

PONTIFICIA UNIVERSIDAD CATÓLICA ARGENTINA

Ingeniería Agronómica

FAMILIAS MATERNAS BOVINAS Y SU EFECTO SOBRE LA RESPUESTA SUPEROVULATORIA EN UN PROGRAMA DE TRANSFERENCIA EMBRIONARIA.

Trabajo Final de Graduación para optar por el Título de Ingeniero Agrónomo.

AUTOR

Joaquín Lambrechts Lloveras.

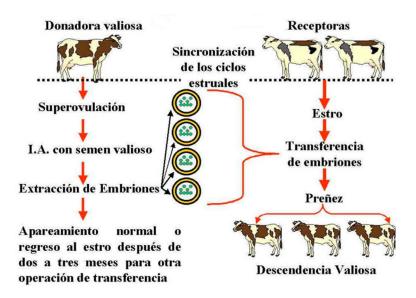
PROFESOR TUTOR

Dra. Marina Sansiñena.

A- RESUMEN

La trasferencia de embriones constituye una de las estrategias biotecnológicas más importantes en producción bovina ya que permite multiplicar la descendencia de las hembras acortando el intervalo generacional, favoreciendo así las tareas de mejoramiento como la evaluación de progenie y la comparación entre grupos de animales. La capacidad de identificar reproductoras con alta respuesta al tratamiento superovulatorio aportaría información de valor al elegir un reproductor, ya que estaríamos incorporando animales con un diferencial en la parte reproductiva con el consiguiente salto en la calidad genética del rodeo y un incremento en el valor de venta, no solo de la reproductora per se, sino de toda su descendencia. El objetivo de este trabajo fue realizar un análisis estadístico de tratamientos superovulatorios consecutivos en un plantel de vacas Brangus a fin de evaluar si existen efectos de la familia materna sobre la respuesta a la estimulación hormonal. Los trabajos fueron realizados entre los años 2002 y 2015, en el Centro de Transferencia de Embriones El Bagual, en la localidad de Colonia Presidente Yrigoyen. Para este estudio se contó con los datos de 217 donantes sobre las cuales se realizaron 1484 lavajes uterinos recolectándose un total de 11311 estructuras (embriones y ovocitos no fecundados). Para el análisis estadístico, se consideró como variable respuesta el número de cuerpos (embriones + ovocitos no fecundados) colectados por lavaje y por vaca. Por su parte, las variables descriptivas consideradas (familias maternas, madres y fecha de lavaje) se ajustaron a un modelo lineal generalizado Poisson utilizando el procedimiento GLIMMIX con el paquete estadístico SAS. El cociente entre ambas fuentes de variabilidad indicó que la dispersión entre vacas dentro de una misma familia es 28 veces mayor a la variabilidad entre distintas familias y, en consecuencia, no es posible distinguir efectos significativos. Los resultados indican que esta variabilidad intra-familiar no permitiría predecir la respuesta individual al tratamiento superovulatorio en base a su familia materna, y por lo tanto dicha respuesta no podría ser utilizada como un indicador en la selección y mejoramiento genético.

Palabras Claves: Transferencia embrionaria, superovulación, familias maternas.


INDICE

A-	RESUMEN		2
B-	INTRODUCCIÓN		4
C-	OBJETIVOS		10
D-	MATERIALES Y MI	ÉTODOS	11
	Descripción de	l establecimiento	11
	Colecta de date	os	16
	Descripción de	los datos para el presente análisis	17
	Análisis Estadí	stico	18
E-F	RESULTADOS		20
F- [DISCUSIÓN .		28
G- (CONCLUSIÓN		30
H- <i>A</i>	AGRADECIMIENTO	S	31
I- A	NEXOS .		32
	Instrumentació	n	32
	Estadísticas		33
	Datos de la pla	nilla de Excel	35
	Protocolo de E	stimulación	37
	Protocolo de re	ecolección	39
	Informe estadís	stico del programa SAS	40
L F	RIBLIOGRAFIA		40

B- INTRODUCCIÓN

A principios de los años 70 se comenzó a aplicar en Norteamérica la técnica de trasferencia o trasplante comercial de embriones en la especie bovina como una nueva herramienta para el mejoramiento genético. La aplicación de esta herramienta fue inicialmente impulsada por la introducción de razas continentales, siendo estas seleccionadas más por su mérito genético que por un fenotipo deseable (Colazo y Mapletoft, 2007).

La transferencia de embriones (TE) es una biotecnología reproductiva utilizada en la mayoría de países del mundo. El objetivo de la aplicación de esta herramienta biotecnológica es el aumento de la descendencia de individuos de alto valor genético, particularmente de las hembras (Bolívar, P. A. y Maldonado-Estrada, J. G. 2010). La TE consiste en extraer embriones en estadíos de desarrollo temprano (estadío pre-implantatorio) del útero de la madre donante (madre genética) por perfusión con un medio líquido isotónico, para luego transferirlos al útero de una hembra receptora (madre natural) de la misma especie en la cual ocurre la implantación y se lleva a término la gestación (Mosquera, J. 1994).

Fuente: Jimenez, Carolina & Triana, Erly & Penitente-Filho, Jurandy & Andrea Parra Salinas, Juliana. (2013). BIOTECNICAS REPRODUTIVAS NA FEMEA BOVINA. Figura. Recuperado de https://www.researchgate.net/publication/266141405_BIOTECNICAS_REPRODUTIVAS_NA_FEMEA_BO VINA

Aunque hasta ahora la Inseminación Artificial (IA) es considerada la mejor herramienta con respecto a su costo/beneficio, debemos destacar que la TE permite explorar la contribución materna al progreso genético. Desde allí se pueden diseñar criterios de Familias Maternas Bovinas y su efecto sobre la capacidad superovulatoria en un programa de transferencia embrionaria.

selección apropiados a ambientes y objetivos individuales para productores comerciales de carne y leche (Colazo y Mapletoft, 2007). Adicionalmente, el no necesitar de una disponibilidad inmediata de ganado receptor adecuado gracias al desarrollo de métodos efectivos para congelar embriones hace que sea una tecnología mucho más eficiente (Wilmut y Rowson, 1973).

Si bien existe la creencia de que el progreso genético tiende a ser más lento con el uso de la TE que con la IA convencional, es posible lograr un importante aumento en la ganancia genética dentro del mismo rodeo por aumento en la intensidad de selección y acortamiento del intervalo generacional mediante la superestimulación y producción embrionaria de animales prepúberes (Smith, 1988; Bondoc et al., 1989; Christensen, 1991). Esta estrategia se denomina programa MOET (Multiple Ovulation and Embryo Transfer, por sus siglas en inglés) (Smith, 1988, Ruane y Smith, 1989). Varios países del mundo están desarrollando su núcleo genético tempranamente utilizando vaquillonas (MOET juvenil o prepúber), y los machos son seleccionados para la próxima generación de toros que se usaran en IA (Ruane y Smith, 1989; Teepker y Keller, 1989). De esta manera se puede potenciamente duplicar la ganancia genética, y luego difundir esta mejora al resto del rodeo mediante aplicación de técnicas más económicas como la IA (Teepker y Keller, 1989; Lohuis, 1995).

El intercambio de genética bovina existe históricamente desde la domesticación del ganado, dándose entre poblaciones vecinas, y también como botines de guerra y ocupaciones. La comercialización de animales vivos ha sido afectada tradicionalmente por numerosas dificultades y vaivenes económicos asociados a elevados costos del trasporte o por limitantes comerciales o barreras sanitarias tales como BSE, fiebre aftosa, etc. La llegada de nuevas tecnologías como IA y TE permitió, en parte, mitigar la incidencia de dichos problemas. En la actualidad, existen tres formas de comercializar genética animal: animales en pie (para el caso de este trabajo limitado a reproductores), semen y embriones congelados. (Etcheverry, M. 2009).

La situación de la Argentina respecto a la producción y exportación de embriones.

Según la IETS (*International Embryo Trasfer Society*), en el año 2010 se transfirieron 24.263 embriones bovinos. Para el año 2011, el número de trasferencias no varió, siendo este de 24.097 trasferencias logradas de 6.011 lavajes. (Comité de Recuperación de Datos de la IETS, 2012). En el año 2012 se observó un récord en la obtención de

embriones, 30.546; de los cuales se trasfirieron 9.726 frescos; 13.563 congelados; 242 embriones importados y 1.957 exportados. (Comité de Recuperación de Datos de la IETS, 2013).

Para los siguientes años continuó observándose una tendencia en alza, aunque menor que en el 2012. En el año 2013 hubo denunciadas 3663 colectas y se obtuvieron 18835 embriones. Se trasfirieron en fresco 5.945; congelados 8.483 y se exportaron 2.946. (Comité de Recuperación de Datos de la IETS, 2014). En el 2014 hubo 4.182 colectas denunciadas con 22.050 embriones logrados, los cuales se trasfirieron 6.792 frescos; 9.668 congelados; 470 importados y 2.759 fueron exportados. (Comité de Recuperación de Datos de la IETS, 2015).

El año 2015 tuvo la particularidad que Argentina fue el único exportador de embriones in-vivo de Sudamérica. Se denunciaron 4.330 lavajes, obteniéndose 24.566 embriones, transfiriéndose 7.758 frescos, 11.888 congelados, 371 importados y se exportaron 3.262. (Comité de Recuperación de Datos de la IETS, 2016). El 2016 se sumó, a las estadísticas de exportaciones de Sudamérica de la IETS, Panamá, con 26 embriones exportados. Argentina superó ese número ampliamente, aunque fue considerablemente menor a años anteriores, se exportaron 1.358 embriones de los 14.652 denunciados en las 2.536 colectas. (Comité de Recuperación de Datos de la IETS, 2017).

Como se ha indicado, una de las estrategias biotecnológicas más importantes en producción bovina es la transferencia de embriones. Esta permite, no sólo multiplicar la descendencia de las hembras acortando simultáneamente el intervalo generacional, sino que además facilita diferentes actividades de mejoramiento como la evaluación de progenie y la comparación entre grupos de animales para tratar de alcanzar elevados estándares de calidad y eficiencia (Hafez y Hafez, 2002).

