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Abstract

This study investigates the long-term variability and extremes of monthly precipitation
during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires,
and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the
whole period, and the relationships between large-scale climate drivers and monthly
rainfall are considered. Results show that, except for Córdoba, the complete anomaly
timeseries trend analysis for all other stations yielded null trends over the centennial study
period. Considerable month-to-month variability is observed for all locations together
with the existence of low-frequency decadal to interdecadal variability, both for monthly
precipitation anomalies and for statistically significant excess and deficit months. Linear fits
considering oceanic climate indicators as drivers of variability yield significant differences
between locations, while not between full records and seasonally sampled. Issues regarding
the use of linear analysis to quantify variability, the dispersion along the timeline of
record extreme rainy months at each location, together with the evidence of severe daily
precipitation events not necessarily coinciding with the ranking of the rainiest months
at each location, highlights the challenges of understanding the drivers of variability of
both monthly and severe daily precipitation and the need of using extended centennial
timeseries whenever possible.

Keywords: Argentina; long-term data; monthly precipitation; extreme events; climate
indices; trends; low-frequency variability; climate change

1. Introduction
Determining spatial and temporal variability of atmospheric variables is an essential

aspect of climate studies, particularly those focusing on climate variability and change. The
occurrence of extreme events in weather and climate variables pose major threats to human
and natural systems. It is essential to understand aspects such as recurrence of severe
events, magnitude, and duration. The longer the timeseries available the better. However,
the handling of such extended timeseries results in a number of statistical challenges,
particularly when both linear and nonlinear relationships determine the evolution of the
variable under consideration. While variables such as temperature, pressure, or winds are
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fields with few occasional local, temporal discontinuities and/or sharp gradients, this is
not the case with precipitation. Precipitation and its source, clouds, are highly localized
phenomena, both in space and in time. Its occurrence and form depend on a variety of
weather and climate conditions, further complicating its analysis and interpretation. Such
stochastic behaviour introduces even more challenges to precipitation’s statistical analysis.

Observed positive trends in air and oceanic temperatures during recent decades [1]
warrant overall higher atmospheric water vapour content, hence a more unstable tropo-
sphere and a higher probability of increased precipitation and related extreme events
globally. However, at regional to local scales, the changes in accumulated and extreme
precipitation in a warming climate can differ significantly from the global scale. Analysis
of local rainfall records indicates that global warming with increasing temperatures does
not necessarily lead to an increase in precipitation, but rather to an increase in the intensity
and frequency of rain events, as well as to their greater spatiotemporal variability [2,3] or,
at the other extreme, severe lack thereof, depending on a number of weather and climate
conditions. As Groisman et al. [4] noticed, a relatively large increase in the probability of
extreme precipitation may nevertheless occur with small changes in mean precipitation.
Extreme events can also occur despite a decreasing or stable trend in mean precipitation [5].

A growing number of studies have looked into the changes in the magnitude and
frequency of precipitation events over different regions [6–8]. Results of the analyses of pre-
cipitation observations’ variability and change have so far yielded results on global scales
with limited confidence levels when compared to the very high confidence levels obtained
for observed global and hemispheric air and oceanic temperature trends [1]. For instance,
Donat et al. [9], using the HAD EX2 database, found that while temperature extremes were
consistent with sustained temperature increases around the globe, precipitation extremes
yielded significant trends toward wetter conditions but with heterogeneous distribution
when compared with temperature behaviour. Extreme events linked to precipitation, i.e.,
extreme precipitation, flooding, and droughts, are more frequent since the 1950s [1,9]. In
contrast to the results on a global scale, regional studies of extreme events show mixed
trends [10–12]. The IPCC [13] concluded in its report that globally, more regions have
observed increasing patterns in the magnitude and frequency of extreme precipitation
events compared to those that observed decreasing patterns. There is evidence of poleward
displacement of storm tracks in both hemispheres as well as a widening of the Hadley
cell [14]. Such processes impact mean precipitation on regional and local scales, together
with changes in the occurrence of extreme events. Changes in precipitation are, thus, due
to a number of processes. Because of the impact of precipitation, both in mean values
and extreme events, on natural and human ecosystems, including underground water re-
placement [15,16], it is not only important to identify the variability in global precipitation
amounts over time but also how precipitation variability and change occur at regional and
local scales.

In the Southeastern South America region (SESA), for instance, some studies consid-
ering short timeseries have detected increases in precipitation as well as increased river
discharges [17], in contrast to Seager et al. [18]. Barros et al. [19] also reported precipita-
tion trends in the region when considering precipitation under neutral ENSO conditions
between 1960 and 1999. Scian and Pierini [20], using monthly precipitation records for 6 sta-
tions, some with more than 140 years of observations, in northern and central Argentina,
studied the evolution of monthly precipitation during winter and summer months. They
found decadal-scale variability as well as increases in summer extreme precipitation events
for most stations. They also noted two periods with positive trends in extreme monthly
precipitation spanning the periods of 1921–1960 and 1967–2006 (the end of the records
used). De la Casa et al. [21] considered precipitation records for three neighbouring weather
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stations in the Province of Córdoba, Argentina. Penalba and Robledo [22] have analysed
precipitation persistence and frequency trends in the Rio de la Plata basin between 1908
and 2004. Their results showed that the annual trend of rainfall frequency and persistence
has increased in almost the entire region and in all seasons, with the exception of winter
(JJA). Haylock et al. [23] showed that there was an increase in rainfall in central Argentina,
strongly correlated with changes in surface temperature of the sea, in the 1960–2000 period.

Given the significantly limited availability of reliable extended rainfall records in the
study area, the authors, using a combined database of daily and monthly rainfall and the
number of rainy days per month, found a periodic behaviour of the precipitation regime
in the central region of Argentina, while the Mann–Kendall and Theil–Sen tests yielded a
positive linear trend. They found trends in summer precipitation as well as a dry phase,
which peaked between 1930 and 1950, and a wet phase that peaked between 1980 and
the 1990s.

When daily or subdaily weather records are available, it is possible to carry out trends
and extreme events studies more accurately. Climate studies of precipitation event vari-
ability and extremes require the availability of continuous daily records and homogeneous
timeseries of climate data, spanning numerous locations over extended periods of time.
However, as noted by Scian and Pierini [20] and references therein, such studies are not
possible for large areas of Central and South America due to the lack of extended daily
weather records with full territorial coverage.

