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Membrane lipids modulate the proteins embedded in the bilayer matrix by two
non-exclusive mechanisms: direct or indirect. The latter comprise those effects
mediated by the physicochemical state of the membrane bilayer, whereas direct
modulation entails the more specific regulatory effects transduced via
recognition sites on the target membrane protein. The nicotinic acetylcholine
receptor (nAChR), the paradigm member of the pentameric ligand-gated ion
channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by
both mechanisms. Reciprocally, the nAChR protein exerts influence on its
surrounding interstitial lipids. Folding, conformational equilibria, ligand binding,
ion permeation, topography, and diffusion of the nAChR are modulated by
membrane lipids. The knowledge gained from biophysical studies of this
prototypic membrane protein can be applied to other neurotransmitter
receptors and most other integral membrane proteins.
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1 Introduction

Chemical signaling via hormones or neurotransmitters at the plasmalemma was
acquired early in phylogeny. Though electrical signaling via low resistance intercellular
gap junctions and extracellular electrical fields generated by the electrical activity of neurons
are also operative mechanisms (Faber and Pereda, 2018), chemical signaling provided
specificity to the messages conveyed by the coding molecules. Such an evolutionary event
prompted the emergence of cell-surface receptors approximately 4,000 million years ago.
One such group of membrane-associated receptors is the pentameric-gated ion channel
(pLGIC) superfamily initially in prokaryotes and subsequently in eukaryotes (Ortells et al.,
1992; Barrantes, 2015). The pLGIC superfamily includes the following neurotransmitter
receptor families: the nicotinic acetylcholine receptors (nAChRs), the γ-aminobutyric acid
(type A and C) receptors, the glycine receptors, subtype 3 of the serotonin receptor family,
and the glutamate-gated chloride channel (Zoli et al., 2018). pLGICs are built following a
common architecture: five subunits in a pseudo-symmetric layout surrounding an ion-
permeation pathway, the ionic pore. The structural similitude is related to the evolutionary
history and conservation of these membrane-bound proteins (Stroud and Finer-Moore,
1985; Le Novère and Changeux, 1995; Ortells, 1998; Barrantes, 2015; Tessier et al., 2017).

The adult neuromuscular junction is an exceptionally large synapse with ca. 107 nAChR
molecules. Moreover, this exceptionally high number of receptors is arranged at densities of
~10,000–20,000 μm-2 (Albuquerque et al., 1974; Fertuck and Salpeter, 1976; Land et al.,
1977). These two characteristic features make the neuromuscular synapse a unique case, in
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clear contrast with the distribution and density of cholinergic
receptors in brain (Borroni and Barrantes, 2021). Brain nicotinic
receptors are found in the soma of neurons as well as in pre- post-
and extra-synaptic regions. Of the multiple possible subunit
combinations, the α4β2 and the α7 nAChRs are the most
abundant oligomeric forms. Other subunit combinations and/or
stoichiometries are less represented, usually in smaller quantities,
and with limited regional representation (Dani and Bertrand, 2007;
Taly et al., 2009).

Membrane protein topography is indivisibly paired to the host
membrane composition and lateral/transversal organization of its
lipid constituents. Membrane spatial organization is in turn a key
modulator of membrane protein function. The tight correspondence
between structure and function was finely optimized during the
evolution of receptors for chemical neurotransmitters and
hormones, membrane macromolecules for which efficacious
signaling is closely linked to their topography and dynamics. The
nAChR is a particularly well-studied case that has therefore served as
a paradigmatic example of the pLGIC superfamily. This review
focuses on the mechanisms of nAChR modulation by membrane
lipids, organized considering the notion that the latter operate via
both indirect and direct effects on membrane-embedded proteins.
The nAChR fulfills the general criteria of a typical membrane-bound
protein, though its abundance, density, and distinct functional
properties dictate some singular modes of crosstalk with its
membrane milieu.

2 Mechanisms of receptor protein
modulation by membrane lipids

As mentioned, membrane lipids can modulate the proteins
embedded in the bilayer by two non-exclusive mechanisms:
direct or indirect.

2.1 Indirect modulation

Indirect effects of the lipid milieu on membrane-bound
proteins are those exerted by general physical properties of the
bulk bilayer, such as fluidity (Cooper, 1978; Mély-Goubert and
Freedman, 1980; Pottel et al., 1983; Golfetto et al., 2013; de
Mendoza and Pilon, 2019), elasticity (Needham and Nunn,
1990; Zeman et al., 1990; Strey et al., 1995; Chen and Rand,
1997; Bruno et al., 2007; Yersin et al., 2007), membrane
curvature (Marsh, 1996b; Lundbaek et al., 1997), hydrostatic
(Behan et al., 1992; Barshtein et al., 1997) and/or lateral
pressure (Marsh, 1996a; Cantor, 1998; Laan et al., 2004;
Heerklotz and Tsamaloukas, 2006). These physical properties,
in turn, can be influenced by external factors, including drugs
(Goldstein, 1984; Lehr et al., 1989), e.g., general anesthetics (Dilger
et al., 1993; Franks and Lieb, 1994; Balasubramanian et al., 2002) or
insecticides that alter membrane fluidity (Wolff and Bull, 1982;
Moya-Quiles et al., 1996) and/or disease conditions like cancer
(Schroeder, 1978; Pavel et al., 2020).