La variabilidad en la respuesta al tratamiento de superovulación para la recuperación embrionaria en los programas de MOET implica una desventaja importante para el uso económico de la transferencia de embriones y limita claramente su uso en la cría de animales. A pesar de los considerables esfuerzos, todavía no ha sido posible reducir esta variabilidad drásticamente. La variabilidad extrema en la respuesta superestimulatoria sigue siendo un enigma y una limitación importante en la implementación rentable y eficiente de la tecnología embrionaria en el ganado (Singh, J. et al. 2004). Hasta la fecha, sólo se ha explicado un 40% de los factores responsables de dicha variabilidad, entre otros se puede mencionar:

Fuente de variabilidad en respuesta a MOET	%
Establecimiento/manejo	65
Intervalo entre parto-lavaje	7.6
Inicio de época de calor	5
Cantidad de lavajes	2.9
Mes de tratamiento	2.5
Edad de donante	2.1
Año	1.6

Fuente: Hahn, J. et al. 1992.

Las principales desventajas de la superovulación y la transferencia de embriones incluyen el costo y el alto grado de variabilidad en el número de embriones producidos por vacas individuales. En este sentido, la capacidad de conocer y predecir el potencial superovulatorio de una vaca donante determinada podría influir en la decisión del criador de incluirla o no en un programa de superovulación (Jaton, C. et al. 2016). La existencia de una prueba o indicador estadístico que permita hacer una predicción con adecuado grado de confianza sobre aquellas donantes individuales capaces de producir grandes cantidades de embriones transferibles u ovocitos fertilizables representaría un gran avance en la tecnología MOET y representaría para el criador otra herramienta a la hora de seleccionar donantes para su ganado (Newberry, H. 2016). En este sentido, es de importancia destacar que los productores suelen estar interesados en lavar hembras superiores para mejorar más rápidamente sus rodeos. Sería interesante para ellos conocer el potencial superovulatorio de una vaca, futura donante, antes de la compra (Jaton, C. et al. 2016).

Motivación/Justificación del presente trabajo.

En los últimos años, se ha considerado que las principales razones de aplicación de la técnica de transferencia de embriones en las cabañas nacionales han sido mejorar la calidad genética de la cabaña utilizando donantes de alta producción, obtener crías de hembras seniles de alta calidad que no son capaces de llevar a término una preñez y multiplicar familias maternas superiores (Lloveras Lambrechts, comunicación personal 2018). En general, la cantidad de embriones transferibles y embriones recolectados por lavado influye considerablemente en los beneficios de la técnica, siendo estos mayores, amortizamos los costos sobre más logros (Nicholas y Smith, 1983; Keller y Teepker, 1990; Villanueva y Simm, 1994; Terawaki y Asada, 2001). La superovulación nos permite una selección acelerada al aumentar las tasas reproductivas de hembras superiores puntuales. Una posible consecuencia posible del uso de esta técnica reproductiva en la selección intensiva y en los programas de mejoramiento es la posibilidad de que el éxito de la superovulación sea un rasgo hereditario. (Tonhati, H. et al. 1999).

Varios estudios (Hasler et al., 1983; Donaldson, 1984; Isogai, 1992) indicaron que las respuestas superovulatorias están influenciadas por factores ambientales y físicos, como diferencias entre las diversas fuentes de hormonas, la condición de la donante, la temporada, el clima, entre otros. Un factor menos estudiado como fuente de variabilidad en la respuesta superovulatoria es la genética misma. La pregunta de interés para el presente Trabajo Final de Graduación es si la respuesta superovulatoria es heredable, y por lo tanto predecible. En otras palabras, la pregunta a responder es si aquellas hijas de buenas donantes (en términos de respuesta al programa MOET y embriones recuperados) podrían, a su vez, ser buenas productoras de embriones.

C- OBJETIVOS

Este trabajo tuvo como objetivo analizar años consecutivos de tratamientos superovulatorios y recuperación embrionaria en un plantel de vacas Brangus y evaluar si existió un efecto de la familia materna sobre la respuesta al tratamiento.

Objetivos Específicos

- Analizar, para un establecimiento puntual, el impacto en las ventas según el método de concepción de los productos: inseminación artificial (IA), transplante embrionario (TE) o servicio natural (SN).
- 2. Definir y caracterizar las familias maternas en el rodeo estudiado.
- 3. Realizar un análisis exploratorio de los datos generados.
- 4. Ajustar un modelo estadístico a los datos de colecta y evaluar el impacto de las familias maternas.

<u>Hipótesis</u>

La progenie de vacas fundadoras de alta producción (en términos de cantidad de embriones recuperados) podría, a su vez, exhibir una alta respuesta a los programas de MOET y producción embrionaria.

D- MATERIALES Y MÉTODOS

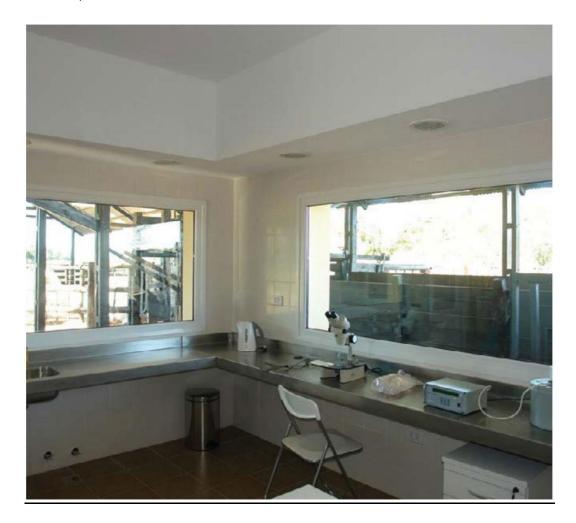
Descripción del establecimiento

Los trabajos fueron realizados y su información colectada entre los años 2002 y 2015, en el Centro de Transferencia de Embriones El Bagual (www.campcooley.com.ar), en la localidad de Colonia Presidente Yrigoyen, sobre la ruta provincial N°1, provincia de Formosa. Durante todo el periodo de análisis se trabajó con el equipo de transferencistas de embriones de Biotecna S.A. (www.biotecnaweb.com.ar). Los animales analizados en este estudio son de la raza Brangus, ya que en el mismo campo donde está presente el Centro de Trasferencia de Embriones El Bagual (CTEEB), hay dos cabañas de reproductores: "Camp Cooley-El Bagual" y "Cabaña Alparamis", ambas de la firma Alparamis S.A.

El Centro de Transferencia de Embriones El Bagual (CTEEB) está ubicado dentro de la Estancia El Bagual, en la provincia de Formosa, departamento Laishi, localidad de Presidente Yrigoyen (COORDENADAS GEOGRAFICAS Latitud Sur 26° 11′ 14.11″ Longitud Oeste 58° 51′ 18″), con la siguiente denominación e información:

- El CTEEB ocupa 5 (cinco) hectáreas en instalaciones de trabajo y 500 (quinientas) hectáreas para el pastaje de las hembras donantes.
- Cuenta con embarcadero, lazareto, enfermería, piquetes de sincronización, corrales, manga y laboratorio.
- La distribución de los toriles fue basada en las especificaciones del libro Applied Animal Behaviour Science, de la Dra. Temple Grandin, Departamento de Ciencia Animal, Colorado State University, Fort Collins, Colorado, EE.UU.
- Tiene un laboratorio equipado bajo las normas de la International Embryo Technology Society (IETS).

El CTEEB a su vez es el único Centro de Trasferencia de Embriones (CTE) de la provincia de Formosa habilitado para la exportación de embriones bovinos al MERCOSUR, Venezuela, Colombia y Comunidad Económica Europea. El laboratorio, inaugurado el 1 de mayo del 2007, en ocasión de la gira internacional programada por el Congreso Mundial Brangus, nace a partir de la demanda potencial de embriones Brangus argentinos para Latinoamérica. Si bien desde el año 1998 se trabajaba en la producción y transferencia de embriones, los mismos eran producidos por un laboratorio móvil. Cuando se comenzaron a concretar las ventas y exportaciones de embriones, fue necesario contar con una estructura habilitada para tal fin.


Fotos del Establecimiento

Entrada al centro de trasferencias.

Vista Este, entrada a la sala de reuniones.

Vista parcial del laboratorio, ventanal paño fijo hacia la manga.

13

Zona sucia.

Burladeros, bretes y manga.

Colecta de datos

Cualquier hembra que ingresa al programa de transferencia debe regirse por los siguientes criterios de inclusión:

- Estado sanitario.
- Características genéticas de importancia económica.
- Sin enfermedades de trasmisión genética.
- DEP's. (Diferencia Esperada en Progenie).
- Pedigrí. Descendencia.

En el Anexo de este trabajo se detallan los protocolos de estimulación (superovulación) y recuperación sugeridos por la IETS (Manual de la Sociedad Internacional de Transferencia de Embriones, Sección IV, Manipulación de embriones recolectados para la transferencia comercial, Capitulo 2.). Los datos generados (ver Anexo) se vuelcan en planillas de cálculo.

Para esta investigación, se utilizaron 4 columnas:

Parámetros considerados:

- → RP DONANTE
- → FAMILIA MATERNA
- → ESTRUCTURAS RECUPERADAS
- → FECHA DE LAVAJE

Descripción de los datos para el presente análisis

Para este estudio se contó con los datos de 217 donantes, con 1484 lavajes de los cuales se colectaron 11311 estructuras, entre 2002 y 2015. El 59% de los lavajes fueron efectuados entre los meses de julio, agosto y septiembre ya que coinciden con la época de mejor pastura en la zona y por tanto el estado corporal y nutricional de las hembras acompañaban a la respuesta al tratamiento.

Para el análisis estadístico, la variable respuesta es el número de cuerpos colectados por lavaje y por vaca. Por su parte, las variables explicativas fueron:

1. Familia materna:

La "familia materna" es una categoría de pertenencia al linaje materno de una vaca fundadora. Cada vaca que ingresa por primera vez a la rutina de lavaje de embriones y transferencia embrionaria, sin tener registros de que alguna antecesora que haya estado bajo la misma actividad es considerada una madre fundadora de una determinada familia materna. La identificación de la misma se regirá bajo su RP (Registro Particular) y todas sus descendientes llevaran como "Apellido" el RP de la vaca fundadora. En total, se identificaron 26 familias maternas.