Several analyses, on the other hand, have considered the role of major climate drivers
in mean precipitation variability since the combined effects of these indices and associated
interactions are important in understanding the degree of predictability of precipitation.
Although the overall basic dynamics of these indices are relatively well known, the underly-
ing complexities of their interactions and their impact on precipitation variability have been
studied to a limited extent at regional scales and usually through linear approaches [24]. In
Southern South America (SSA), Grimm et al. [25] discussed the role of El Niño-Southern
Oscillation (ENSO) during the period of 1956–1992. Kayano and Andreoli [26], using
gridded precipitation data for the period of 1908–1998, discussed the links between the
Pacific Decadal Oscillation (PDO) and summer rainfall. They found that the response to
El Niño and La Niña events was dependent on the cold and warm phases of the lower
frequency PDO variability. Garreaud [27] analysed the behaviour of precipitation and other
climate variables across South America for the period of 1959–1999 and discussed the roles
of ENSO, PDO, and the Antarctic Oscillation as drivers of variability. Seager et al. [18]
studied the Southeastern South America region using precipitation records since 1901. They
determined significant links with the Atlantic Multidecadal SST variability in the tropics,
together with little evidence of anthropogenic forcing impacting precipitation trends in
this region.

In view of the wide range of results obtained so far, it is clear that conclusions depend
on several factors, such as the assessment methods [28], data quality, and the period of
analysis considered. Recently, Hobeichi et al. [24] considered global precipitation records
spanning 40 years and discussed the issues in identifying the relationship between precipi-
tation and climate modes of variability, as well as issues with predictability. They found
that precipitation in a few areas has important correlations with climate drivers, while
most have very limited explained variance and that good correlations do not necessarily
imply predictability. Some relationships found were linear, but many were nonlinear. They
also found that when considering seasonal variability rather than year-round variability,
only one or two seasons, if any, had a significant relationship with climate drivers, further
complicating the task.
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Since many of the aforementioned regional results do not yield definitive conclusions,
several questions remain to be addressed. For example, what is the long-term seasonal
variability of monthly precipitation at decadal to interdecadal scales and what are the major
climate drivers? Are increases in precipitation linked to more severe events or periods of
more intense precipitation, or maybe, while precipitation can currently be more intense
during some days or short periods, the overall annual or seasonal precipitation does not
exhibit trends on longer timescales?

The aim of this study is to assess these questions and to explore the temporal variability
of the monthly rainfall during more than 150 years at 4 locations in Argentina and, under
the light of recent conclusions by Paplexiou and Montanari [28] and Hobeichi et al. [24],
to assess whether such extended timeseries enable more robust variability analysis. For
this purpose, long-term trends using the Mann–Kendall test, extreme anomalies over
the whole period, and climate mode linkages are considered. This paper is organized
as follows: Section 2 presents the data and methodology, starting with the study area
and dataset sources, followed by the description of the climate modes used, the multiple
linear regression applied, and the methodology for assessing extreme events. Results are
presented in Section 3. Finally, the discussion and conclusions are presented in Section 4.

2. Materials and Methods
The 4 longest monthly precipitation records currently available for Argentina were cho-

sen for this study. These correspond to Bahia Blanca, Buenos Aires, Córdoba Observatory,
and Corrientes. These locations span central eastern and northeastern Argentina as can be
seen on the map in Figure 1. Corresponding geographical coordinates, climate regimes, and
the beginning and end dates of each timeseries are given in Table 1. The four locations have
distinct climate regimes. The records were reconstructed from the GHCN-M database [29]
and data from Anales de la Oficina Meteorológica Argentina (OMA) published between
1878 and 1915, which contain information for 1860 to about 1910 daily and/or monthly
mean precipitation, depending on the station. In all cases, there were very few missing
months, and these were interpolated by linear regression as in Scian and Pierini [20]. Thus,
the longest record, corresponding to Bahia Blanca, covers the period from January 1860
through December 2023, i.e., 164 years. The shortest record in this study corresponds to
Corrientes, spanning 148 years. It must be noted that the Córdoba Observatory records
correspond to the first official weather station operated by OMA in Argentina, starting in
1873, with observations strictly following the International Meteorological Organization
(IMO, later WMO) observation practices. Bahia Blanca and Buenos Aires fully complied
with IMO requirements starting in 1873, though previous measurements are found to
be reliable through statistical testing. Corrientes, starting in 1875, complied with IMO
requirements from the beginning. Some years later, all of the records published by OMA
included daily precipitation together with IMO weather symbols, so it is possible to deter-
mine, particularly in the case of significantly different monthly precipitation values, the
kind of weather events that took place and, thus, validate extreme monthly precipitation
values, if necessary, for the earlier decades of the samples. The complete procedure of data
recovery and processing of the series can be found in Lakkis et al. [30] among others, but
briefly and in accordance with WMO recommendations [31], the series were subjected to a
quality control and tested for homogeneity [32] using XLSTAT statistical software (2023.2.0).
The Pettitt’s test, Alexandersson’s SNHT test, Buishand’s test (BRT), and von Neumann’s
ratio test (VNRT) were used, considering a 5% significance level. The results derived from
the applied homogeneity tests were interpreted by following the approach suggested by
Wijngaard et al. [33]. As a result of these tests, only the raw data for Córdoba were found
to be homogeneous, while the rest of the series underwent a homogenization process as
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several breaks were detected between 1945 and 1965 (Corrientes between August and
September 1945, Buenos Aires between November and December 1957 and Bahía Blanca
between September and October 1965).

 

Figure 1. The map of Argentina with topographic levels and main geographic nomenclature. The
Argentinian stations used in this study and their locations are identified with black and red square
markers: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca.

Table 1. Geographical coordinates, climate regimes, and mean and sigma annual precipitation with
the beginning and end date of each timeseries for each location in the study.

Location and
Climate Regime Lat. Lon. Height

(m.a.s.)
Record
Period

Mean Annual
Precipitation

1903–2002
(mm)

Sigma Annual
Precipitation

1903–2002
(mm)

