.6	7.2	0.0	335	1	22.4	4	-4.0	24	0	0	11	0
07	7	13.6	-0.3	6.3	0.0	374	1	22.5	19	-5.5	29	0	0	15	0
07	8	14.8	0.2	7.5	0.0	339	2	26.8	14	-5.3	11	0	0	13	0
07	9	21.1	9.4	15.0	0.0	134	34	32.3	9	0.8	1	1	0	0	0
07	10	23.3	11.0	17.3	0.0	81	48	30.3	19	4.4	7	0	0	0	0
07	11	25.8	9.9	17.9	0.0	90	79	34.2	29	2.1	15	4	0	0	0
07	12	29.7	13.6	21.8	0.0	34	140	36.7	30	6.4	9	7	0	0	0
		19.9	6 1	12.9	0.0	1659	310	36 7	DEC	-5.5	JUL	12	0	44	0

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

					DEP.	HEAT	COOL								
		MEAN	MEAN		FROM	DEG	DEG					MAX	MAX	MIN	MIN
YR	MO	MAX	MIN	MEAN	NORM	DAYS	DAYS	HI	DATE	LOW	DATE	>=32	<=0	<=0	<=-18
08		29.9	16.0	22.7	0.0	19	155		15	8.3	12	9	0	0	0
08	2	29.2	16.2	22.3	0.0	16	131	34.2	17	9.3	12	9	0	0	0
08	3	26.4	14.8	19.9	0.0	28	71	33.4	21	9.1	23	1	0	0	0
08	4	24.8	7.5	15.6	0.0	138	57	30.3	24	-0.8	30	0	0	2	0
08	5	20.5	5.4	12.5	0.0	184	22	30.4	19	-6.0	31	0	0	6	0
08	6	16.0	1.0	8.2	0.0	306	1	21.8	28	-5.4	16	0	0	13	0
08	7	17.5	6.4	11.9	0.0	210	11	30.2	15	-1.3	25	0	0	1	0
08	8	18.7	1.6	10.0	0.0	269	10	27.1	26	-5.7	8	0	0	11	0
08	9	20.4	4.8	12.5	0.0	195	20	30.6	1	-2.2	16	0	0	6	0
08	10	24.0	8.5	16.1	0.0	117	47	30.3	24	1.1	8	0	0	0	0
08	11	31.0	14.6	22.9	0.0	25	163	37.6	25	2.2	16	12	0	0	0
08	12	29.7	15.2	22.4	0.0	23	149	36.6	20	8.2	3	10	0	0	0
		24.0	9.3	16.4	0.0	1530	837	37.6	NOV	-6.0	MAY	41	0	39	0

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

					DEP.	HEAT	COOL								
		MEAN	MEAN		FROM	DEG	DEG					MAX	MAX	MIN	MIN
YR	MO	MAX	MIN	MEAN	NORM	DAYS	DAYS	HI	DATE	LOW	DATE	>=32	<=0	<=0	<=-18
09	1	32.0	15.6	24.1	0.0	21	177	36.7	24	8.7	3	17	0	0	0
09	2	29.9	15.1	22.3	0.0	21	133	36.4	19	7.7	1	9	0	0	0
09	3	29.2	14.4	21.4	0.0	32	127	35.9	29	6.6	15	6	0	0	0
09	4	25.2	9.8	17.1	0.0	96	59	32.2	11	3.4	20	1	0	0	0
09	5	20.7	7.4	13.6	0.0	176	30	30.3	3 22	-0.1	28	0	0	1	0
09	6	14.3	1.7	7.0	0.0	30	0	15.7	3	0.5	3	0	0	0	0
09	7	13.4	1.2	6.9	0.0	213	0	17.7	1 17	-4.1	26	0	0	10	0
09	8	21.1	5.4	12.8	0.0	210	39	35.3	29	-3.5	1	2	0	7	0
09	9	17.4	5.1	11.2	0.0	220	7	24.4	21	-0.4	23	0	0	3	0
09	10	23.4	8.4	15.9	0.0	122	48	37.5	29	-0.6	7	1	0	1	0
09	11	25.9	13.5	19.5	0.0	42	78	32.1	12	5.6	8	1	0	0	0
09	12	27.2	14.8	21.0	0.0	34	116	33.2	18	7.4	4	3	0	0	0
		24.4	10.3	17.1	0.0	1219	815	37.5	OCT	-4.1	JUL	40	0	22	0