The nAChR is also a target of many of the above general, indirect
modulatory factors operating via the general physical properties of
the membrane bilayer. General anesthetics (Lin et al., 1991;

Raines and McClure, 1997; Salord et al., 1997; Violet et al., 1997;
Flood and Role, 1998; Raines and Zachariah, 1999) and alcohols are
the most widely studied drugs in this regard. Straight-chain alcohols,
from ethanol to octanol, inhibit the nAChR-induced current
responses in a dose-dependent manner and reduce the apparent
dissociation constant of the endogenous neurotransmitter,
acetylcholine, by mechanisms presumably affecting membrane
fluidity (Bradley et al., 1984). Patch-clamp recordings showed
that both the conductance and the single-channel mean open
time are reduced upon application of benzyl alcohol to muscle-
type nAChRs (Bouzat and Barrantes, 1991). Ethanol is of particular
relevance, since nicotine addiction is usually associated with alcohol
consumption, and both drugs target the neuronal type α4β2 nAChR
(Godden and Dunwiddie, 2002).

Shelby and Veatch have analyzed the indirect influences of the
membrane physical state from a thermodynamic perspective and
proposed that “plasma membranes have a high compositional
susceptibility, arising from their thermodynamic state in a single
phase that is close to a miscibility phase transition” (Shelby and
Veatch, 2023). The single phase is purported to display coexisting
compositional fluctuations and long-lived structures consisting of
induced domains. The compositional fluctuations would provide the
compositional diversity required for the multiplicity of biological
functions of the plasmalemma. The model draws from the classical
fluid-mosaic model of Singer and Nicolson, who proposed in
1972 that the biological membrane is a simple 2-dimensional
fluid at equilibrium in which proteins and lipids are randomly
distributed over distances larger than those dictated by direct
interactions (Singer and Nicolson, 1972). In such a theoretical
construct the lipid bilayer has been envisaged as a homogeneous
phase that provides the substratum for solvating membrane-
embedded proteins. The initial conceptualization has evolved
over the course of decades (see the 40-year (Nicolson, 2014) and
the more recent 50-year historical perspectives (Bechinger, 2023;
Nicolson and Ferreira de Mattos, 2023)). Veatch and coworkers
have also discussed the bilayer thermodynamic status as a
fundamental property for tuning the composition of the
membrane in response to external stimuli (Veatch et al., 2023).

The lipid composition of the host plasmalemma is a key, albeit
indirect determinant of the conformational transitions and other
functional properties of the nAChR. Early studies pointed to the
lipid requirements for maintaining the receptor protein in an
activatable conformational state that could eventually become
unresponsive, i.e., desensitized, in the sustained presence of the
agonist, (Epstein and Racker, 1978). Phospholipids were reported to
stabilize the structure of the affinity purified receptor (Chang and
Bock, 1979). The essential need to include cholesterol in
reconstitution experiments was also an early finding (Criado
et al., 1982a). Fatty acyl chain length and headgroup of the
phospholipids were found to impact on the conformational
equilibria of the receptor (Criado et al., 1984). Neutral and
negatively charged phospholipids were analyzed in their capacity
to stabilize receptor structure (Sunshine and McNamee, 1992). This
led to the identification of phosphatidic acid (PA) as an anionic
phospholipid playing a major role in the modulation of the nAChR
(Bhushan and Mcnamee, 1993; Baenziger et al., 2000; Poveda et al.,
2002; daCosta et al., 2002; Hamouda et al., 2006b; Cheng et al., 2007;
Wenz and Barrantes, 2005).
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Twenty years after the inception of the Singer and Nicolson
model, Simons and Ikonen postulated a major challenge to the
idea that the lipid bilayer constituted a homogeneous phase
(Simons and Ikonen, 1997). These authors proposed the
existence of lateral discontinuities in the membrane bilayer,
thus introducing the concept of discrete domains whose
composition differed from the rest of the membrane. They
coined the term “raft” for such domains, enriched in
cholesterol and sphingolipids, and drew important inferences
about their functional implications, proposing that lipid rafts
served as platforms for the attachment and sorting of proteins
and were involved in signal transduction. Subsequent work from
Simons’ laboratory explored the dynamics of
glycosylphosphatidylinositol (GPI)-anchored and
transmembrane protein-containing domains using single
particle tracking, demonstrating the minute-long stability of
discrete domains 26 ± 13 nm in diameter (Pralle et al., 2000).
The degree of clustering and the dimensions of the GPI-anchored
protein nanoclusters have been reported to be regulated by the
lipid content -cholesterol in particular of these domains (Sharma
et al., 2004).

Raft domains have been postulated to exhibit some of the
characteristics of liquid-ordered (Lo) gels produced by
synthetic lipid systems (Samsonov et al., 2001). Lo domains
in biological membranes are characterized by their relative
enrichment in cholesterol, sphingolipids and
glycerophospholipids with saturated acyl chains (relative to
the rest of the bilayer lipid) (see review in (Pike, 2006)). The
initial characterization of “raft” domains, and the techniques
employed to operationally define them, were of a biochemical
nature. Homogenization of the tissue, ultracentrifugation and
non-ionic detergent extraction led to the categorization of a
detergent-insoluble fraction. This fraction was purported to be
equivalent to the Lo-like domains in synthetic lipid systems and
to occur in biological membranes.