Corrientes
Humid Subtropical 27.5◦ S 58.8◦ W 62 1875–2023 1230.0 341.6

Córdoba Obs.
Temperate Pampean 31.3◦ S 64.2◦ W 425 1873–2023 741.6 180.0

Buenos Aires
Humid Pampean 34.6◦ S 58.4◦ W 25 1861–2023 999.4 245.2

Bahia Blanca
Semiarid Pampean 38.7◦ S 62.3◦ W 83 1860–2023 468.3 156.4

Monthly mean precipitation average values calculated for the period of 1903–2002
were used to obtain deseasonalised precipitation anomalies. Such an extended averaging
period was selected, rather than the standard 30-year averaging, to take into account the
considerable interannual to interdecadal variability observed in the precipitation timeseries.
Furthermore, many official meteorological stations were established throughout the country
during the first years of the 20th century; thus, such an averaging period is useful for
intercomparisons with other stations in future studies. Deseasonalised timeseries were
obtained by subtracting the 1903–2002 monthly mean precipitation for the corresponding
month from the homogenised precipitation timeseries.
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As pointed out by Anghileri et al. [34], the detection of trends in timeseries of climate
variables is often complex due to the seasonality and interannual variability that charac-
terise natural systems. While seasonality behaviour can make the trend detection results
strongly dependent on the selected time scale of analysis, interannual variability, meaning
wide fluctuations from one year to another, can generate apparent trends, especially when
the recorded timeseries are short. In order to identify annual, seasonal (DJF: summer;
MAM: autumn; JJA: winter; and SON: spring), monthly, and anomaly precipitation trends,
linear regression test, the nonparametric-based Mann–Kendall (MK), and the Sen’s slope
estimator were used. These tools have been widely used for trend detection in a very wide
variety of analyses, and a comprehensive review of the state of the art in these mathemat-
ical methods can be found in Kundzewicz and Robson [35] and Sonali and Kumar [36],
among others.

Briefly, linear regression is a parametric test used to evaluate the pattern and trends of
different variables measured over a long period of time. The test statistic is the slope of the
least squares linear regression line divided by its standard error, and the rate of change in
the series of data is defined by the slope [36,37].

The MK test compares relative magnitudes rather than the data values. The robustness
of the MK test was highlighted in several studies [38,39] and has several advantages, such
as being insensitive to outliers and missing data in timeseries. Estimated Z-scores are
used to represent the magnitude of trends. The positive Z value infers a positive trend
and vice versa. The significance level (α) used for the MK test of 0.05 (i.e., 95 percent
confidence) is used to test the null hypothesis (no trend in the data). Finally, the Sen’s
slope was considered to assess the magnitude of the trend [40]. A positive value of Sen’s
slope indicates an upward or increasing trend, and a negative value gives a downward or
decreasing trend in the timeseries.

In order to further analyse the existence of significant decadal to interdecadal variabil-
ity in the region, a rolling 60-month moving average or running average (which can be
considered a low-pass filter),was applied to the timeseries to highlight the lower frequency
variability. This 60-month running mean calculates the average of data points over a period
of 60 months, where the average is recalculated as new data points become available and
older ones are removed from the calculation. Essentially, a 60-month running mean is a
dynamic average that tracks the trend in data over time, as opposed to a static average over
a fixed period.

For the variability analysis, monthly and seasonal computed values of Southern Oscil-
lation Index (SOI), the Niño3.4, the Pacific Decadal Oscillation (PDO), the IPO (Interdecadal
Pacific Oscillation as represented by TPI), and the Atlantic Multidecadal Oscillation (AMO)
indices, spanning all, if not most of the study period, were obtained from NOAA’s Phys-
ical Science Laboratory (https://psl.noaa.gov/). While it would have been of interest
to consider the Southern Annular Mode, at this time, there are no available validated
extended timeseries prior to 1900 [41]. An assessment of the correlation between those
indices and precipitation values was performed with multiple linear regressions (MLR)
using the XLSTAT 2024.3.0 software and considering all the climate modes as regressors.

Multiple linear regression was also applied to assess the dependence of the anomaly
timeseries variability on the abovementioned climate indices. The method is well known
enough in this type of analysis: in summary, the R2 coefficient retrieved indicates the %
of variability of the dependent variable explained by the explanatory variables. Fisher’s F
test used is less than 0.0001, which implies that a risk of less than 0.01% is implicit when
assuming the null hypothesis. It can thus be confidently concluded that the variables shown
in the best model provide a significant amount of information regarding the variability
analysed, and graphical representation with the standardised regression allows us to

https://psl.noaa.gov/
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directly compare the relative influence of the explanatory variables on the dependent
variable, as well as their significance.

Finally, the analysis of the temporal behaviour of significant monthly anomalies or
extreme events, both positive and negative, was carried out using monthly standard
deviations, σ, as a normalisation factor. In this sense an extreme event can be defined
when monthly anomalies ≥ σ. It is worth mentioning that the use of σ threshold is a direct
measure of data dispersion around the mean, allowing for a statistically grounded approach
to identifying outliers; therefore, it is a quantifiable way to define “unusual” values, with
the number of standard deviations used reflecting a chosen level of confidence. While it
is true that monthly precipitation anomalies have a skewed distribution, particularly for
extreme positive events, it remains possible to use monthly σ to standardise the anomalies
and, thus, obtain seasonal and complete normalised timeseries at each location. It must be
noted that deciles were calculated for the complete and seasonal timeseries at each location.
These yielded 90- and 10-percentile values in good agreement with the calculated monthly
σ, 2σ, and 3σ. Furthermore, the standardisation with σ allows the intercomparison of
significant events between locations. The total number of events per decade falling into
each of these categories was determined, and their variations along the decades of the
study period were considered, both for the full sample and seasonal samples.

3. Results
3.1. Monthly Precipitation Records

Figure 2 highlights the considerable variability in monthly precipitation at all four
locations, as is to be expected. This variability can be observed not only from one month
to the next but also over extended periods of time, i.e., years and decades. Clustering of
high (low) monthly values can be observed along the timeline at all sites. Such clustering
appears to take place at quasi-decadal/interdecadal periods, i.e., primarily early, mid, and
late 20th century. This behaviour is further analysed in Section 3.

At this point, it is interesting to consider the 5 rainiest months since the beginning of
the records at each location. Table 2 lists these months and the corresponding accumulated
precipitation derived from the homogenised series. All the rainiest months, except for July
1940 at Corrientes, took place during the warm season, extending from November to April,
during the austral late spring to early autumn. Only Córdoba has the top 5 rainiest months
within the last 40 years. The earliest rainy month in Córdoba ranks 7th and dates back to
December 1880. All other locations have the rainiest months distributed throughout the
study period. It is interesting to note clusterings of very rainy months during the early
decades of the 20th century and toward the end of the 20th century and early 21st century.
A few such months also occurred in the mid-20th century. Furthermore, the rainiest months
tend to occur more frequently in late summer and early autumn.
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Figure 2. Variability in monthly precipitation at (a) Corrientes, (b) Córdoba, (c) Buenos Aires, and
(d) Bahía Blanca for the period of 1860–2021. In all cases, the vertical axis is monthly precipitation
in mm.

Table 2. The five rainiest months since the beginning of the records and the corresponding accumu-
lated precipitation derived from the homogenised series at each location.

Location
1st

Time/Mon.
Precipitation

2nd
Time/Mon.