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

					_ , _,	,		,							
					DEP.	HEAT	COOL								
		MEAN	MEAN		FROM	DEG	DEG					MAX	MAX	MIN	MIN
YR	MO	MAX	MIN	MEAN	NORM	DAYS	DAYS	HI	DATE	LOW	DATE	>=32	<=0	<=0	<=-18
10	1	30.0	16.7	23.3	0.0	13	168	35.1	29	10.9	7	9	0	0	0
10	2	27.0	17.0	21.6	0.0	18	109	32.4	19	7.9	25	1	0	0	0
10	3	27.7	14.3	20.6	0.0	34	103	33.1	30	5.4	15	2	0	0	0
10	4	22.8	8.1	14.8	0.0	141	35	29.5	18	0.2	23	0	0	0	0
10	5	19.5	6.9	12.8	0.0	184	12	29.4	1	-0.2	7	0	0	2	0
10	6	15.7	3.8	9.5	0.0	267	1	21.2	6	-1.0	29	0	0	4	0
10	7	17.8	6.5	11.9	0.0	71	2	25.4	4	-2.0	10	0	0	2	0
10	8	15.4	6.8	9.5	0.0	1	0	15.4	10	6.8	10	0	0	0	0
10	9														
10	10														
10	11	27.8	12.2	20.1	0.0	26	55	32.8	26	8.9	29	1	0	0	0
10	12	30.9	14.3	22.7	0.0	27	164	37.1	27	5.7	13	17	0	0	0
		24.7	11.4	17.7	0.0	782	649	37.1	DEC	-2.0	JUL	30	0	8	0

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

YR	мо	MEAN MAX	MEAN MIN	MEAN	FROM NORM	DEG	DEG	HI	DATE	LOW	DATE	MAX >=32	MAX <=0	MIN <=0	MIN <=-18
11	1	30.7	15.3	23.0	0.0	19	164	35.3	24	10.3	18	11	0	0	0
11	2	26.4	13.0	19.6	0.0	15	28	32.3	3	9.8	6	1	0	0	0
11	3														
11	4	23.1	7.7	15.3	0.0	116	33	29.3	13	1.6	18	0	0	0	0
11	5	18.8	4.4	11.3	0.0	229	10	25.5	11	-1.4	3	0	0	4	0
11	6	14.5	2.7	8.3	0.0	301	0	21.3	11	-4.5	27	0	0	10	0
11	7	15.2	0.3	7.2	0.0	349	2	24.3	25	-7.0	4	0	0	13	0
11	8	15.3	2.2	8.5	0.0	306	2	25.9	11	-4.6	22	0	0	12	0
11	9	22.2	5.0	13.5	0.0	174	29	29.2	28	-2.5	11	0	0	3	0
11	10	21.4	8.1	14.7	0.0	139	27	28.4	28	0.3	3	0	0	0	0
11	11	28.6	13.1	20.5	0.0	45	110	34.2	26	6.1	1	5	0	0	0
11	12	30.3	12.5	21.7	0.0	46	149	37.5	20	5.3	24	12	0	0	0
		22.1	7.3	14.6	0.0	1738	555	37.5	DEC	-7.0	JUL	29	0	42	0

NAME: BCS CIT CITY: STATE: ELEV: 0 m LAT: LONG:

TEMPERATURE (°C), HEAT BASE 18.3, COOL BASE 18.3

YR	мо	MEAN MAX	MEAN MIN	MEAN	PROM NORM	HEAT DEG DAYS	DEG DAYS		DATE	LOW	DATE	MAX >=32		MIN <=0	MIN <=-18
12	1	32.8	15.0	23.9	0.0	21	195	39.8		9.7	25	19	0	0	0
12	2	28.5	16.1	21.9	0.0	21	124	35.0	16	9.9	22	8	0	0	0
12	3	26.2	13.0	19.2	0.0	63	89	32.9	11	2.3	28	1	0	0	0
12	4	22.8	9.0	15.7	0.0	126	47	33.1	4	1.1	30	1	0	0	0
12	5	20.2	9.5	14.3	0.0	141	16	27.1	8	0.7	13	0	0	0	0
12	6	16.1	3.0	9.0	0.0	283	3	23.9	27	-5.6	7	0	0	8	0
12	7	14.5	-1.3	6.2	0.0	378	1	21.4	19	-7.3	30	0	0	23	0
12	8	16.4	6.0	11.1	0.0	230	7	25.3	31	-0.9	27	0	0	6	0
12	9	19.3	7.3	13.1	0.0	175	19	27.9	15	-1.3	26	0	0	1	0
12	10	21.6	11.2	16.3	0.0	91	30	28.1	28	3.2	4	0	0	0	0
12	11	26.9	13.9	20.4	0.0	39	102	33.4	8	9.0	13	5	0	0	0
12	12	29.3	15.3	22.3	0.0	22	141	37.0	24	11.1	27	8	0	0	0
	77.7	22.9	9.8	16.1	0.0	1589	773	39.8	JAN	-7.3	JUL	42	0	38	0

Fotos