In a recent review (Barrantes, 2023), I have critically analyzed
the flaws of these biochemically-based criteria as applied to the
nAChR-rich membrane domains. Using lipid mixtures with the
composition of a Lo phase, no preferensolubility criteria, too broad
to adequately assess the partitioning of the receptor into different
lipid phases (Lichtenberg et al., 2005; Barrantes, 2007) or to be
extrapolated to the conditions present in the living cell. Other direct
high resolution co-localization studies are more suitable to resolve
this important issue.

Indeed, Förster’s resonance energy transfer (FRET) microscopy
was instrumental in providing one of the most solid experimental
pieces of evidence of the nano-scale character of lipid domain
structures, their active maintenance by the cell (Rao and Mayor,
2005), and their highly dynamic nature (Mayor and Rao, 2004;
Sezgin et al., 2017). The “membrane domain” concept has been
further expanded by experimental approaches demonstrating the
effect of the underlying actin cytoskeleton on the
compartmentalization and stability of lipid domains, and the
various modalities (passive, neutral, active) under which the actin
meshwork interacts with the membrane (Goswami et al., 2008;
Raghupathy et al., 2015; Köster et al., 2016; Köster and Mayor,
2016). In its current, more complex version, the membrane domain
concept encompasses a collection of lipid domain subtypes defined

not only by the spatial compartmentalization produced by the lateral
segregation of lipid species and their distinct chemical composition
but more importantly by the signaling mechanisms they subserve
(Anderson and Jacobson, 2002; Dietrich et al., 2002; Jacobson et al.,
2019). This emphasis on the functional aspects was consolidated in
the Keystone Symposium consensus definition of rafts as “small
(10–200 nm), heterogeneous, highly dynamic sterol- and
sphingolipid-enriched domains that compartmentalize cellular
processes” (reviewed by (Pike, 2006)). Thus, despite their size
and compositional heterogeneity, lipid domains can be defined
by their ability to indirectly modulate membrane protein
function, especially signaling.

In the field of the nAChR, raft-type lipid domains have been
reported to be necessary for the stability of the α7-type nAChR in
neurons (Brusés et al., 2001). Similarly, ordered lipid domains
appear to be required for the clustering of nAChRs in muscle
cells (Stetzkowski-Marden et al., 2006; Willmann et al., 2006;
Zhu et al., 2006). The receptor-aggregating protein agrin triggers
the initial steps leading to receptor aggregation in these discrete
lateral lipid domains (Moransard et al., 2003; Mittaud et al., 2004).
Purified nAChR reconstituted in lipid mixtures of varying
composition, complexity, and morphology (single-to multi-layer
vesicles, planar bilayers, giant unilamellar vesicles) (Popot et al.,
1977; Anholt et al., 1980; Dalziel et al., 1980; Boheim et al., 1981; Wu
and Raftery, 1981; Martinez et al., 2002) has proved to be an efficient
experimental paradigm to test indirect membrane effects on
membrane protein function. The purified nAChR did not show
any preferential partitioning into Lo-type lipid mixtures
(1:1:1 cholesterol:palmitoyloleoylphosphatidylcholine:sphingomyelin)
(Bermudez et al., 2010). However, the asymmetry of the
reconstituted lipid membrane resulting from inclusion of brain
sphyngomyelins in the lipid mixture that modified the distribution
of lipids across the reconstituted membrane induced favored nAChR
partitioning in the Lo phase (Perillo et al., 2016).

Research on lipid domains in membranes has extended to the
search for optimal lipid mixtures that fulfill two criteria: i) retain
functional properties of the membrane protein upon affinity
purification and reconstitution and ii) preserve the structure
as close as possible to that of the native conformation. There
has been a long search for the optimization of mild detergents
and amphiphiles (Popot, 2010; Le Bon et al., 2021) to undertake
structural cryo-electron microscopy studies on membrane
proteins, inherently difficult to crystalize in 3 dimensions.
Early attempts in this direction applied to the nAChR met
with moderate success (Hertling-Jaweed et al., 1988; Schürholz
et al., 1989). The more recent achievements of high-resolution
studies of the nAChR by X-ray and cryo-electron microscopy
(cryo-EM) methods are analyzed in Section 5.

2.2 Direct modulation

Direct modulation takes place when lipids exert their action
upon binding to sites predominantly located on lipid-exposed
domains of the protein. Direct modulation does not necessarily
imply high affinity binding of specific lipids to the membrane
protein (both low- and high-affinity binding modalities are found
in Nature), though the degree of stereoselectivity is, in general,
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higher than that of lipids exerting indirect modulation of the
membrane-embedded protein.