Precipitation

3rd
Time/Mon.

Precipitation

4th
Time/Mon.

Precipitation

5th
Time/Mon.

Precipitation

Corrientes 11/2009
574.8 mm

7/1940
552.4 mm

1/1973
541.8 mm

4/1915
515.0 mm

4/2017
497.7 mm

Córdoba 3/1983
489.0 mm

2/2016
447.2 mm

2/2015
382.6 mm

12/1997
370.4 mm

3/1975
324.5 mm

Buenos Aires 3/1900
544.7 mm

3/1988
476.0 mm

2/2010
421.0 mm

4/1959
405.0 mm

2/20,003
403.0 mm

Bahía Blanca 4/1919
314.0 mm

4/1914
270.0 mm

2/1942
257.0 mm

3/1980
251.1 mm

2/1975
239.1 mm

Daily precipitation values were obtained for the top-ranking months in Buenos Aires
and Bahia Blanca, dating back to the early 20th century. During March 1900 [40], Buenos
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Aires had 12 days with precipitation, 3 of them with considerable downpours in the vicinity
of or exceeding 100 mm: 31 March 1900—135 mm, 28 March 1900—125 mm, and 29 March
1900—97.5 mm. Earlier in the month, on 11 March 1900, 55.5 mm had already precipitated
over the city. Total precipitation was 544.5 mm. The worst daily precipitation for the period
of 1861–2023 took place on 31 May 1985 with 188.4 mm. However, May 1985 ranks 13th
(317.3 mm) when accumulated monthly precipitation is considered. For Bahia Blanca, the
rainiest month on record (1860–2023) was April 1919, when the city endured 12 rainy days
with a total precipitation of 314 mm. The worst precipitation took place on 9 April 1919
with 160 mm, 60 mm on the following day, and 66 mm on 12 April 1919. The rainiest day
during the study period was 18 March 1933, with 167.7 mm daily precipitation. However,
March 1933 accumulated 207 mm, i.e., the 12th rainiest month for Bahia Blanca during
the study period. These examples, among others, highlight the fact that heavy monthly
total precipitation (accumulated values over the month) may not necessarily be linked to
the worst daily precipitation events, but rather to the number of significant precipitation
events, particularly heavy precipitation ones, during a given month. In other words,
record-high monthly precipitation points to the occurrence of a number of significant daily
precipitation events during the month and/or sustained precipitation during an above-
average number of rainy days. Such differences between extreme rainy months and severe
single precipitation events should be taken into account when discussing the drivers of
precipitation variability and changes.

It is worth looking back at some historic high precipitation episodes, which highlight
the ever-present consequences of heavy rains. September 1884 is the 7th in the ranking of the
rainiest months in Buenos Aires, with 349 mm of accumulated precipitation. On 23 Septem-
ber 1884, 118 mm precipitated, and on the following day, 127 mm precipitated [42]. These
significant storms resulted in considerable flooding of large areas of city, the consequences
of which were inspected by the then President of the Republic, Julio A. Roca. Such an
event resulted in the decision to move the cattle slaughterhouses located in the Parque
Patricios neighbourhood to a then remote area, subsequently named Mataderos. However
further heavy storms and flooding, particularly in January 1889 (rank 11th) with 324 mm
of accumulated precipitation, 13 rainy days, and a 90 mm storm [42], were necessary to
confirm the determination to carry out the move, in 1901, during Julio A. Roca’s second
presidency, and to advance in the construction of the huge precipitation drainage system
for the city of Buenos Aires, completed in 1919.

3.2. Precipitation and Precipitation Anomaly Analysis

Figure 3 shows the annual precipitation cycles for the four locations where the distinct
regimes at each location can be appreciated. Córdoba Observatory has a distinct seasonal
variability corresponding to the South American Monsoon precipitation regime, i.e., rainy
summers and very dry winters. Corrientes has a well-defined seasonal cycle, with heavy
precipitation from October through April. Such behaviour at these two stations highlights
the flow of humidity from the Amazon Basin brought in by the meridional South American
low–level jet [43–45] that enters Argentina’s Chaco and Pampas regions primarily between
October and March. Buenos Aires precipitation, while still having a well-defined seasonal
cycle, does not exhibit such large seasonal variations. Bahia Blanca, located by the South
Atlantic, in the Yellow Pampas transition region between the humid Pampas and the
Patagonian steppes’ semi-arid to arid climate, shows rather reduced precipitation, under
60 mm, with maxima in March and October.
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Figure 3. The annual precipitation cycles for (a) Corrientes, (b) Córdoba, (c) Buenos Aires, and
(d) Bahía Blanca, where the distinct regimes at each location can be appreciated. In all cases, the
vertical axis is monthly precipitation in mm, and error bars represent one standard deviation.

Figure 4 shows the deseasonalised precipitation anomalies at the four study sites,
using the 100-year means presented in Figure 3. Since the anomalies are deseasonalised, it
is possible to compare the magnitude and evolution of monthly precipitations throughout
the study period. Standardisation by the standard deviation further allows comparisons
between stations.
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Figure 4. Deseasonalised precipitation anomalies at (a) Corrientes, (b) Córdoba, (c) Buenos Aires,
and (d) Bahía Blanca, using the 100-year means presented in Figure 3. In all cases, the vertical axis is
the monthly precipitation anomaly in mm.

A first inspection of Figure 4 and its comparison with the homogenised precipitation
series in Figure 2 indicates some changes in the occurrence of extreme positive precipitation
since the deseasonalisation impacts primarily occur during the warm months, during
which precipitation maximises at all four stations. As a consequence, Corrientes, Buenos
Aires, and, to a lesser extent, Bahia Blanca have fewer prominent maxima throughout and
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some changes in the ranking of the top rainiest months. The inspection of the Córdoba
timeseries suggests that extremes, when deseasonalised, are not so prominent, particularly
in the midsection of the sample, and negative anomalies appear to be more frequent, in
agreement with De la Casa et al. [21]. As before, the largest extremes have mostly occurred
during the last 45 years.

The trend results for these four localities using MK test with the whole sample of
homogenised data show that no trend can be detected—i.e., the null hypothesis cannot be
rejected—in all cases, except in Bahía Blanca where a significant trend, albeit very slight, of
the order of 0.003 mm per year, can be observed. The same conclusions are obtained from
the linear regression and the Sen slopes (Table 3).

Table 3. Results of the statistical trend detection tests applied to the timeseries on a monthly basis:
Mann–Kendall test (test significance p-value, and Sen’s slope), linear regression test (R2 meaning the
rate of the change in the series of data), at 95% confidence limit. p-Values in bold correspond to a
significant trend detected.