2. Madres:

La respuesta a un tratamiento superovulatorio de una vaca en particular es una interacción entre hormonas, estado corporal, estado nutricional, frecuencia de tratamientos, etc. En consecuencia, es importante identificar la variación de la respuesta de un mismo individuo a diferentes tratamientos superovulatorios. Para este fin, se incluyó en el modelo estadístico el efecto del individuo (o "madre") como un factor aleatorio.

3. Fecha de lavaje:

La fecha en la que se realizó el tratamiento constituye un efecto sistemático que nuclea efectos de ambiente (temperatura, humedad relativa, etc.), manejo, operador y época del año. A los efectos de definir la variable que mejor modele este efecto se probaron diferentes variables temporales: año, semestre y trimestre. El estadístico empleado para evaluarlas fue el chi-cuadrado ajustado para modelos lineales generalizados sugerido por McKinley y Mills (1985). Se consiguió la mejor explicación de la variación de conteos usando el trimestre (41 en total).

Análisis Estadístico

El análisis estadístico de los datos presenta dos diferentes desafíos respecto a un análisis estadístico tradicional (por ejemplo, un ANOVA o regresión):

- 1. La variable respuesta es un conteo
- 2. La vaca debe ser considerada como un efecto aleatorio.

En particular, una pregunta crucial para este análisis es si la variabilidad individual es mayor a la variabilidad atribuida a las familias maternas. Para abordar estos desafíos se ajustó un modelo lineal generalizado Poisson siguiendo el procedimiento de Tempelman y Gianola (1996), quienes desarrollaron el método y lo aplicaron para analizar el número de IA hasta la concepción en vaquillonas lecheras de primer servicio. El análisis se llevó a cabo utilizando el procedimiento GLIMMIX del programa SAS (R. J. C. Cantet, 2018, comunicación personal).

Descripción del modelo estadístico

En primer lugar, se asume que el número de estructuras colectadas en el i-ésimo lavaje (Y_i) , condicional a la vaca, la familia materna a la que pertenece y al trimestre del tratamiento (θ) , sigue una distribución Poisson con parámetro λ_i :

$$Pr(Y_i = y_i | \theta) = \frac{e^{-\lambda_i} \lambda^{y_i}}{y_i}, i = 1,K, 1484, Y_i = 0,1,K$$

El parámetro λ_i es el valor esperado de cualquier conteo y se relaciona con las variables explicativas (madre, familia materna y trimestre) a través de la denominada función de ligadura, que en este caso es logarítmica. Es decir:

$$ln(\lambda_i) = x^T \theta$$

Esta notación es estándar en modelos lineales generalizados (e.g. Myers, 1990). En este caso en particular, el trimestre se trató como un efecto fijo, mientras que las familias maternas y el efecto de la vaca, anidado en su familia materna, se trataron como aleatorias y, en consecuencia, contribuyeron cada una con una fuente de variabilidad. El cociente entre ambas fuentes de variación se utilizó para determinar si hubo un efecto significativo de la familia materna por sobre la variabilidad individual.

E- RESULTADOS

Análisis Exploratorio

En la Figura 1 se puede apreciar la distribución de las medianas, y los rangos del efecto del tratamiento superovulatorio entre diferentes familias. Observamos, por ejemplo, que de la familia No. 30 se obtuvieron 2095 cuerpos en 257 lavajes (mediana= 6 cuerpos colectados por lavaje). Por otro lado, de la familia No. 55 se recuperaron un total de 497 estructuras en un total de 41 lavajes (mediana=8). Las dos familias están integradas por un número muy diferente de individuos, siendo para la primera 39 y la segunda 7. Esto indica que las distintas familias presentan respuestas diferentes en término de la cantidad de estructuras recuperadas, indicando que podría existir un alto componente de variabilidad individual dentro de las mismas.

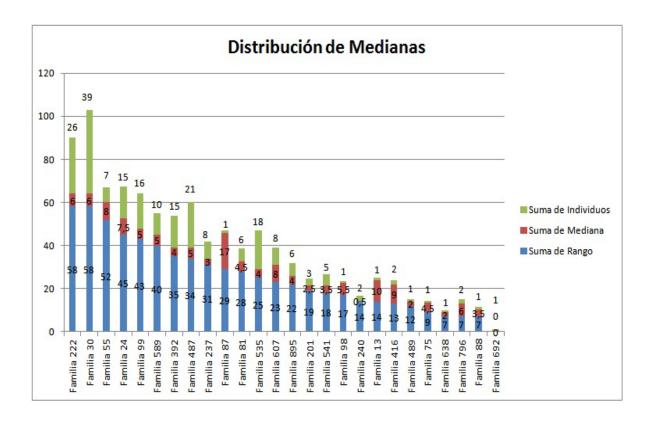


Figura 2. Cuerpos (embriones y ovocitos no fecundados) colectados.

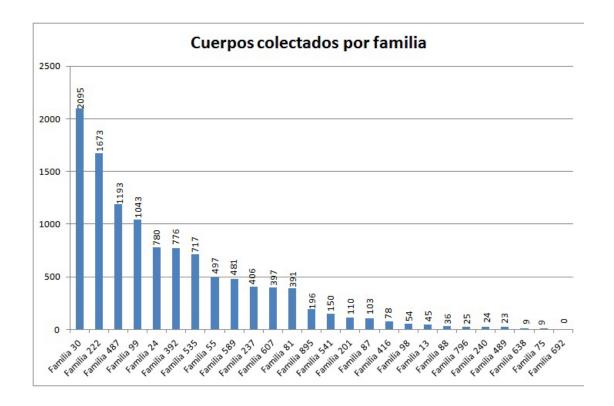
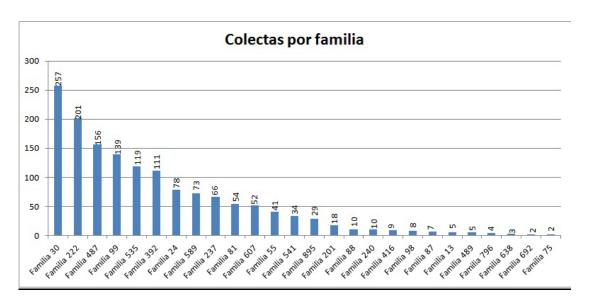



Figura 3. Número de colectas por familia

La Tabla 1 corresponde a datos brindados por Estancia El Bagual, indicando las ventas promedio en dólares desde el año 2014 al 2018 (actualizados al momento de las ventas,

dólar Banco Nación) de los 3 métodos de concepción utilizados en el establecimiento, AI (inseminación artificial), ET (trasferencia embrionaria) y NS (servicio natural), por sus siglas en inglés.

Tabla Nº1. Promedio de ventas de los tres métodos de concepción.

Periodo 2014-2018

Promedio de Precio de venta en U\$D	Al	ET	NS	Total general
Toro	1897	2441	1879	2084
Vaca	845	1550	709	842
Novillo	749	717	781	774
Total general	1054	1827	834	1005

Fuente: Estancia El Bagual.

Como se puede observar, el valor de los reproductores de TE se encuentra por encima del promedio de ventas de las otras técnicas de reproducción, ya que, al poder elegir el cruzamiento tanto de padre como madre, seleccionamos los individuos que creemos tengan los caracteres deseados para un fin determinado, con lo cual se remarca la diferencia en el valor agregado de los animales obtenidos bajo esta técnica de reproducción. (Figura 4).

Figura 4. Promedio de ventas de los tres métodos de concepción.

Periodo 2014-2018.

Fuente: Estancia El Bagual.

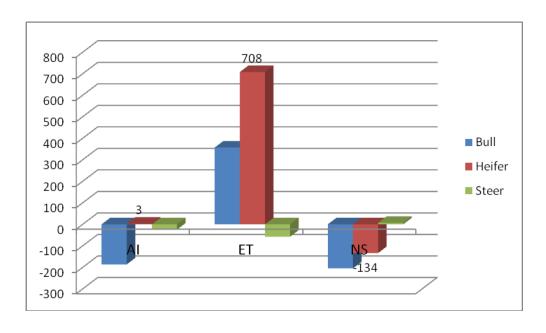

En la Tabla 2 y Figura 5, respectivamente, se puede observar la diferencia en dólares con respecto al promedio correspondiente a cada técnica y a cada categoría.

Tabla 2. Diferencia con respecto al promedio de ventas. Periodo 2014-2018

Diferencia con respecto al promedio	Al	ET	NS
Toro	-186	357	-205
Vaca	3	708	-134
Novillo	-25	-57	7
Total	49	822	-171

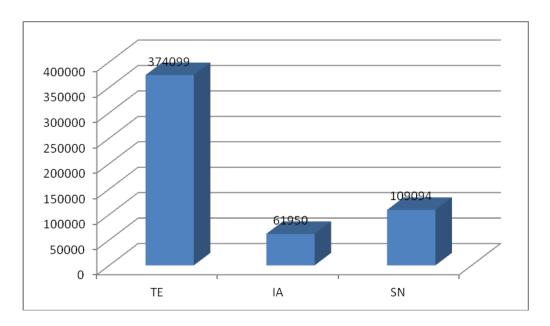
Fuente: Estancia El Bagual.

Figura 5. Diferencia con respecto al promedio de ventas. Periodo 2014-2018

Fuente: Estancia El Bagual. (Bull=toro, Heifer=vaquillona, Steer=novillo).

En la Tabla 3, se tomaron las 10 vacas líderes en venta de cada técnica de Estancia El Bagual

Tabla 3. Ranking de ventas según técnica de reproducción. Periodo 2014-2018


Tipo de		Suma ventas en
servicio	RP	U\$D
TE	CC D 1022	57203
TE	CC D 1118	52628
TE	CC D 944	43597
TE	C 5538	40464
TE	CC D 714	34696
TE	CC D 2212	26656
TE	CL P 130	26550
TE	CC D 2438	25211
TE	C 6018	23361
TE	CC D 772	21875
TE	CC D 1468	21858
Total		374099

IA	C 5600	7792
IA	14100	7263
IA	C 7128	7097
IA	P 5656	6035
IA	C 8016	5934
IA	P 23894	5714
IA	C 6266	5634
IA	C 16676	5595
IA	P 7734	5495
IA	P 10360	5391
Total		61950
SN	13088	17039
SN	C 6612r	15186
SN	10894	12093
SN	14043	11310
SN	B 11445	9873
SN	P 3018	9630
SN	11932	9135
SN	10867	8751
SN	ED 872	8104
SN	B 9900	7972
Total		109094

Fuente: Estancia El Bagual.