It was early realized that indirect effects could be targeted to
the transmembrane domains of the nAChR protein (Fong and
McNamee, 1986; White and Cohen, 1988; Blanton and Cohen,
1992; Fernandez-Ballester et al., 1994; Addona et al., 1998;
Baenziger et al., 2000)). Exceptions to this rule can be found
in the effect of ethanol on the homomeric neuronal-type
α7 nAChR, which exhibits direct inhibition upon binding of
the alcohol to its N-terminal extra-membranous domain (Yu
et al., 1996). Using a physical technique (electron spin resonance
(ESR) spectroscopy) we found that in native postsynaptic
membranes from Torpedo marmorata electric tissue, a fraction
of the lipids was relatively immobile (Marsh and Barrantes,
1978). Subsequent ESR and fluorescence experiments refined
this picture (Marsh et al., 1981; Arias et al., 1990; Horvath
et al., 1990) and provided information on the stoichiometry of
cholesterol sites on the nAChR. About 15 cholesterol molecules
could be accommodated around the transmembrane perimeter of
the nAChR (Mantipragada et al., 2003). More recent work
identified a discrete number of motifs with the expected
amino acid residues in linear sequences favourable to the
binding of cholesterol molecules. These linear motifs are
found predominantly in crevices on the lipid-exposed surface
of the nAChR transmembrane peptides (see Section 4.3 below).

The ESR experiments provided an additional -and unexpected-
piece of information on the lipid-nAChR protein interactions: the
proportion of immobilized lipid was higher than that calculated for a
single boundary layer around the protein. In fact, immobilization
extended to the totality of the interstitial lipid located between
adjacent protein molecules in native receptor-rich postsynaptic
membranes from T. marmorata (Marsh and Barrantes, 1978).
Subsequent fluorescence quenching experiments defined a class
of phospholipid sites readily exchangeable with the bulk lipid, in
contradistinction to non-annular sites, accessible only to cholesterol
and not to phospholipids (Jones and McNamee, 1988a). The
interpretation of the fluorescence experiments in terms of
“annular/non-annular” lipids was based on the additional
intrinsic fluorescence quenching produced by dibromo-
cholesterol when the receptor was reconstituted (and hence
already partially quenched) in dibromo-dioleoyl-phosphatidylcholine
liposomes. The additional quenching was assumed to unveil the
presence of cholesterol sites inaccessible to phospholipids. This issue
has been recently revisited, and the notion of annular vs. non-annular
lipids in the context of membrane protein-associated lipid has been
qualified as a myth (Gómez-Fernández and Goñi, 2022).

The early ESR experimental data on native receptor-rich
membranes bear direct relevance to the physical status of the
lipid in the actual neuromuscular synapse. As emphasized in the
Introduction, the nAChR is present at extremely high densities in
quasi-crystalline 2-dimensional arrays in the neuromuscular
junction (Heuser and Salpeter, 1979), as is the case with the
electromotor synapse of electric fish. Hence, in these two
postsynaptic membranes interstitial lipid occupies the remaining
available volume between adjacent receptor macromolecules: the
emerging picture is not a sea of lipids with isolated “iceberg-
resembling” receptor macromolecules but rather a large 2-D
“picket” of nAChRs and lipid filling in the gaps (Barrantes,

2004). This implies that each receptor cylinder, ~8 nm in
diameter, exerts a gradient of influence that extends for only a
few lipid layers and is shared within a few nanometers with
equivalent influences from neighboring receptors (Figure 1).

The lipid-protein interactions at the peripheral adult muscle-
type and electromotor synapses may thus be unique and current
attempts to understand them using single-molecule reconstituted
systems may fall short of providing a realistic depiction of the
conditions present at the uniquely large and densely crowded
peripheral synapse. The valuable inferences on lipid-protein
interactions drawn from the cryo-electron microscopy (see
Section 5 below) and in silico (this Section) studies using single
nAChR molecules in lipid nanodiscs are more pertinent to the
conditions met at the less populated central nervous system synapses
and at early ontogenetic neurodevelopmental stages of the
neuromuscular junction. In the latter scenario, between
embryonic day 13 and 14, individual muscle-type nAChRs
diffuse in the plane of the membrane (see Section 6 on receptor
dynamics below) and begin to associate (Sanes and Lichtman, 2001),
in a process that I have figuratively called “receptor socialization”,
leading to the formation of clusters of nanoscopic dimensions
(Barrantes, 2022), different from the micron-sized clusters found
in postnatal life (Figure 2). The nAChR nanoclusters likely
constitute the intermediate supramolecular organization leading
to the meso-scale “microaggregates” observed during the
embryonic stages of neuromuscular development ((Olek et al.,
1986a; Olek et al., 1986b) reviewed in (Sanes and Lichtman,
2001)) as well as in mammalian cells heterologously expressing
nAChRs (Olson et al., 1983; Borroni et al., 2007).

Jonathan Cohen and Michael Blanton pioneered the use of
photoaffinity labeling techniques to identify lipid sites on the
nAChR molecule (Blanton and Cohen, 1992; Blanton and Cohen,
1994; Blanton et al., 2001; Hamouda et al., 2006a; Hamouda et al.,
2007; Hamouda et al., 2008). Miller and coworkers employed similar
approaches to characterize anesthetic sites at the lipid-nAChR
interface (Forman et al., 2015). Currently there are more than
100 crystal structures of pLGICs in the Protein Data Bank
(PDB). Searching for putative drug sites for general anesthetics,
anxiolytics, smoking cessation drugs, and antiemetics on the
transmembrane regions of the different members of the
superfamily revealed the presence of recognition sites, some of
which may be unique to individual receptors, while others were
found to be broadly conserved among pLGIC members
(Koniuszewski et al., 2022). Most recently, insecticides targeting
pLGICs have been described as “structural mimetics of
neurotransmitters that manipulate and deregulate” these channel
proteins (Raisch and Raunser, 2023).