MK Test Linear Regression

Tau p-Values Sen’s Slope R2 Coefficient

Corrientes 0.007 0.486 0.001 0.001

Córdoba 0.029 0.073 0.003 0.003

Buenos Aires 0.020 0.185 0.003 0.004

Bahía Blanca 0.040 0.012 0.003 0.002

Regarding the anomaly series, only a rather weak but significant trend (α = 0.05)
was obtained for Córdoba. The calculated trend yields a 0.36 mm/decade increase in
precipitation. This would imply an overall increase of 5.4 mm for the period of 1873–2023
in the deseasonalised anomaly timeseries. This result agrees with De la Casa et al. [21]
for the annual precipitation trend, albeit with a larger trend in their study. It is important
to note that their results are based on the analysis of the samples beginning in 1910 at
the earliest and finishing in 2010, i.e., 50 years less in the sample, which, furthermore,
does not include the recent severe drought. Figures 2 and 4 also show rather prominent
monthly precipitation prior to 1910, as well as a few high monthly values after 2010. This
has a significant impact on the trend calculation. On the other hand, Barros et al. [19] and
Camilloni [17] found significant positive trends for the SESA region. However, it must be
noted that they considered a far shorter timeseries, spanning the period of 1960–1999. Both
Figures 2 and 4 suggest that at least for Corrientes, Córdoba, and Buenos Aires, their study
period coincided with years of enhanced and increasing precipitation in the region. As
mentioned earlier in the methodology, according to Anghileri et al. [34], the detection of
trends in timeseries can be strongly influenced by the time period considered in the analysis.
Furthermore, the differences between the results found may also be due to the processing
of the data series. If the raw data of the four locations, analysed here (zenodo.org: DOI
10.5281/zenodo.15013403), without homogenisation, are considered, significant increasing
trends are also observed in all cases except for Cordoba (where the null hypothesis cannot
be rejected). However, as the WMO points out, results derived from a non-homogeneous
dataset may be influenced by multiple extra-climatic factors, and therefore, trends cannot
be considered conclusive or accurate.

Scian and Pierini [20] demonstrated, using 40-year moving windows to study the
return time of extreme dry and extreme wet conditions, the existence of significant decadal
to interdecadal variability in the region. Similarly, De la Casa et al. [21] found low-frequency
interdecadal variability, with enhanced precipitation between the 1970s and early years of
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the 21st century for the stations they studied in the vicinity of Córdoba. Given that such
trend differences depend on the sample length (Figure 4), in agreement with Scian and
Pierini [20] and De la Casa et al. [21], this suggests extended periods of heavy precipitation
(positive anomalies) alternating with periods of reduced precipitation (negative anomalies).

A 60-month (5-year moving window) was applied to the timeseries to highlight the
lower-frequency variability. Figure 5 shows the filtered anomaly time-series. Maximum
positive low-frequency anomalies occurred at all stations during the last 50 years. Córdoba
recorded its largest positive anomalies between the 1970s and 1990s. Corrientes precipita-
tion maximised in the 1980s and, to a lesser extent, 1990s. Precipitation anomaly maximised
in Buenos Aires later on, around 2002 and lasted only for a few years. Bahia Blanca reached
a peak maximum anomaly in the 1970s. Another secondary maximum can be observed
for Corrientes, Córdoba, and Buenos Aires in the period of 2012–2016. At this time, Bahia
Blanca only shows a transition period with no significant anomalies separating the two dry
spells. This could explain the positive trends found by many authors considering trends
for timeseries spanning the last 40 or 50 years of the 20th century.

In previous decades, Córdoba did not show large/extended positive anomalies be-
tween 1873 and 1970. Buenos Aires had positive peaks around 1900 and 1910, while
Bahia Blanca had positive low-frequency anomalies during the 1870s and in the period of
1890–1910. Corrientes, on the other hand, shows periods of positive values throughout the
sample, more specifically the 1870s, 1910s and 1920s, and 1940s.

Regarding extreme dry periods, these vary considerably from station to station. Cor-
rientes has its driest low-frequency spells in the late 1970s, between 2006 and 2012, and,
finally, after 2017, a period during which the Paraná River almost dried up, particularly
between 2022 and 2023. On the other hand, Córdoba underwent its driest spell in the
1930s and again between approximately 1945 and 1955. Other dry periods can be found
in the 1880s and late 1910s to early 1920s. Dry spells in Buenos Aires occurred between
2018 to 2023 (record low), late 1990s, and prior to 1870, in the late 1890s and 1910s, during
the earlier decades of the sample. It is interesting to note that during the years 1870 and
1871 when precipitation returned to what would be 20th-century average values, Buenos
Aires, at the time without a drainage and sewer system, underwent a serious yellow fever
epidemic that killed thousands [46]. Finally, Bahia Blanca underwent its driest spells to
date between 2018 and 2023, between 1860 and 1870, and in the 1910s. This region also
suffered an extended period of almost continuous negative anomalies between 1930 and
1960. The dry spells, particularly for Bahia Blanca and Córdoba in the 1930s and 1950s, are
in agreement with Seager et al. [18].

Considering overarching aspects of the variability at these four stations, it must be
noted that between 1976 and 1977, a major global climate transition, jump, or shift was
observed, as documented by numerous authors. Mantua and Hare [47] linked this abrupt
climate shift to a rapid change of phase in the PDO. Agosta and Compagnucci [48] identified
the abrupt shift in Southern South America summer climate variables. Another climate
regime shift and its consequences were observed in the early 1990s at least for the Southern
Hemisphere [49–51]. Regarding ENSO, Barrucand et al. [41] noted that a wavelet analysis
for three long-term ENSO indices (SOI, HADlSST Niño 3, and UKM GISST2.3 Niño 3)
showed an almost complete disappearance of spectral power in the vicinity of 2- to 8-year
period variability between 1920 and 1960. Such long-term behaviour could be at least
in part responsible for the large positive anomalies observed in Corrientes and Córdoba
during the last quarter of the last century.
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Figure 5. Filtered anomaly derived from a rolling 60-month average (5-year moving) to highlight
the lower-frequency variability timeseries at (a) Corrientes, (b) Córdoba, (c) Buenos Aires, and
(d) Bahía Blanca.