La Figura 6 demuestra la importancia económica que la trasferencia embrionaria toma al momento de la comercialización y el valor de poder tener conocimiento de los animales superiores en la producción embrionaria.

Figura 6. Total de ventas de las 10 vacas líderes en sus respectivas técnicas de reproducción

Fuente: Estancia El Bagual.

Resultados del análisis estadístico.

En el Anexo se presenta la salida completa del programa SAS. En la Tabla 4, se presentan los estimadores de las fuentes de variabilidad atribuidas a la familia materna y a las madres dentro de familia.

Tabla 4. Estimadores de componentes de varianza.

Parámetro	Estimador	Error estándar
Vaca (FMAT)¹	0,394	0,048
FMAT ²	0,014	0,022

¹Vacas dentro de una misma familia materna.

Dispersión entre vacas de una misma familia= Vaca (FMAT) / FMAT = 28

El cociente entre ambas fuentes de variabilidad indica que la dispersión entre vacas dentro de una misma familia es 28 veces más grande que la variabilidad entre familias y, en consecuencia, estos datos no permiten distinguir efectos significativos entre familias.

²Familias maternas.

F- DISCUSIÓN

En 2016, un estudio desarrollado por Newberry demostró que la capacidad de producción de embriones de las vacas donantes es un rasgo repetible y probablemente hereditario; relacionándose en este trabajo en la respuesta ovárica con los ovocitos recuperados para fecundación in vitro y no con embriones in vivo derivados de un lavaje. En contraste a estos resultados, los datos analizados en el presente TFG no permiten responder la hipótesis de investigación afirmativamente, dado que la variabilidad encontrada entre las vacas dentro de una misma familia materna superó ampliamente la variabilidad intra-familia. Los resultados del presente trabajo coinciden con aquellos reportados por otros autores (Singh, J. et al. 2004) en él se concluye que la respuesta superovulatoria no es un rasgo hereditario, determinándose que la respuesta futura no puede predecirse mediante una respuesta previa y que los factores "ambientales" desempeñan un papel importante en la variabilidad de la respuesta.

En base a los resultados obtenidos y a la literatura revisada para el presente TFG, un aspecto que sería de interés analizar es la heredabilidad de los niveles de hormona antimülleriana (AMH, por su abreviación en inglés, Anti-müllerian hormone) plasmática y su correlación con la respuesta a la superestimulación ovárica y recuperación embrionaria. Muy recientemente, la atención se ha centrado en la AMH dado que los niveles de esta hormona proporcionan, en algunas especies, información sobre el conjunto folicular ovárico y la capacidad de respuesta folicular a los tratamientos superovulatorios. En la especie bovina, se ha demostrado que la AMH es un biomarcador endocrino confiable en la población de folículos sanos en ovarios bovinos (Anduaga I, et al, 2015). Estos estudios sugieren que la AMH puede ser de valor pronóstico, incluso cuando el estado fisiológico de los individuos que suministran muestras de sangre no se conoce completamente (Newberry, H. 2016).

Adicionalmente, es importante mencionar otro trabajo ya realizado con datos de las mismas cabañas utilizadas para generar los datos del presente TFG, titulado "Efecto de los valores de hormona antimülleriana y el número de ovocitos en vacas Brangus" por Anduaga, Lambrechts, Genesio, Grunwaldt, Rautenberg, Vautier, y Avendaño (2015) presentada en el "XI SIMPOSIO INTERNACIONAL DE REPRODUCCION ANIMAL, IRAC 2015 ". El dicho estudio se determinó que la AMH podría ser utilizada como herramienta para diagnosticar y evaluar la respuesta ovárica (RO), estimar el potencial reproductivo y dar indicios sobre el estado de fertilidad de las vacas Brangus ya que su

valor se vio correlacionado positivamente con el número de ovocitos obtenidos durante una aspiración folicular.

Hay, sin embargo, algunos aspectos que vale la pena considerar a la hora de encarar esta pregunta desde otra perspectiva. En primer lugar, los datos de campo, los cuales no son generados como parte de un experimento controlado, están generalmente sujetos a alta tasa de señal/ruido. Por ejemplo, en estos datos hay una enorme dispersión del tamaño de familia y no es claro como esto puede impactar en los resultados.

En segundo lugar, cabe preguntarse cuál es el rol de los toros padres en la respuesta al tratamiento superovulatorio. Según el estudio de Hannah Newberry "Use of antimullerian hormone to select for fertility in beef heifers" (2016), el efecto del padre de la vaca donadora en la producción de embriones fue significativo para el número de embriones recolectados, así como para los embriones transferibles. Podría ser motivo inicial para una segunda investigación.

Finalmente, la definición de familias maternas aquí ensayada no tiene en cuenta que, si hay efecto genético transmisible, el mismo está también determinado por el linaje paterno. Abordar el problema de esta perspectiva requeriría levantar toda la genealogía de las vacas cuyos lavajes fueron evaluados. Quizás la pregunta amerita el esfuerzo para una futura investigación.

G- CONCLUSIÓN

El cociente entre ambas fuentes de variabilidad indica que la dispersión entre vacas dentro de una misma familia es 28 veces más grande que la variabilidad entre familias y, en consecuencia, estos datos no permiten distinguir efectos significativos entre familias. La enorme variabilidad de la respuesta individual de cada vaca al tratamiento superovulatorio no permitió identificar un efecto significativo entre las familias maternas.

H- AGRADECIMIENTOS

A todo el staff de Estancia El Bagual y Estancia Fortín Corrales, Pablo Götz, Pablo Lloveras Lambrechts, Joaquin Tillous y Matías Pace.

A los Ingenieros Rodolfo "Fito" Cantet y Sebastián Munilla por su colaboración en el análisis estadístico y armado del presente trabajo, su ayuda fue vital para poder terminar.

Se agradece también a la empresa SAS por permitir la utilización del programa por convenio en la Facultad de Agronomía, Universidad de Buenos Aires, Argentina.

A mi familia por el apoyo de siempre. Pablo, Mariana, Juan Martin y Maureen.

A la Lic. en Nutrición María José Suarez por ayudarme incansablemente a lo largo de todo este camino.

A quienes no están. TL, JRM, JFL, TPL.

A mi tutora que me retomo el trabajo después de mucho tiempo.

Al Señor Dios Todo Poderoso.

I- ANEXOS

<u>Datos, ubicación, instrumentación y estadísticas del Centro de Transferencias de</u> <u>Embriones El Bagual.</u>

- Habilitación LE/UT/BE-71
- RENSPA 08.003.0.00011/01
- CUIG QI132
- CUIT 30-70199714-6
- Ruta Provincial Numero 1, KM 68, Presidente Yrigoyen, Formosa, Argentina
- Teléfono +54-9-3704 674554
- Mail: plambrechts@campcooley.com.ar

Instrumentación.

El CTEEB cuenta con:

- a) Lupa Nikon 10 x 20.
- b) Platina Térmica Sistel.
- c) Congeladora Sistel.
- d) Tubuladora AGTECH.
- e) Sondas FOLLEY 30 cc AGTECH.
- f) Filtros ECOM.
- g) Filtros 0,22 mc CORNING.
- h) Placas de Petri 10 X 30 CORNING.
- i) Pipetas automáticas 10-20 ml.
- j) Tips 10 ml CORNING.
- k) Microplaca de 24 Pozos CORNING
- I) Pajuelas 0,25 MINITUBE.
- m) Lacradores de pajuelas.
- n) Gobelets.
- o) MEDIOS: PBS Serindippia, Holding, Glicerol 10 %, Tripsina.
- p) Jeringas 60 cc.
- q) Jeringas 10 cc.
- r) Lidocaina.
- s) Extensores.
- t) Dilatadores.

Familias Maternas Bovinas y su efecto sobre la capacidad superovulatoria en un programa de transferencia embrionaria.

Estadísticas:

Las estadísticas anuales de producción del Centro de Transferencias de Embriones El Bagual son las siguientes:

AÑO	DATOS	TOTAL
2007	Frescos	208
	Congelados	732
	Colectados	1661
2008	Frescos	319
	Congelados	992
	Colectados	2526
2009	Frescos	134
	Congelados	768
	Colectados	1811
2010	Frescos	126
	Congelados	616
	Colectados	1166
2011	Frescos	392
	Congelados	609
	Colectados	1601

2012	Frescos	664
	Congelados	352
	Colectados	1850
2013	Frescos	967
	Congelados	301
	Colectados	1993
2014	Frescos	766
	Congelados	452
	Colectados	1335
2015	Frescos	355
	Congelados	329
	Colectados	865
2016	Frescos	764
	Congelados	913
	Colectados	1677
2017	Frescos	1099
	Congelados	1317
	Colectados	2416
TOTAL EMBRIONES FRESCOS	Frescos	5794
TOTAL EMBRIONES		
CONGELADOS	Congelados	7381
TOTAL EMBRIONES		
COLECTADOS	Colectados	18901

Datos de la planilla de Excel.