A minimal number of 45 lipid molecules per nAChR molecule
were reported to be required to sustain ion permeation (Jones et al.,
1988). Jones and McNamee found 5 to 10 “non-annular lipid” sites
per nAChR monomer (Jones and McNamee, 1988b). The sterol,
androstanol, was found to display a higher selectivity for the nAChR
(relative to PC). Thirty-eight sterol sites per nAChR were reported
by the group of McNamee (Ellena et al., 1983). ESR studies
documented the presence of nAChR-immobilized PA (Ellena
et al., 1983). A recent coarse-grained molecular dynamics study
using a host bilayer including 30 different lipids (Sharp and
Brannigan, 2021) was used to categorize lipid sites in a
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FIGURE 1
The concept of interstitial lipid. On the left, a schematic cartoon depicting the close proximity of nAChR molecules in the postsynaptic membrane,
typical of the adult neuromuscular junction (and the electromotor synapse), where nAChR densities can reach values of 10,000–20,000/μm2 (Heuser and
Salpeter, 1979). The tightly-packed 2D array of nAChRs (only two molecules are shown for the sake of clarity) leaves only a few concentric layers of lipid
molecules filling the interstices between receptor macromolecules. Colored spheres represent the polar head groups of different phospholipids.
The red spheres correspond to the first-layer lipid, exchanging rapidly with other layers and likely involved in direct modulation of the nAChR. The second
and third layers (green and yellow spheres) beyond the first-layer lipid of a given nAChR molecule are shared without boundaries with the homologous
layers of vicinal lipids surrounding adjacent neighboring receptors. The cartoon on the right shows this in more detail. This interstitial lipid thus consists of
only a very few layers, with little if any “bulk” lipid in the neuromuscular junction; it is a common territory shared by neighboring receptors. The
experimental basis of this concept relies on early ESR (Marsh and Barrantes, 1978; Marsh et al., 1981) and electronmicroscopy (Fertuck and Salpeter, 1976;
Heuser and Salpeter, 1979; Salpeter and Loring, 1985). The cartoon on the right is taken from Barrantes, (2004) with permission from Elsevier.

FIGURE 2
Critical developmental stage of the peripheral cholinergic synapse, the neuromuscular junction. The diagram is intended to emphasize the change
occurring within a time window of 24 h between embryonic day 13 (E13) and embryonic day 14 (E14), during which individual nAChRmolecules associate
to form nanoclusters consisting of a few nAChRmolecules. The nerve endings arrive during postnatal life (lower diagram), leading to the establishment of
the neuromuscular junction (see (Sanes and Lichtman, 2001) for a review).
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neuronal-type nAChR. Two classes of sites were identified: an inter-
subunit site deep inside the receptor molecule, flanked by M1-M2 in
a given subunit and M2-M3 of the adjacent subunit, and a
peripheral, lipid-exposed site on the M4 transmembrane domain
(Brannigan et al., 2008). Cholesterol was found to exhibit higher
affinity for the external hemilayer. Phosphatidylinositol (PI),
phosphatidylserine (PS), and phosphatidylcholines (PC) had
stronger affinities for these sites than the phosphoinositides PIP1,
PIP2, PIP3. The latter exhibited higher affinity than PA. From
strongest to weakest, the affinities of the phospholipids for the
inner hemilayer sites follow the order: PE > PI ~ PS ~ PC ≫
PIP1 ~ PIP2. In the case of the M4 site, the order of affinities, from
strongest to weakest, was: PE > PI > PS > PC≫ PIP1 ~ PIP2 ~ PIP3
~ PA (Sharp and Brannigan, 2021).

The combination of biochemical and biophysical studies has
contributed to establishing the important modulatory role of
cholesterol in nAChR function (reviewed in (Barrantes, 1992;
Barrantes, 2004). One area that still demands attention is the
identification of specific sites for the sterol. An in silico search
disclosed the occurrence of linear amino acid sequences compatible
with recognition motifs CRAC and/or CARC (Baier et al., 2011).
The amino acid consensus sequence termed ‘‘CRAC’’ (cholesterol
recognition/interaction amino acid consensus) is usually found in
the juxtamembrane region of the nAChR, with the pattern–L/V–(X)
(1–5)–Y–(X) (1–5)–R/K–, where (X) (1–5) represents between one
and five residues of any amino acid (Baier et al., 2011). The
individual energetic contribution of the motifs was found to vary
among the different transmembrane segments. The combination of
mutagenesis and lipid monolayer studies established the role of key
amino acid residues in determining cholesterol affinity. Recent cryo-
EM studies reviewed in Section 4 below have provided experimental
confirmation of these motifs in the nAChR transmembrane region
(see also review in (Barrantes, 2023).