To further analyse the possible role of ocean variability in precipitation at these four
locations, a multiple linear regression (MLR) analysis was performed between the timeseries
of precipitation anomalies and selected large-scale climate modes representing ocean
variability, as mentioned above. It should be noted that here, we use the Niño3.4 and
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SOI indices, both of which are related to the ENSO signature. However, they represent
different aspects of ENSO and ENSO teleconnections. The correlation between the two
timeseries is 0.796, i.e., there are some differences. Similarly, while PDO is calculated using
Northern Hemisphere EOFs of SST anomalies, TPI, an IPO proxy, considers EOFs of SST
anomalies from both hemispheres. The correlation between TPI and PDO is 0.731. Again,
there are some differences between these two indices. The MLR analysis (Table 4) reveals
that, when the best performing model is chosen, i.e., the set of climate indices and the linear
modelling approach that best describe the behaviour of the precipitation anomalies, the
total low-frequency variability explained in precipitation anomaly, for all four regions and
for all the years, ranges from 5% to 16%. The highest percentage can be found in Corrientes,
with 16% corresponding to AMO and TPI combined as main climate drivers. On the
other hand, the lowest variability explained corresponds to Cordoba (7%), with AMO,
Niño3.4, TPI, and PDO combined. Buenos Aires and Bahía Blanca display percentages of
10% and 12%, each corresponding to SOI-TPI and TPI-AMO indices, respectively. There
is no noticeable correlation in the amount of rainfall variance explained with latitude; in
fact, the only combination of mean drivers that is repeated corresponds to the two regions
furthest from each other: Bahía Blanca and Corrientes. If a single model is used for each
region over the entire analysis period, the variability explained decreases. Percentages of
explained variability are overall in good agreement with the recently published values
found in Hobeichi et al. [24].

Table 4. Results of the best performance of the multiple linear regression (MLR) analysis between
the precipitation anomaly timeseries and the selected large-scale climate modes representing oceanic
variability at these four locations. Level of significance: 5%.

Location Climate Index Combination Adjusted R2 % Explained Variability

Corrientes AMO/TPI 0.15 16

Córdoba Niño3.4/PDO/AMO/TPI 0.04 7

Buenos Aires TPI/SOI 0.12 12

Bahia Blanca AMO/TPI 0.01 10

3.3. Seasonal Trends and Variability

Precipitation is largely a warm-month climate feature in the region; thus, it is neces-
sary to consider the seasonal evolution at each location to better understand trends and
variability. Evaluation of the seasonal precipitation anomaly trends, using the MK test
applied to each season’s anomaly rainfall data, shows that over the study period, there are
a few statistically significant trends. Table 5 presents the summary of the MK test results.
Corrientes has significant negative trends during winter, while Buenos Aires and Córdoba
have significant positive trends during summer between 1861 and 2023, with a 4.9 and
4.7 mm per decade precipitation increase.

Table 5. Summary of seasonal trends detected through the MK test applied to each season’s anomaly
data at all locations. Significant values are in bold, considering α = 0.05.

Location DEF MAM JJA SON

Corrientes Null Null −4.68 mm/decade Null

Córdoba 4.72 mm/decade Null Null Null

Buenos Aires 4.09 mm/decade Null Null Null

Bahia Blanca Null Null Null Null
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Figure 6 shows the three cases with significant seasonal trends. The plots show that
despite the existence of decadal to interdecadal variability, which is also present in all other
seasonal anomalies with null trends, the trends obtained are a very good representation of
the overall evolution of the seasonal precipitation anomalies during the study period.
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Figure 6. Sen’s slope for the three cases found with significant seasonal trends during the whole
analysis: (a) Corrientes JJA, (b) Córdoba DEF, and (c) Buenos Aires DEF. The trends obtained are a
very good representation of the overall evolution of the seasonal precipitation anomalies during the
study period.

To better understand how precipitation has varied in this region, the seasonal anomaly
variability was tested. To explore this, MLR analysis with seasonal climate modes was used,
and the results (Table 6) show that, while the influence of these indices is relatively low
when the whole period is considered, the seasonal variability in precipitation anomalies
is considerably higher in some areas. For example, Corrientes shows explained variance
around 29% linked to SOI, PDO, and TPI combined, during austral spring (SON), but
the percentages are lower and even non-significant during all other seasons. A similar
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behaviour can be seen in Córdoba, where the amount of rainfall variance explained reaches
about 16% in DEF (AMO and TPI), but for the rest of the seasons, the percentages decrease
significantly. In the case of Buenos Aires, the minimum non-significant value corresponds
to 2% in DEF, while the rest of the seasons display 7% of variability explained by differ-
ent combinations of climate modes. Finally, Bahia Blanca has the maximum significant
correlation between rainfall and climate modes, around 11% during JJA (TPI and ENSO
represented by Ñiño 3.4 and SOI indices). Thus, the influence of climate modes on inter-
annual and seasonal weather patterns appears to be similar, although with differences
in the explained variance, with the Atlantic Multidecadal Oscillation and Tropical Pacific
Influence being the dominant factors and the El Niño-Southern Oscillation playing a more
minor role.

Table 6. Seasonal anomaly variability tested through MLR analysis, considering the seasonal cli-
mate mode values—average of the three months of data for each season—as regressors and with a
confidence interval of 95%.

Location Season 1st Climate
Index/Correlation

2nd Climate
Index/Correlation

3rd Climate
Index/Correlation

Explained
Variability

Corrientes

DEF TPI AMO - 10%

MAM SOI AMO - 3% not sign.

JJA TPI AMO SOI 3% not sign.

SON SOI TPI PDO 29%

Córdoba

DEF TPI AMO - 16%

MAM Niño 3.4 PDO - 6%

JJA AMO Ñiño 3.4 - 9%

SON AMO Niño 3.4 SOI 5%

Buenos Aires

DEF PDO Niño 3.4 - 2% not sign.

MAM TPI Ñiño - 7%

JJA TPI AMO Ñiño 3.4 7%

SON AMO SOI Ñiño 3.4 7%

Bahía Blanca

DEF TPI AMO - 9%

MAM TPI SOI - 5%

JJA TPI Niño 3.4 PDO 11%

SON TPI SOI - 10%

Comparing the influence of the indices on precipitation obtained here with results
from other authors is a difficult task due to the scarce availability of analyses in Argentina
involving such an extensive time period; however, the seasonal percentages found are, in
general, in good agreement with Hobeichi et al. [24].

3.4. Significant Monthly Deficits and Excess Precipitation Anomalies: A Perspective

Not only is it important to consider the trends and interannual to interdecadal vari-
ability of monthly/seasonal precipitation as given by the anomalies. It is also important to
consider the deviations from the mean or, in this study, from the deseasonalised timeseries
quasi-null mean. The distribution of significantly anomalous months (higher/lower than
σ) along the approximately 150 years of the records considered is an integral part of the
variability and trend analysis. As noted in the examples given above, the months with
precipitation excesses must not be confused with individual severe precipitation events or
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days with extreme precipitation. This is more obvious when precipitation deficit periods
are considered, i.e., dry periods and droughts are the known consequences of extended
periods with little or no precipitation. It is also important to note that significant precipita-
tion deficit months have been observed to occur side by side with significant precipitation
excess months, further complicating the analysis.