- RP Donante
- Familia Materna
- Toro
- Fecha Lavaje
- Colectados
- Congelados
- Degenerados
- Sin Fertilizar
- Transferidos
- Nombre Donante
- Fecha Nacimiento Donante
- HBA Donante
- Color
- ADN Donante
- % Angus
- % Cebu
- EPD Reporting Period
- Birth Weight EPD
- Birth Weight Acc
- Weaning Weight EPD
- Weaning Weight Acc
- Yearling Weight EPD
- Yearling Weight Acc
- Milk EPD
- Milk Acc
- Total Maternal EPD
- Total Maternal Acc
- Scrotal Circumference EPD
- Scrotal Circumference Acc
- Padre.Ear Tag
- Padre.Registration Number
- Padre.Name

- Abuelo PAT.Ear Tag
- Abuelo PAT.Registration Number
- Abuelo PAT.Name
- Abuela PAT.Ear Tag
- Abuela PAT.Registration Number
- Abuela PAT.Name
- Madre.Ear Tag
- Madre.Registration Number
- Madre.Name
- Abuelo MAT.Ear Tag
- Abuelo MAT.Registration Number
- Abuelo MAT.Name
- Abuela MAT.Ear Tag
- Abuela MAT.Registration Number
- Abuela MAT.Name

Protocolo de Estimulación.

Aplicar dispositivo el XX/XX/XXXX + 2 cc de estradiol + 5 cc de progesterona GRUPO....

PLANILLA DE SUPEROVULACION

FOLLTROPIN 10cc

Donantes N:

FECHA	HORA	HORMONA	DOSIS
Domingo	07.00	Folltropin	2 cc IM
	17.00	Folltropin	2 cc IM
Lunes	07.00	Folltropin	1.5 cc IM
	17.00	Folltropin	1.5 cc IM
Martes	07.00	Folltropin	1 cc IM
	07.00	BIOPROST	2 cc IM
	17.00	RETIRAR DISP.	
	17.00	Folltropin	
			1 cc IM
Miércoles	07.00	Folltropin	0.5 cc IM
	17.00	Folltropin	0.5 cc IM
Jueves			
	07.00	CELO DE SUPEROVULACION	
		(12 horas antes o después)	

Lavaje... XX/XX/XXXX

	IES: Inseminar a las 12 y 24 ligiene, y el lugar de depósit	horas de iniciado el celo. Cuidar la descongelación o.
DONANTE:	TORO:	

Protocolo de recolección.

Los embriones y ovocitos se obtienen en un brete contiguo al laboratorio, y de uso exclusivo para las donantes que aprobaron los exámenes sanitarios. Para la colecta de embriones se emplea material descartable, o lavado y esterilizado en nuestro laboratorio en autoclave o estufas.

La colecta de embriones se realiza por el método cerrado para impedir contaminaciones del ambiente. El contenido se recoge en filtro estéril que es entregado al técnico de laboratorio que procede a la clasificación, evaluación, acondicionamiento para la transferencia, y/o congelación siguiendo las normativas IETS en cuanto a la identificación y procedimientos sanitarios.

Las transferencias de embriones se realizan con vainas plásticas descartables para impedir contaminaciones o diseminación de patógenos.

Para la colecta de ovocitos se trabaja con una guía de aspiración que lleva agujas y líneas de aspiración descartables. El material se colecta en tubos Corning de 50 cc descartables y es llevado al laboratorio en un transportador portátil que mantiene la temperatura a 37 C. En el laboratorio se procede a la búsqueda y clasificación de los ovocitos, que se acondicionan para llevar al laboratorio fijo en equipos transportadores especiales para dicho efecto. (Vautier, Comunicación personal 2016).

Informe estadístico del programa SAS

Sistema SAS 15:09 Thursday, December 4, 2014 21

Procedimiento GLIMMIX

Información del modelo

Conjunto de datos WORK.UNO
Variable de respuesta Y
Distribución de respuesta Poisson
Función de vínculo Log
Función de varianza Predeterminado
Matriz de varianza No bloqueada
Técnica de estimación Residual PL
Método de grados de libertad Contención

Información de nivel de clase

Clase	Niveles	Valores
trim	41	3331 3341 3351 3352 3353 3354 3362 3363 3364 3371 3372 3373 3374 3381 3382 3383 3384 3391 3392 3393 3394 33101 33102 33104 33111 33112 33114 33121 33122 33123 33124 33131 33132 33133 33134 33141 33142 33143 33144 33151 33152

Sistema SAS 15:09 Thursday, December 4, 2014 22

Procedimiento GLIMMIX

Información de nivel de clase

Clase	Niveles	Valores
Clase	Niveles 217	Valores 442 444 4432 4434 4480 4484 44100 44116 44128 44146 44148 44154 44198 44224 44226 44232 44250 44264 44278 44286 44298 44328 44336 44368 44382 44386 44394 44408 44410 44418 44438 44444 44450 44462 44478 44480 44482 44488 44494 44518 44520 44524 44526 44558 44560 44568 44576 44600 44638 44662 44690 44702 44706 44712 44714 44754 44762 44764 44768 44770 44776 44778 44788 44792 44798 44882 44882 44892 44906 44912 44918 44922 44924 44934 44944 44952 44958 44960 44986 44909 44992 44994 44996 441022 441032 441034 441036 441038 441042 441046 441112 441118 441122 441132 441142 441174 441206 441208 441209 441316 441324 441330 441388 441396 441398 441400 441402 441412 441416 441424 441434 441436 441448 441454 441456 44168 441470 441474 441492 441512 441524 441526 441530 441534 441562 441600 441602 441610 441620 441632 441664 441666 441680 441700 441712 441754 441788 441806 441808 441918 44204 442014 442070 442112 442120 442124 442196 442212 442312 442316 442318 442320 442322 442330 442338 442404 442472 442476 442484 442494 442496 442504 442516 442518 442520 442530 442532 442534 442536 442538
		442542 442546 442554 442564 442568 442570 442580 442586 442588 442592 442596 442598

Familias Maternas Bovinas y su efecto sobre la capacidad superovulatoria en un programa de transferencia embrionaria.

442602 442618 442654 442666 442676 442680 442682 442696 442746 442758 442770 442780 442834 442852 442854 443054 443058 443066 443068 443094 443150 443164 13 24 30 55 75 81 87 88 98 99 201 222 237 240 392 416 487 489 535 541 589 607 638 692 796

FLIA

26

Número de observaciones leídas 1484 Número de observaciones usadas 1484

Dimensiones

Parámetros de cov. G-side	2
Columnas en X	42
Columnas en Z	243
Asuntos (Bloques en V)	1
Obs máx por asunto	1484

41

Información de optimización

Técnica de optimización	Cuasi-Newton dual
Parámetros en optimización	2
Límites inferiores	2
Límites superiores	0
Efectos fijos	Perfilado
Empezar en	Datos

Historia de iteración

			Objetivo		Gradiente
Iteración	Reinicio	Subiteraciones	Función	Cambio	Máx
0	0	7	5482.402121	2.00000000	0.010713
1	0	7	7614.5600077	1.11863016	0.003823
2	0	4	8160.7624473	0.05557636	0.000295
3	0	3	8189.5924105	0.00065065	1.866E-6
4	0	3	8189.7431225	0.00001060	6.507E-8
5	0	1	8189.7438744	0.00000181	0.000111
6	0	1	8189.7438858	0.00000782	0.000387
7	0	1	8189.7438698	0.00000611	4.261E-6
8	0	0	8189.7438833	0.00000000	3.874E-6

Se ha satisfecho el criterio de convergencia (PCONV=1.11022E-8).

Estadísticos de ajuste

-2 Res Log Pseudo-Likelihood	8189.74
Chi-cuadrado generalizado	7518.54
Chi-cuadrado gener. / DF	5.21

Estimadores de parámetro de covarianza

Parm Cov	Estimador	Error estándar	
vaca(FLIA)	0.393	9 0.04821	
FLIA	0.0140	0.02176	,

Soluciones para efectos fijos

Efecto	trim	Estimador	Error estándar	DF	Valor t	Pr > t
Intercept	3331	0.5764	0.1026	0	5.62	
trim		1.7789	0.1141	1227	15.59	<.0001
trim	3341	1.8488	0.1069	1227	17.29	<.0001
trim	3351	1.7001	0.1245	1227	13.66	<.0001

Soluciones para efectos fijos

			Error			
Efecto	trim	Estimador	estándar	DF	Valor t	Pr > t
A 5	2252	1 7510	0 1174	4227	14.02	. 0001
trim	3352	1.7518	0.1174	1227	14.92	<.0001
trim	3353	1.8603	0.1145	1227	16.24	<.0001
trim	3354	1.8544	0.1210	1227	15.32	<.0001
trim	3362	1.4795	0.1193	1227	12.40	<.0001
trim	3363	1.3065	0.1221	1227	10.70	<.0001
trim	3364	0.8700	0.1471	1227	5.92	<.0001
trim	3371	0.7123	0.1934	1227	3.68	0.0002
trim	3372	1.7206	0.1078	1227	15.96	<.0001
trim	3373	1.3589	0.1454	1227	9.34	<.0001
trim	3374	1.9488	0.1013	1227	19.24	<.0001
trim	3381	1.4021	0.1222	1227	11.47	<.0001
trim	3382	1.4412	0.1032	1227	13.96	<.0001
trim	3383	2.0561	0.1003	1227	20.49	<.0001
trim	3384	1.5137	0.1033	1227	14.66	<.0001
trim	3391	1.0744	0.1328	1227	8.09	<.0001
trim	3392	1.4123	0.1091	1227	12.95	<.0001
trim	3393	1.8004	0.1266	1227	14.22	<.0001
trim	3394	1.7200	0.09791	1227	17.57	<.0001
trim	33101	1.3626	0.1124	1227	12.13	<.0001
trim	33102	1.3766	0.1066	1227	12.91	<.0001
trim	33104	1.6847	0.1085	1227	15.53	<.0001
trim	33111	1.4299	0.1224	1227	11.69	<.0001
trim	33112	1.2714	0.1076	1227	11.81	<.0001
trim	33114	1.2721	0.1021	1227	12.46	<.0001
trim	33121	1.0297	0.1269	1227	8.11	<.0001
trim	33122	1.0165	0.1101	1227	9.23	<.0001
trim	33123	1.2519	0.1208	1227	10.36	<.0001
trim	33124	1.3412	0.1022	1227	13.12	<.0001
trim	33131	0.9377	0.1304	1227	7.19	<.0001
trim	33132	1.3433	0.09563	1227	14.05	<.0001
trim	33133	0.6089	0.1146	1227	5.31	<.0001
trim	33134	0.8714	0.09820	1227	8.87	<.0001
trim	33141	0.7012	0.1185	1227	5.92	<.0001
trim	33142	0.4260	0.1014	1227	4.20	<.0001
trim	33143	0.1299	0.1788	1227	0.73	0.4678
trim	33144	0.6649	0.1077	1227	6.17	<.0001
trim	33151	0.5161	0.1046	1227	4.93	<.0001
trim	33152	0	•	•	•	•