3 Physical state of the nAChR-
vicinal lipid

Comparison of the general polarization (GP) of the fluorescent
probe Laurdan and single-channel patch-clamp data obtained on
two different clonal cell lines disclosed a correlation between these
two parameters, pointing to the differential influence of cell-specific
lipid compositions on the functional (ion permeation) properties of
the receptor (Zanello et al., 1996). The inception of the FRET
technique in the Laurdan GP field enabled us to examine the
physical state of the interstitial lipid, i.e., the lipid
microenvironment in close proximity to the receptor. The FRET
pair used was the tryptophan fluorescence of the receptor (donor)
and the Laurdan molecule (acceptor). Native T. marmorata nAChR-
rich membranes and reconstituted liposomes made up of synthetic
phosphatidylcholines were compared (Antollini et al., 1996). FRET-
GP within donor-acceptor distances of 14 ± 1 Å served as a sensor of
interstitial lipid in very close contact with the receptor protein. In
coincidence with the relative lipid immobilization reported in ESR
experiments (Marsh and Barrantes, 1978), the FRET-GP
experiments revealed a lower polarity and an increased solvent
dipolar relaxation at the hydrophilic/hydrophobic interface in
native membranes relative to diluted nAChR-containing

reconstituted systems (Antollini et al., 1996). In model lipid
membranes, incorporation of the nAChR increases the
proportion of non-hydrogen bonded lipid ester carbonyl groups
(daCosta et al., 2002).

Pyrene, an organic planar molecule characterized by its
extremely long fluorescence lifetime, has been used to covalently
tag lipids, resulting in fluorescent probes that incorporate readily
into membranes because of the highly hydrophobic fluorophore
moiety. These probes form excimers When a pyrene molecule in the
excited state collides with another pyrene molecule in the ground
state, an excimer is formed. Successful collisions depend on both
concentration and lateral diffusion of the probe (Galla and
Hartmann, 1980; Holopainen et al., 1997; Somerharju, 2002).
Pyrene phospholipid derivatives partition preferentially in lipid-
fluid phases (Somerharju et al., 1985; Jones and Lentz, 1986;
Koivusalo et al., 2004), and form probe-enriched domains
(“patches”) laterally segregated from lipids in the gel state
(Holopainen et al., 1997; Holopainen et al., 1998; Holopainen
et al., 2001). Excimer/monomer ratiometric measurements
revealed the appearance of distinct lateral heterogeneities
produced by addition of the receptor protein to pure DPPC/
DOPC liposomes or the same supplemented by saturated lipid
(palmitoyl-oleoyl-PC or palmitoyl-oleoyl-PA). Complementary
measurements of FRET from the protein to the probe
diphenylhexatriene (DPH) further showed that the nAChR
partitioned preferentially into POPC- or POPA-enriched,
relatively more rigid domains (Wenz and Barrantes, 2005).

4 Cryo-EM structures reveal lipid sites
on the nAChR surface

The successful combination of lipid-mimicking detergents and
lipid mixtures known to support nAChR function led to the
obtention of nanodiscs apt for high-resolution structural methods
(Padilla-Morales et al., 2011; Quesada et al., 2016; Delgado-Vélez
et al., 2021). The 3.94 Å resolution obtained by X-ray diffraction
studies of the neuronal-type α4β2 nAChR provided one of the first
glimpses at the atomic structure of a complete nAChR molecule
(Morales-Perez et al., 2016). This was followed by studies of the
other most abundant homomeric neuronal-type α7 nAChR (PDB:
7KOQ) (Noviello et al., 2021).

4.1 Phospholipid sites revealed by cryo-EM
on the nAChR transmembrane surface

The atomic structure of the muscle-type nAChR and the
localization of lipid sites was tackled more recently with cryo-EM
techniques using the Torpedo receptor reconstituted in lipid
nanodiscs. Densities attributable to phosphoglyceride sites could
be resolved (Rahman et al., 2020; Rahman et al., 2022; Zarkadas
et al., 2022). In the Zarkadas and coworkers study, (PDB: 7QL5),
phospholipid sites (6–11) on the receptor transmembrane region
could be identified, distinguishing whether the receptor was
reconstituted in nanodiscs in the presence or absence of
cholinergic ligands. PC sites were apparent at i) the inner,
cytoplasmic facing hemilayer, sandwiched between the M3 helix
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of the principal subunit, and another charged residue (Lys or Arg) in
the complementary M4 domain and ii) at the outer leaflet, in a
shallow cavity flanked by M3, the M2-M3 loop, and the Cys loop
from the principal subunit, and the M1 from the complementary
subunit (Zarkadas et al., 2022). A detailed account of the nAChR-
lipid structural data has recently been published (Barrantes, 2023).