As described above, these severe or extreme monthly anomalies will be described in
terms of the standard deviation σi, where i is the month of the year used to standardise the
corresponding monthly anomalies, represented by σ. Thus, anomalies become comparable
between months, seasons, and locations. Using σi allows for the standardisation, resulting
in the intercomparison of timeseries and visualisation through the quantification of the
number of σ per range, as described in the methodology over selected periods of time, e.g.,
decades. Decades for the period of 1861–2020 are considered here.

Figure 7 presents the decadal frequency distribution of σ per decade at each of the four
locations. These histograms highlight the multidecadal variability of the four σ ranges (one
negative, three positive) and are linked to the 60-month moving average results (Figure 5)
since low-frequency variations can modulate the parameters of the rainfall frequency
distribution. Note that for precipitation deficit months, these all fall within a single range
(−2 < σ≤−1), while excess precipitation months occur within an extended distribution tail,
starting at 1σ and extending beyond 3σ. Overall, the number of months with significant
precipitation anomalies per decade (both excess and deficit) oscillates between almost 17%
and 42% of the sample size, depending on decade and location. Inspection of the histograms
shows that at all four sites, almost all decades during the study period have at least one
month with precipitation excess of at least 3σ. Bahía Blanca has a maximum number of such
months during the period of 1971–1980 (5), while both Corrientes and Córdoba have such
months maximised between 1981 and 1990 with 5 and 4 months, respectively. In the case of
Córdoba, these do occur during the period with the largest precipitation anomalies. Buenos
Aires has maxima of 3 such months twice in the sample, between 1911–1920 and 1951–1960.
Further inspection shows that 3σ months variability has a recurrence of approximately
30 to 50 years for Corrientes during the 20th century, Córdoba 20 to 40 years, Buenos Aires
30 to 50 years, and Bahía Blanca 20 to 30 years. However, 2σ to 3σ months, which still
represent months with significant precipitation excess, have fairly similar variabilities. As
expected, 1σ to 2σ months are far more frequent. However, it is not as simple to pinpoint
their variability, which exhibits significant variations throughout the study period at all
stations. Similarly, the occurrence of months with significant precipitation deficit shows
interdecadal variabilities that are difficult to pinpoint.

Figure 7. Cont.
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Figure 7. Histograms for frequency distribution of σ per decade at (a) Corrientes, (b) Córdoba,
(c) Buenos Aires, and (d) Bahía Blanca, starting 1861–1870 through 2011–2020.

Figure 8 shows the accumulated annual distribution of significant anomalies for each
month, for each station, i.e., accumulated during the full span of each sample. Briefly, 3σ
months show few seasonal differences at all stations. In other words, such rare exceedingly
wet months, given the size of the samples, have taken place throughout the year during
the study period, with minor variability at some locations. On the other hand, when
the total sum of all months with significant precipitation excesses is grouped by month,
distinct seasonal cycles can be observed at each location. For Corrientes, significant months
with anomaly precipitation excesses are maximised between September and April, during
the warm period, with a minimum in July. Months with significant precipitation deficit
are more frequent than months with excess precipitation, except during July, where a
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narrow and prominent minimum occurs. Deficit months are maximised in February, June,
and September. For Córdoba, positive (wet) significant precipitation anomaly months
occur more frequently in January and February, with somewhat lower values with limited
variability from March to July, increasing after August, with a slow increase through
December. On the other hand, significant negative (dry) anomaly months have a very
well-defined annual cycle with practically no occurrences between May and September,
i.e., during the cold season, in agreement with the very reduced mean precipitation during
these months (Figure 3b). These dry months are maximised during January, February, and
November. During the warm period, the number of significantly wet and dry months is very
similar. Buenos Aires has similar monthly counts for precipitation deficit and excess months.
There is a very limited annual cycle: significantly dry months are somewhat more frequent
during late autumn and winter, while months with significant precipitation anomalies are
somewhat more frequent in winter and early spring. Bahia Blanca has a similar behaviour
to Buenos Aires for significant excess precipitation months, while the annual evolution of
the deficit months is fairly similar to Córdoba, with few if any significantly dry months
during winter. Annual mean precipitation values in Bahia Blanca during winter are very
similar to those obtained for Córdoba. Furthermore, the annual precipitation in Bahia
Blanca is rather reduced when compared with the other three locations.
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Figure 8. Accumulated annual distribution of significant anomalies for each month, for (a) Corrientes,
(b) Córdoba, (c) Buenos Aires, and (d) Bahía Blanca.

Figure 9 shows the evolution per decade of the total number of significant precipitation
anomaly deficit and excess months at each location. Inspection of the plots shows different
behaviours at each location. Considering the linear regression and MK test results, both
Corrientes and Bahia Blanca have null trends for positive anomalies. While Corrientes
appears to have a positive trend in the occurrence of significant negative anomaly months,
Bahia Blanca has non-significant trends. Buenos Aires appears to have almost identical
trends for negative and positive anomalies, i.e., the number of months with significant
deficit or precipitation is slowly growing. Finally, Córdoba appears to have a positive trend
in the number of months with significant excess precipitation and a negative trend for the
months with deficit precipitation. Yet MK testing yields that all these apparent trends are,
however, non-significant.

 

 

Figure 9. Cont.
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Figure 9. The evolution per decade of the total number of significant precipitation anomaly deficit
and excess months, considering the MK trend, at (a) Corrientes, (b) Córdoba, (c) Buenos Aires, and
(d) Bahía Blanca, starting from 1861–1870 through 2011–2020.

The seasonal anomaly trends at each of these locations once more suggest different
behaviours at each of the locations and in different seasons. For Corrientes, significant
excess precipitation months are weakly increasing during summer and autumn, decreasing
during winter and spring, albeit non-significantly in all cases. Significant deficit months
appear to be increasing during autumn, winter, and spring and decreasing in summer,
once more non-significantly. Córdoba has, during summer, a positive trend for months
with excess precipitation, as well as a decrease in significant deficit months. The rest of the
seasons have non-significant positive or null trends for months with precipitation excess, as
well as either non-significant decreasing or null trends for months with precipitation deficit.
Buenos Aires only yields trends during summer and winter months, respectively: during
summer, the number of significant excess precipitation months is increasing, while the
number of precipitation deficit months is increasing during winter months. Bahia Blanca
has null trends for all seasons, except summer. During these seasons, the number of dry
and rainy months has a weak positive yet non-significant trend.