Tipo III Tests de efectos fijos

Efecto	Num DF	Den DF	F-Valor	Pr > F
trim	40	1227	31 91	< AAA1

				Std Err			
Efecto	vaca	FLIA	Estimador	Pred	DF	Valor t	Pr > t
vaca(FLIA)	44198	13	-0.1342	0.1961	1227	-0.68	0.4940
vaca(FLIA)	4484	24	-0.3126	0.1680	1227	-1.86	0.0631
vaca(FLIA)	44148	24	-0.1862	0.1428	1227	-1.30	0.1924
vaca(FLIA)	44944	24	0.2306	0.1360	1227	1.70	0.0903
vaca(FLIA)	441610	24	0.7399	0.1527	1227	4.85	<.0001
vaca(FLIA)	441620	24	-0.8733	0.3679	1227	-2.37	0.0178
vaca(FLIA)	441788	24	-0.7186	0.3371	1227	-2.13	0.0332
vaca(FLIA)	442476	24	1.2646	0.1414	1227	8.94	<.0001
vaca(FLIA)	442564	24	-0.2530	0.4081	1227	-0.62	0.5354
<pre>vaca(FLIA)</pre>	442568	24	-0.00090	0.4297	1227	-0.00	0.9983
<pre>vaca(FLIA)</pre>	442570	24	-0.04076	0.3064	1227	-0.13	0.8942
vaca(FLIA)	442586	24	1.2326	0.1439	1227	8.56	<.0001
vaca(FLIA)	442588	24	0.8769	0.1549	1227	5.66	<.0001
vaca(FLIA)	442592	24	1.1645	0.1686	1227	6.91	<.0001
vaca(FLIA)	442758	24	-0.5563	0.3859	1227	-1.44	0.1497
vaca(FLIA)	442770	24	0.1711	0.4107	1227	0.42	0.6770
vaca(FLIA)	444	30	-0.1792	0.1227	1227	-1.46	0.1444
vaca(FLIA)	44226	30	-0.02580	0.1747	1227	-0.15	0.8826
vaca(FLIA)	44336	30	-0.2654	0.1192	1227	-2.23	0.0262
vaca(FLIA)	44480	30	-0.07979	0.1269	1227	-0.63	0.5297
vaca(FLIA)	44494	30	-0.3636	0.1491	1227	-2.44	0.0149
vaca(FLIA)	44768	30	-0.1230	0.1254	1227	-0.98	0.3267
vaca(FLIA)	44770	30	-0.5203	0.1701	1227	-3.06	0.0023
vaca(FLIA)	44788	30	0.009948	0.1351	1227	0.07	0.9413
vaca(FLIA)	44792	30	0.04342	0.1482	1227	0.29	0.7696
vaca(FLIA)	44846	30	-0.3597	0.1957	1227	-1.84	0.0663
vaca(FLIA)	44866	30	-0.6566	0.2679	1227	-2.45	0.0144
vaca(FLIA)	44990	30	-0.3006	0.1626	1227	-1.85	0.0649
vaca(FLIA)	441022	30	0.7625	0.1039	1227	7.34	<.0001
vaca(FLIA)	441036	30	-0.5992	0.1484	1227	-4.04	<.0001
vaca(FLIA)	441042	30	0.5815	0.1232	1227	4.72	<.0001
vaca(FLIA)	441132	30	-0.06387	0.1795	1227	-0.36	0.7221
vaca(FLIA)	441416	30	0.7674	0.1254	1227	6.12	<.0001
vaca(FLIA)	441456	30	0.4465	0.1170	1227	3.82	0.0001
vaca(FLIA)	441470	30	-0.3063	0.2673	1227	-1.15	0.2521
vaca(FLIA)	441700	30	-0.7748	0.3712	1227	-2.09	0.0371
vaca(FLIA)	441712	30	-0.5832	0.2549	1227	-2.29	0.0223
vaca(FLIA)	441918	30	0.2454	0.1423	1227	1.72	0.0848
vaca(FLIA)	442004	30 30	0.4516	0.1533	1227	2.95	0.0033
vaca(FLIA)	442196	30 30	0.05071 -0.1144	0.3730 0.2431	1227 1227	0.14 -0.47	0.8919
vaca(FLIA) vaca(FLIA)	442316 442400	30 30	-0.1144 -0.6253	0.4938	1227	-0.47 -1.27	0.6380 0.2057
vaca(FLIA) vaca(FLIA)	442494	30	0.3438	0.2100	1227	1.64	0.1018
vaca(FLIA) vaca(FLIA)	442494	30	-0.3687	0.2100	1227	-1.70	0.0896
vaca(FLIA)	442496	30 30	1.5835	0.1388	1227	11.41	<.0001
vaca(FLIA)	442516	30 30	1.0190	0.1546	1227	6.59	<.0001
vaca(FLIA)	442528	30 30	-0.8950	0.1346	1227	-2.99	0.0028
vaca(FLIA) vaca(FLIA)	442556	30	-0.1468	0.4169	1227	-2.99 -0.35	0.7248
vaca(FLIA) vaca(FLIA)	442696	30	0.6090	0.3603	1227	1.69	0.0912
vaca(i LIA)	442030	20	0.0030	0.5005	1221	1.05	0.0312

				Std Err			
Efecto	vaca	FLIA	Estimador	Pred	DF	Valor t	Pr > t
vaca(FLIA)	442746	30	1.0694	0.2411	1227	4.43	<.0001
vaca(FLIA)	443054	30	0.3467	0.4315	1227	0.80	0.4219
vaca(FLIA)	443058	30	0.4065	0.3068	1227	1.32	0.1855
vaca(FLIA)	443066	30	-0.3054	0.4374	1227	-0.70	0.4851
vaca(FLIA)	443068	30	0.8526	0.3078	1227	2.77	0.0057
vaca(FLIA)	443150	30	0.4441	0.3527	1227	1.26	0.2083
vaca(FLIA)	44286	55	0.2368	0.1450	1227	1.63	0.1027
vaca(FLIA)	44764	55	0.05577	0.1513	1227	0.37	0.7125
vaca(FLIA)	44778	55	0.2229	0.2353	1227	0.95	0.3436
vaca(FLIA)	44832	55	0.2606	0.1836	1227	1.42	0.1561
vaca(FLIA)	44958	55	0.5496	0.1402	1227	3.92	<.0001
vaca(FLIA)	44986	55	-0.8639	0.4239	1227	-2.04	0.0418
vaca(FLIA)	442444	55	1.5486	0.2264	1227	6.84	<.0001
vaca(FLIA)	441492	75	-0.4390	0.3014	1227	-1.46	0.1454
vaca(FLIA)	4434	81	-0.1797	0.1432	1227	-1.26	0.2097
vaca(FLIA)	44278	81	0.01785	0.1460	1227	0.12	0.9027
vaca(FLIA)	44568	81	-0.01184	0.3097	1227	-0.04	0.9695
vaca(FLIA)	442014	81	-0.6977	0.3127	1227	-2.23	0.0258
vaca(FLIA)	442330	81	0.04067	0.2373	1227	0.17	0.8639
vaca(FLIA)	442422	81	0.7427	0.1692	1227	4.39	<.0001
vaca(FLIA)	442534	87	1.4651	0.1626	1227	9.01	<.0001
<pre>vaca(FLIA)</pre>	44224	88	-0.6079	0.2002	1227	-3.04	0.0024
<pre>vaca(FLIA)</pre>	44100	98	-0.2342	0.1828	1227	-1.28	0.2003
vaca(FLIA)	4480	99	-0.06917	0.1223	1227	-0.57	0.5719
vaca(FLIA)	44298	99	0.3219	0.1319	1227	2.44	0.0148
vaca(FLIA)	44712	99	-0.3865	0.2105	1227	-1.84	0.0665
vaca(FLIA)	44776	99	0.3436	0.1474	1227	2.33	0.0199
vaca(FLIA)	44912	99	-0.5968	0.1675	1227	-3.56	0.0004
vaca(FLIA)	44992	99	-1.6473	0.3469	1227	-4.75	<.0001
vaca(FLIA)	441112	99	-0.4459	0.1618	1227	-2.76	0.0059
vaca(FLIA)	441142	99	0.4620	0.1666	1227	2.77	0.0056
vaca(FLIA)	441436	99	0.09934	0.1687	1227	0.59	0.5560
vaca(FLIA)	441512	99	-0.3008	0.2201	1227	-1.37	0.1721
vaca(FLIA)	441562	99	0.1535	0.2589	1227	0.59	0.5534
vaca(FLIA)	442070	99	0.8409	0.1371	1227	6.14	<.0001
vaca(FLIA)	442124	99	-0.4269	0.3059	1227	-1.40	0.1632
vaca(FLIA)	442212	99	0.8903	0.1449	1227	6.14	<.0001
vaca(FLIA)	442426	99	0.06072	0.1956	1227	0.31	0.7563
vaca(FLIA)	442530	99	0.8508	0.2219	1227	3.83	0.0001
vaca(FLIA)	44714	201	0.3252	0.1790	1227	1.82	0.0694
vaca(FLIA)	441388	201	0.03746	0.1822	1227	0.21	0.8371
vaca(FLIA)	442322	201	-0.8898	0.3922	1227	-2.27	0.0234
vaca(FLIA)	442	222	-0.5971	0.1688	1227	-3.54	0.0004
vaca(FLIA)	4432	222	-0.04774	0.1235	1227	-0.39	0.6990
vaca(FLIA)	44232	222	0.08643	0.1187	1227	0.73	0.4666
vaca(FLIA)	44368	222	-0.1173	0.1204	1227	-0.97	0.3302
vaca(FLIA)	44408	222	0.4877	0.1530	1227	3.19	0.0015
vaca(FLIA)	44438	222	-0.1918	0.1652	1227	-1.16	0.2457
vaca(FLIA)	44600	222	-0.1781	0.1506	1227	-1.18	0.2371