4.2 Cholesteryl ester sites revealed in the
neuronal nAChR transmembrane domains

The structure of another neuronal-type nAChR, the ganglionic
α3β4 receptor, could be elucidated (PDB: 6PV7) (Gharpure et al.,
2019) upon reconstitution into nanodiscs that included ion channel
function-supporting lipids, supplemented with cholesteryl
hemisuccinate, a water-soluble cholesteryl ester (Criado et al.,
1982a), and PA. Cryo-EM densities interpreted as cholesteryl
ester sites were identified on the α3β4 nAChR at the M4-M1 and
the M4-M3 transmembrane interfaces of each subunit (Gharpure
et al., 2019). Hibbs and coworkers had previously observed two
“bowl-shaped” cholesterol sites per receptor subunit on the inner
hemilayer transmembrane region in the α4β2 nAChR (Walsh et al.,
2018). Each cholesterol molecule established contacts almost
exclusively with a given subunit and with another adjacent
cholesterol molecule in a pairwise fashion, a motif identified by
Unwin in the Torpedo electromotor nAChR (Unwin, 2020). Cryo-
EM of the detergent-solubilized nAChR protein from Torpedo
californica in reconstituted soybean lipid-saposin nanodiscs at 2.
7 Å resolution (PDB: 6UWZ) (Rahman et al., 2020) identified
densities “consistent with a bound lipid” at the base of the a
subunit M4 transmembrane domain. The possible role of
cholesterol in receptor desensitization was addressed in a
subsequent work (Zhuang et al., 2022).

4.3 Low- and high-affinity cholesterol sites
revealed by cryo-EM on the Torpedo
nAChR surface

A cryo-EM study from Hibbs´ group reported the structure at
2.51 Å resolution of the “apo”-conformer of the Torpedo nAChR in
the absence of ligands (PDB: 7SMM) in a soybean lipid mixture
(PDB: 7SMM) (Rahman et al., 2022). Comparison of the apo-
conformer with the structure of the receptor in the same lipid
mixture but with added cholesterol (PDB: 7SMQ), permitted
Hibbs and coworkers to distinguish cholesterol sites from
phospholipid sites, and identify cholesterol sites of high- and
low-affinity on the nAChR surface at the outer and inner lipid
hemilayers, respectively (Figure 3). In the apo-nAChR without
exogenously added cholesterol, 4 to 5 cholesterol molecules
remained bound to the nAChR upon elution from affinity
chromatography, and the corresponding densities identified in
the inner, cytoplasmic-facing hemilayer were therefore assumed
to correspond to tightly-bound endogenous cholesterols (3 per
nAChR monomer). These high affinity sites are hydrophobic
pockets formed by the M4, M3 and MX transmembrane domains
on the principal face of the two a subunits and the single ß subunit.
About 25 bound cholesterol molecules were calculated to be present

in the nanodisc in samples with exogenously added cholesterol,
depicting cholesterol densities at the extracellular-facing hemilayer.
These outer leaflet-facing cholesterol molecules were interpreted as
low-affinity cholesterol binding sites.

An interesting additional feature emerged from the cryo-EM
atomic structures: the presence of cholesterol “doublets” on the same
transmembrane segment of the nAChR (Rahman et al., 2022). This
observation provided experimental confirmation of the “mirror
code” motif disclosed by molecular dynamics calculations for the
nAChR and a great variety of membrane-embedded proteins,
including pLGICs and G-protein coupled receptors (Fantini
et al., 2016). The mirror code consists of two end-to-end or tail-
to-tail cholesterol recognition linear consensus domains (Figure 4).
The Supplementary Information video provides a complementary
dynamic 3D depiction of the Torpedo electric organ (muscle-type)
nAChR (PDB 7QKO, (Zarkadas et al., 2022)) and cholesterol
molecules on its surface (Figure 3).

5 Fluorescence microscopy to study
the nanoscale andmesoscale dynamics
of nAChRs in the plasmalemma

Learning about the modulation of nAChR dynamics by the lipid
environment is particularly important for understanding the
neurodevelopmental aspect of synaptogenesis. As discussed under
Section 3.2 above, the motions of the receptor at embryonic stages
play a fundamental role in redistributing the molecules at the muscle
sarcolemma prior to the arrival of the peripheral motor nerve

FIGURE 3
Left: Model derived from the cryo-EM data of the Torpedo
(Tetronarce) californica electric organ muscle-type nAChR (grey
ribbon rendering) with 8 phospholipid (phosphatidyloleoyl-PC, POPC)
molecules (yellow) on both hemilayers of the receptor
transmembrane region (PDB: 7QL5) (Zarkadas et al., 2022). Right:
Model derived from the cryo-EM data of the Torpedo californica
electric organ muscle-type nAChR (grey surface rendering) with
2 phospholipid molecules (yellow) on both hemilayers and two
cholesterol molecules (red) present only in the cytoplasmic-facing
hemilayer of the receptor transmembrane region (PDB: 7SMT). From
ref. (Zarkadas et al., 2022). Molecular graphics performed with UCSF
ChimeraX (Pettersen et al., 2004).
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terminal. The nanoclusters formed at early embryonic stages
precede the arrival of the nerve endings (which occurs in
postnatal life). The process of receptor nanocluster assembly is
fundamentally driven by lateral diffusion of individual molecules
on the muscle cell membrane, thus leading to encounters with other
receptor macromolecules and eventually to their aggregation.
Nanoaggregates coalesce into patches of micrometric dimensions,
still prior to the arrival of the nerve endings. The embryonic stages
find the striated muscle cells covered with large patches (20–60 μm)
that precede the fully developed muscle endplate. Translational
diffusion, i.e., lateral motion, is therefore a major motor in the
ontogenetic development of the neuromuscular junction, as is the
case with the lateral motion of receptors from non-synaptic areas to
the synaptic region in brain synapses.