4. Discussion and Concluding Remarks
The present analysis attempted to explore the temporal variability of monthly precipi-

tation over 150 years or more at four locations in Argentina: Corrientes, Córdoba, Buenos
Aires, and Bahía Blanca. Using the homogenised data series of these four areas, annual and
seasonal trends, extreme dry and wet months over the entire period, relationships between
large-scale climate modes, and monthly precipitation were considered.
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The main finding of the present analysis can be summarised in the following points:

• From the results obtained, it is interesting to observe that, except for Córdoba with a
rather weak significant trend in the complete anomaly timeseries trend analysis, all
other stations yielded a null trend over the extended centennial study period. In the
seasonal trend study, Bahia Blanca yielded null trends, while Córdoba and Buenos
Aires yielded significant positive trends during summer, and Corrientes yielded
significant negative trends during winter. The increase in summer precipitation in
Córdoba and Buenos Aires could be linked to a warmer climate with enhanced water
vapour. The mechanism driving a negative trend in Corrientes during winter is
probably more complex and beyond the scope of the present study. Before proceeding
further, it should be noted that these results differ to some extent from other global and
regional results mentioned throughout the manuscript, and these differences may be
due to multiple factors, but mainly to the period of time considered in the analysis and
the methodology applied. The record length is the most critical factor in determining
precipitation’s trend and temporal variability and the one that constitutes the main
limitation in such analyses. While the use of short time frames can yield significant
trends, most probably related to decadal/interdecadal variability, a full or extended
series may not.

In terms of methodology, caution must be taken in interpreting the results when
using linear approaches since this methodology assumes a constant rate of change over
time and does not reflect the intrinsic variability of the rainfall pattern or the existence
of changes in trend (which may be hidden by the observed variability). Even if sliding
windows trend analysis is applied to verify the sensitivity of trends, considerably different
results can be obtained since, depending on their length, noise can be effectively removed,
but noise can also mask high/low frequencies and real trends (bias–variance trade-off).
As Scherrer et al. [52] pointed out, describing the evolution of the climate using trend
lines and the estimation of the current climate mean, particularly at the local scale, can be
potentially valuable; nevertheless, the intensification and the nonlinear nature of climate
change increasingly disqualifies the exclusive use of long-term linear trends and climate
normals to track the evolution of variables. Both the standard 30-year reference period
recommended by the WMO and the long-term linear time trends reach their methodological
limits in today’s climate, which is characterised by strong non-stationarity and nonlinear
evolution. Hence, additional approaches, including alternative kinds of climate anomalies
with respect to the climate trend line, are needed.

• The results show the considerable variability of monthly precipitation at each location,
both from one month to the next, and the existence of low-frequency decadal to
interdecadal variability, both for precipitation anomalies and for statistically significant
precipitation excess and deficit months. The dispersion along the timeline of record
extreme rainy months at each location, together with the fact that the ranking of
severe daily precipitation events does not necessarily coincide with the ranking of the
rainiest months at each location, highlights the issues of understanding the drivers
of variability of both monthly precipitation and severe daily precipitation. The fact
is that while there may be climate drivers, such as the oceanic climate indicators
considered here, influencing the low-frequency variability, severe precipitation events
are themselves strongly dependent on specific local/regional weather conditions
impacting single events or sequences of events, e.g., May 1985 and March 1900 in
Buenos Aires, respectively. While specific weather conditions leading to such severe
events are conditioned by the prevailent state of the climate drivers, the specific details
in such a relationship are very complex, even more complex than the relationships
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mean monthly precipitation has with interannual to interdecadal climate drivers
discussed here.

• The top five precipitation excess months at each location are mostly during the warm
season months, in agreement with the fact that during warm months, the La Plata
Basin, Córdoba Plains, and the Southern Pampas are all regions of significant con-
vective activity. When the larger sample of more extreme precipitation months, as
given by 3σ deviations in the deseasonalised anomaly timeseries, is considered, such
monthly events can occur at all months with few if any seasonal distribution variations.
Occasional convective activity can occur at other times of the year.

• The analysis of the variability of the total positive and negative significant anomalies,
together with the low-frequency anomaly variability, shows a complex picture, and
the link between the number of excess and deficit months and the low-frequency
precipitation anomaly is neither straightforward nor clear. While in some locations,
the significant deficit months vary following the variability of the low-frequency
anomaly, the excess months do not, contrary to what is observed in other areas. Hence,
the behaviour in the number of significant excess and deficit months with respect to
the anomalies and trends yields different relationships at each location. These results
show that there are probably different relationships/mechanisms linking the evolution
of precipitation and the evolution of statistically significant excess and deficit months.

• The statistical analysis of the relationship between the anomaly timeseries and climate
indices also leads to challenging results, as discussed in Hobeichi et al. [24]. According
to the teleconnections analysis, in Buenos Aires, El Ñiño is the significant driver of
rainfall patterns and unlike other regions, such as Northeastern Argentina, there is
no significant relationship with the AMO and TPI climate modes since precipitation
is more influenced by the South and Southwest Atlantic Ocean, frontal systems and
the western circulation with winds coming from the Pacific, crossing the Andes, and
deflecting east. In contrast, the AMO and TPI act primarily by modifying tropical
circulation and moisture availability in regions such as Northern and Northeastern Ar-
gentina where convection is more dominant. However, in light of the results obtained,
it is clear that these correlations contribute differently at each location when different
timescales are considered, and these explained variance percentages provide only
limited insight into these climate driver impacts. A number of questions remain. Given
that monthly precipitation has a well-defined seasonal cycle and the warm months,
particularly summer months, have the largest mean precipitation, a linear analysis of
the full anomaly timeseries smoothes out the impact of ENSO, with respect to a sea-
sonal analysis, and highlights the decadal to interdecadal contributions. Furthermore,
some changes are observed in the contribution of the decadal to interdecadal drivers
when comparing the full sample and seasonal analyses. Why do climate indicators
and their importance change to such an extent when full anomaly samples or seasonal
timeseries derived from the former are considered? Is the linear methodology applied
contributing to such differences? While the present linear analysis allows for the
identification of potentially primary drivers and relative contributions to monthly
precipitation variability at each location, the results are not conclusive enough to
further assess mechanisms and causal relationships between drivers and accumulated
precipitation variability.

• Atmospheric and climate processes are inherently nonlinear, particularly those in-
volved in precipitation. In order to better identify drivers and the links between
monthly mean precipitation, it will be necessary to carry out a non linear statistical
analysis of these relationships.
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