Solución para efectos aleatorios

				Std Err			
Efecto	vaca	FLIA	Estimador	Pred	DF	Valor t	Pr > t
vaca(FLIA)	44952	222	-0.1199	0.1309	1227	-0.92	0.3597
vaca(FLIA)	441118	222	0.7268	0.1087	1227	6.69	<.0001
vaca(FLIA)	441208	222	-0.4295	0.1664	1227	-2.58	0.0100
vaca(FLIA)	441324	222	-0.7411	0.2128	1227	-3.48	0.0005
vaca(FLIA)	441448	222	0.5415	0.1913	1227	2.83	0.0047
vaca(FLIA)	441526	222	0.1343	0.1745	1227	0.77	0.4414
vaca(FLIA)	441534	222	0.2097	0.1736	1227	1.21	0.2274
vaca(FLIA)	441602	222	0.3989	0.1867	1227	2.14	0.0328
vaca(FLIA)	441664	222	0.02557	0.2351	1227	0.11	0.9134
vaca(FLIA)	442112	222	1.0795	0.2294	1227	4.71	<.0001
vaca(FLIA)	442312	222	0.5552	0.1912	1227	2.90	0.0037
vaca(FLIA)	442318	222	0.1696	0.2629	1227	0.65	0.5190
vaca(FLIA)	442338	222	-0.6891	0.3542	1227	-1.95	0.0519
vaca(FLIA)	442446	222	0.6142	0.1367	1227	4.49	<.0001
vaca(FLIA)	442518	222	0.2575	0.2305	1227	1.12	0.2642
vaca(FLIA)	442618	222	-0.5065	0.3642	1227	-1.39	0.1646
vaca(FLIA)	442680	222	0.3935	0.2474	1227	1.59	0.1119
vaca(FLIA)	442834	222	0.8572	0.2382	1227	3.60	0.0003
vaca(FLIA)	442852	222	-0.6646	0.2859	1227	-2.32	0.0203
vaca(FLIA)	44382	237	-0.3781	0.1743	1227	-2.17	0.0302
vaca(FLIA)	44386	237	-0.3963	0.1721	1227	-2.30	0.0215
<pre>vaca(FLIA)</pre>	44488	237	0.5308	0.1828	1227	2.90	0.0037
<pre>vaca(FLIA)</pre>	44524	237	-0.05941	0.1425	1227	-0.42	0.6768
vaca(FLIA)	441122	237	-0.3833	0.1963	1227	-1.95	0.0511
vaca(FLIA)	441396	237	-0.7512	0.3224	1227	-2.33	0.0200
vaca(FLIA)	441632	237	0.3171	0.1652	1227	1.92	0.0551
vaca(FLIA)	442780	237	-0.5709	0.5029	1227	-1.14	0.2565
vaca(FLIA)	44154	240	-1.6199	0.2694	1227	-6.01	<.0001
vaca(FLIA)	44762	240	-0.2468	0.2661	1227	-0.93	0.3538
vaca(FLIA)	44146	392	0.4034	0.1214	1227	3.32	0.0009
vaca(FLIA)	44462	392	-0.3314	0.1520	1227	-2.18	0.0294
vaca(FLIA)	44690	392	-0.7768	0.2035	1227	-3.82	0.0001
vaca(FLIA)	44702	392	-0.6804	0.2247	1227	-3.03	0.0025
vaca(FLIA)	44798	392	0.1399	0.1606	1227	0.87	0.3837
vaca(FLIA)	441174	392	-0.4045	0.2237	1227	-1.81	0.0709
vaca(FLIA)	441220	392	-0.1265	0.2350	1227	-0.54	0.5903
vaca(FLIA)	441330	392	-0.5320	0.2135	1227	-2.49	0.0129
vaca(FLIA)	441468	392	0.3159	0.1527	1227	2.07	0.0387
vaca(FLIA)	441524	392	0.3256	0.1901	1227	1.71	0.0869
vaca(FLIA)	442320	392	-0.7176	0.3366	1227	-2.13	0.0332
vaca(FLIA)	442504	392	0.5799	0.2104	1227	2.76	0.0059
vaca(FLIA)	442580	392	-1.0667	0.3782	1227	-2.82	0.0049
vaca(FLIA)	442598	392	0.5850	0.1835	1227	3.19	0.0015
vaca(FLIA)	442602	392	0.9594	0.2684	1227	3.57	0.0004
vaca(FLIA)	44418	416	0.5311	0.1936	1227	2.74	0.0062
vaca(FLIA)	441434	416	0.1974	0.2113	1227	0.93	0.3505
vaca(FLIA)	44128	487	-0.1106	0.1198	1227	-0.92	0.3562
vaca(FLIA)	44394	487	-0.1025	0.2154	1227	-0.48	0.6342
vaca(FLIA)	44882	487	-0.2325	0.1595	1227	-1.46	0.1450

JOAQUIN LAMBRECHTS LLOVERAS

				Std Err			
Efecto	vaca	FLIA	Estimador	Pred	DF	Valor t	Pr > t
vaca(FLIA)	44906	487	-0.3533	0.1577	1227	-2.24	0.0252
vaca(FLIA)	44918	487	-0.1971	0.1410	1227	-1.40	0.1624
vaca(FLIA)	44922	487	-0.6565	0.1871	1227	-3.51	0.0005
vaca(FLIA)	44924	487	0.1042	0.1428	1227	0.73	0.4659
vaca(FLIA)	44934	487	-0.2668	0.1532	1227	-1.74	0.0818
vaca(FLIA)	44994	487	-0.4787	0.3909	1227	-1.22	0.2209
vaca(FLIA)	44996	487	-0.1227	0.1815	1227	-0.68	0.4991
vaca(FLIA)	441206	487	0.09857	0.1798	1227	0.55	0.5836
vaca(FLIA)	441398	487	0.2026	0.1497	1227	1.35	0.1763
vaca(FLIA)	441400	487	1.1015	0.1377	1227	8.00	<.0001
vaca(FLIA)	441424	487	0.8363	0.1326	1227	6.31	<.0001
vaca(FLIA)	441530	487	-0.1686	0.2815	1227	-0.60	0.5492
vaca(FLIA)	442436	487	0.3649	0.1988	1227	1.84	0.0667
vaca(FLIA)	442542	487	1.0872	0.1643	1227	6.62	<.0001
vaca(FLIA)	442546	487	0.6999	0.1852	1227	3.78	0.0002
vaca(FLIA)	442854	487	-0.3333	0.3752	1227	-0.89	0.3746
vaca(FLIA)	443094	487	0.9503	0.3019	1227	3.15	0.0017
vaca(FLIA)	443164	487	-0.4956	0.4600	1227	-1.08	0.2814
vaca(FLIA)	44558	489	-0.1934	0.2299	1227	-0.84	0.4003
vaca(FLIA)	44116	535	-0.1999	0.1539	1227	-1.30	0.1941
vaca(FLIA)	44250	535	-0.3452	0.1420	1227	-2.43	0.0152
vaca(FLIA)	44328	535	-0.08536	0.1502	1227	-0.57	0.5698
vaca(FLIA)	44478	535	-0.6570	0.1688	1227	-3.89	0.0001
vaca(FLIA)	44482	535	0.7473	0.2086	1227	3.58	0.0004
vaca(FLIA)	44858	535	-0.1375	0.1562	1227	-0.88	0.3788
vaca(FLIA)	44862	535	-0.4649	0.2254	1227	-2.06	0.0394
vaca(FLIA)	44892	535	-0.03746	0.2622	1227	-0.14	0.8864
<pre>vaca(FLIA)</pre>	441046	535	-0.08849	0.1471	1227	-0.60	0.5476
<pre>vaca(FLIA)</pre>	441316	535	-0.2606	0.1837	1227	-1.42	0.1562
vaca(FLIA)	441402	535	0.3878	0.2017	1227	1.92	0.0548
vaca(FLIA)	441454	535	-0.5518	0.2468	1227	-2.24	0.0255
vaca(FLIA)	441474	535	-0.3110	0.3384	1227	-0.92	0.3583
vaca(FLIA)	441754	535	0.1467	0.3110	1227	0.47	0.6373
vaca(FLIA)	441806	535	0.008541	0.1719	1227	0.05	0.9604
vaca(FLIA)	441808	535	0.1943	0.2094	1227	0.93	0.3538
vaca(FLIA)	442676	535	0.2070	0.3433	1227	0.60	0.5467
vaca(FLIA)	442682	535	0.4783	0.2423	1227	1.97	0.0486
vaca(FLIA)	44410	541	-0.8661	0.1994	1227	-4.34	<.0001
vaca(FLIA)	441034	541	-0.8031	0.2059	1227	-3.90	0.0001
vaca(FLIA)	441412	541	-0.2457	0.2218	1227	-1.11	0.2683
vaca(FLIA)	441600	541	0.4975	0.2040	1227	2.44	0.0149
vaca(FLIA)	441666	541	0.1578	0.2093	1227	0.75	0.4511
vaca(FLIA)	44518	589	-1.1079	0.2820	1227	-3.93	<.0001
vaca(FLIA)	44520	589	0.3374	0.1375	1227	2.45	0.0143
vaca(FLIA)	44526	589	-0.5410	0.1749	1227	-3.09	0.0020
vaca(FLIA)	44576	589	0.003544	0.1538	1227	0.02	0.9816
vaca(FLIA)	44872	589	-0.2934	0.1642	1227	-1.79	0.0742
vaca(FLIA)	441038	589	-0.8367	0.2778	1227	-3.01	0.0027
vaca(FLIA)	441680	589	0.9153	0.1685	1227	5.43	<.0001

				Std Err			
Efecto	vaca	FLIA	Estimador	Pred	DF	Valor t	Pr > t
vaca(FLIA)	442472	589	-0.8874	0.3908	1227	-2.27	0.0233
vaca(FLIA)	442484	589	-0.2064	0.2362	1227	-0.87	0.3823
vaca(FLIA)	442654	589	0.7081	0.2179	1227	3.25	0.0012
vaca(FLIA)	44264	607	-0.1463	0.1554	1227	-0.94	0.3467
vaca(FLIA)	44444	607	-0.6814	0.4064	1227	-1.68	0.0939
vaca(FLIA)	44638	607	0.4482	0.1593	1227	2.81	0.0050
vaca(FLIA)	44662	607	0.3086	0.1460	1227	2.11	0.0348
vaca(FLIA)	44960	607	0.2287	0.1610	1227	1.42	0.1557
vaca(FLIA)	442532	607	0.4098	0.2621	1227	1.56	0.1182
vaca(FLIA)	442554	607	-0.3592	0.4336	1227	-0.83	0.4076
vaca(FLIA)	442596	607	-0.7605	0.3541	1227	-2.15	0.0319
vaca(FLIA)	442536	638	-0.3272	0.3033	1227	-1.08	0.2809
<pre>vaca(FLIA)</pre>	44754	692	-1.3514	0.4168	1227	-3.24	0.0012
<pre>vaca(FLIA)</pre>	44880	796	0.05566	0.4367	1227	0.13	0.8986
<pre>vaca(FLIA)</pre>	441032	796	-0.2703	0.2315	1227	-1.17	0.2433
<pre>vaca(FLIA)</pre>	44450	895	0.5064	0.1941	1227	2.61	0.0092
<pre>vaca(FLIA)</pre>	44560	895	-0.3494	0.2458	1227	-1.42	0.1554
<pre>vaca(FLIA)</pre>	44706	895	-1.1252	0.3244	1227	-3.47	0.0005
<pre>vaca(FLIA)</pre>	44822	895	-0.3073	0.1760	1227	-1.75	0.0810
<pre>vaca(FLIA)</pre>	442120	895	0.09296	0.2566	1227	0.36	0.7172
<pre>vaca(FLIA)</pre>	442438	895	1.2236	0.1717	1227	7.13	<.0001
FLIA		13	-0.00480	0.1167	1227	-0.04	0.9672
FLIA		24	0.09788	0.1004	1227	0.97	0.3300
FLIA		30	0.08494	0.08578	1227	0.99	0.3222
FLIA		55	0.07185	0.1078	1227	0.67	0.5053
FLIA		75	-0.01569	0.1170	1227	-0.13	0.8933
FLIA		81	-0.00315	0.1091	1227	-0.03	0.9770
FLIA		87	0.05236	0.1167	1227	0.45	0.6536
FLIA		88	-0.02173	0.1167	1227	-0.19	0.8524
FLIA		98	-0.00837	0.1167	1227	-0.07	0.9428
FLIA		99	0.005347	0.09800	1227	0.05	0.9565
FLIA		201	-0.01884	0.1137	1227	-0.17	0.8685
FLIA		222	0.08059	0.09105	1227	0.89	0.3762
FLIA		237	-0.06045	0.1069	1227	-0.57	0.5720
FLIA		240	-0.06672	0.1153	1227	-0.58	0.5628
FLIA		392	-0.04742	0.09925	1227	-0.48	0.6329
FLIA		416	0.02603	0.1149	1227	0.23	0.8209
FLIA		487	0.06888	0.09466	1227	0.73	0.4670
FLIA		489	-0.00691	0.1168	1227	-0.06	0.9528
FLIA		535	-0.03465	0.09673	1227	-0.36	0.7203
FLIA		541	-0.04502	0.1102	1227	-0.41	0.6831
FLIA		589	-0.06821	0.1042	1227	-0.65	0.5131
FLIA		607	-0.01974	0.1073	1227	-0.18	0.8541
FLIA		638	-0.01170	0.1170	1227	-0.10	0.9204
FLIA		692	-0.04830	0.1175	1227	-0.41	0.6810
FLIA		796	-0.00767	0.1158	1227	-0.07	0.9472
FLIA		895	0.001468	0.1091	1227	0.01	0.9893

J- BIBLIOGRAFIA

I. Anduaga, P. Lambrechts, K. Genesio, M. Grunwaldt, G. Rautenberg, R. Vautier y C. Avendaño. Efectos de los Valores de hormona antimulleriana y el número de ovocitos en vacas Brangus. 2015. 11 Simposio Internacional de Reproducción Animal IRACBIOGEN

Maldonado Estrada, Juan G; Bolívar, Paula A Racionalidad de los esquemas de superovulación y sincronización en la transferencia de embriones en bovinos: ¿terapéutica basada en la evidencia o ausencia de ética? Revista Colombiana de Ciencias Pecuarias, vol. 21, núm. 3, julio-septiembre, 2008, pp. 436-450

Bondoc O.L, Smith C, Gibson J.P. 1989. A review of breeding strategies for genetic improvement of dairy cattle in developing countries. Animal Breed Abstract, 57: 819-829.

Christensen L.G. 1991. Use of embryo transfer in future cattle breeding schemes. Theriogenology, 35: 141-156.

Colazo, MG; Matletof RJ (2007) Estado actual y aplicaciones de la transferencia de embriones en bovinos. Ciencia Veterinaria, Gral. Pico- La Pampa. (9): 20-37.

Donaldson, L. E. 1984. Effect of age of donor cows on embryo donor production. Theriogenology. 21:963-967.

Etcheverry M (2009) Exportación de Genética Bovina: Diagnóstico de situación. Fortalezas y debilidades para competir en el mercado internacional. Sitio Argentino de Producción Animal. Buenos Aires. p 1-6. www.produccionanimal.com.ar/informacion.../55-exportacion_genetica_bovina.pdf

Grandin, T. Applied Animal Behaviour Science, Vol. 28, 1990, pp. 187-201.

Hafez, E.S.E, Hafez B; (2002). Reproducción e inseminación artificial en animales. Séptima edición. Ed. Mc Graw Hill.

Hahn, J. (1992) Attempts to explain and reduce variability of superovulation. Theriogenology, New York, v.38, n.2, p.269-275.

Hasler, J. F., A. D. McCauley, E. C. Schermerhorn and R. H. Foote. 1983. Superovulatory responses of Holstein cows. Theriogenology. 19:83-99.

Familias Maternas Bovinas y su efecto sobre la capacidad superovulatoria en un programa de transferencia embrionaria.

www.iets.org/pdf/comm_data/December2012.pdf. Septiembre, 2018.

www.iets.org/pdf/comm_data/December2013.pdf. Septiembre, 2018.

www.iets.org/pdf/comm_data/December2014.pdf. Septiembre, 2018.

www.iets.org/pdf/comm_data/December2015.pdf. Septiembre, 2018.

www.iets.org/pdf/comm data/IETS Data Retrieval 2015 V2.pdf. Septiembre, 2018.

www.iets.org/pdf/comm_data/IETS_Data_Retrieval_Report_2016_v2.pdf. Septiembre, 2018.

Isogai, T. 1992. Effects of season, age at calving, time after calving and interval of treatment the embryo production in superovulated Holstein donors. J. Reproduction and Development. 38:j1-j6.

Jaton, C., Koeck, A., Sargolzaei, M., Malchiodi, F., Price, C., Schenkel, F., Miglior, F. (2016) "Genetic analysis of superovulatory response of Holstein cows in Canada" J. Dairy Sci., 99.

Keller, D. S. and G. Teepker. 1990. Effect of variability in response to superovulation on donor cow selection differentials in nucleus breeding schemes. J. Dairy Sci. 73:549-554.

Lohuis M.M. 1995. Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. Theriogenology, 43: 51-60.

Mosquera, J. (1994). Transferencia de embriones para la optimización reproductiva de la cría lechera. Trabajos seleccionados sobre producción lechera en la sierra ecuatoriana; Proyecto Andino de sanidad agropecuaria. Oficina del IICA (Instituto Interamericano de Cooperación para la Agricultura) Ecuador. 2. Seminario de Producción Lechera en la Sierra Ecuatoriana. Quito (Ecuador).

Myers, R. H. 1990. Classical and modern regression with applications. 2da Edición. PWS-KENT Publishing Company, Boston, EE.UU.

Newberry, Hannah, "Use of anti-mullerian hormone to select for fertility in beef heifers" (2016). Animal Science Undergraduate Honors Theses.

9.. https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1030&context=discoverymag (consultado --/--)

Familias Maternas Bovinas y su efecto sobre la capacidad superovulatoria en un programa de transferencia embrionaria.

Nicholas, F. W. and C. Smith. 1983. Increased rates of genetic change in dairy cattle by embryo transfer and splitting. Anim. Prod. 36:341-353.

Ruane J y Smith C. 1989. The genetic response possible in dairy cattle improvement by setting up a multiple ovulation and embryo transfer (MOET) nucleus scheme. Genetic Selection Evaluation, 21: 169-183.

Singh J, Dominguez M, Jaiswal R, Adams GP.(2004) A simple ultrasound test to predict the superstimulatory response in cattle, Therio, vol. 62 (pg. 227-243).

Smith C. 1988. Applications of embryo transfer in animal breedings. Theriogenology; 29: 203-212.

Smith C. 1988. Genetic improvement of livestock using nucleus breeding units. World Animal Review, 65: 2-10.

Teepker G, Keller D.S. 1989. Selection of sires originating from a nucleus breeding unit for use in a commercial dairy population. Canadian Journal Animal Sciences, 69: 595-604.

Tempelman, R., Gianola, D. (1996), A Mixed Effects Model for Overdispersed Count Data in Animal Breeding. Biometrics Vol. 52, No. 1 (Mar., 1996), pp. 265-279

Terawaki, Y. and Y. Asada. 2001. Effects of different methods for determining the number of transferable embryos on genetic gain and inbreeding coefficient in a Japanese Holstein MOET breeding population. Asian-Aust. J. Anim. Sci. 14(5):597-602.

Tonhati H., Lobo R. B., Oliveira H. N. (1999) Repeatability and heritability of response to superovulation in Holstein cows. Theriogenology 51 1151–1156

Villanueva, B. and G. Simm. 1994. The use and value of embryo manipulation techniques in animal breeding. Proceedings of the 5th World Congress on Genetics Applied to Livestock Prod. Guelph. Vol.20: 200-207.

Wilmut, I.; Rowson, L.E.A., (1973). Experiments on the low-temperature preservation of cow embryos. Vet. Rec, 92, 686–690.