Daniel Axelrod (Axelrod et al., 1976) pioneered the use of the
fluorescence recovery after photobleaching (FRAP) technique for
the study of nAChR translational dynamics. In postnatal developing
myoblasts, the majority of the nAChRs in 20–60 μm patches are
immobile; their average lateral diffusion coefficient (D)
is <10−4 μm2 s-1. nAChRs in non-patched regions are diffusely
distributed on the plasma membrane and display D values
~0.5 × 10−2 μm2 s-1. FRAP was also applied to learn about lateral
diffusion of purified nAChR monomers and dimers reconstituted
into different lipid systems (Criado et al., 1982b). We compared the
behavior of the two oligomeric forms of the receptor in pure
dimyristoyl-phosphatidylcholine (DMPC) versus DMPC-
cholesteryl hemisuccinate mixtures or soybean phospholipids and
observed, as expected, a marked drop in diffusion coefficient as the
temperature was reduced from 37°C to 14°C.

Immobilization of nAChRs is also observed in CHO-K1/
A5 mammalian clonal cells expressing muscle-type nAChR but
devoid of non-receptor proteins that cluster receptor molecules
(Roccamo et al., 1999). FRAP combined with fluorescence
correlation spectroscopy (FCS) (Baier et al., 2010) showed that
ca. 55% of the receptors did not exhibit lateral motion.
Cholesterol depletion reduced the fraction of mobile receptors
even further (from 55% to 20%) and reduced the diffusion of the
mobile receptor fraction, an observation that was subsequently
interpreted as resulting from an increase in the size of the
nAChR nanoclusters observed with STED nanoscopy (Kellner
et al., 2007). These experiments provided evidence that nAChR
nanocluster formation is strongly driven by receptor-receptor
interactions and is a cholesterol-dependent phenomenon.

A subsequent series of experiments employed total internal
reflection fluorescence (TIRF) microscopy to study receptor
diffusion in cells tagged with fluorescent α-bungarotoxin or
monoclonal anti-receptor antibodies (Almarza et al., 2014).
Fluorescent α-bungarotoxin revealed a wide range of receptor
mobilities including a highly mobile population (16%), a freely
moving Brownian component, and a main component with
restricted motion, amounting to ~50% of the total. The rest
(44%) of the nAChR molecules were considered immobile The
TIRF experiments confirmed the previous FRAP/FCS results
(Baier et al., 2010) showing that a large proportion of the
receptors at the plasma membrane are immobile, while the
mobile nAChR population is quite heterogeneous, displaying a
complex spectrum of diffusional modalities, modulated by
cholesterol content.

FIGURE 4
(A): Model derived from the cryo-EM data of the Torpedo californica electric organ muscle-type nAChR (grey surface rendering) reconstituted in
nanodisc with exogenously added soybean lipids. Under these experimental conditions, phospholipid (yellow) and cholesterol (red) molecules are
observed on both hemilayers of the receptor transmembrane region (PDB: 7SMQ). Notice the preference of lipids for cavities or crevices between
adjacent subunits, and the end-to-end cholesterol doublets on the inner and outer segments of the same transmembrane helices. From ref.
(Rahman et al., 2022). Molecular graphics performed with UCSF ChimeraX (Pettersen et al., 2004). (B): Cholesterol doublets in the γM4 transmembrane
domain of the human nAChR, with the calculated free energy of interaction with the CRAC and CARC-like linear cholesterol consensus domains at the
exofacial (top)- and cytoplasmic-facing hemilayers, respectively (reviewed in ref (Fantini et al., 2019).). Reproduced from Barrantes, 2023, an open access
article distributed under the terms of the Common Access CC BY licence.
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More recent experiments showed that the “highly mobile”
population corresponds to superdiffusing molecules, whereas the
predominant restricted motion populations correspond to various
subdiffusive subpopulations (Mosqueira et al., 2018). A similar study
using monoclonal antibodies (Mosqueira et al., 2020) addressed the
in vitro effect of mAb35, an antibody thatmimics the effects observed in
vivo in the rare and severe autoimmune disease, myasthenia gravis
(Tzartos and Lindstrom, 1980; Tzartos et al., 1981). Upon application of
mAb35 to the CHO-K1/A5 muscle-type model cells, larger nAChR
nanoclusters and slower lateral diffusion were observed (Mosqueira
et al., 2020), in contrast with receptors labeled with fluorescent α-
bungarotoxin, which does not crosslink the nAChR (Mosqueira et al.,
2018). These biophysical studies bear relevance to the pathogenesis of
myasthenia gravis: circulating anti-nAChR autoantibodies in
myasthenic patients crosslink nAChR molecules and trigger their
internalization (Drachman et al., 1978). Moreover, with Satyajit
Mayor in Bangalore, we could reproduce the increased rate of
receptor internalization upon mAb35 binding to developing
myoblasts and CHO-K1/A5 cells (Kumari et al., 2008).

The combined SPT-SMLM study further showed that mAb35-
induced crosslinking results in increases in the percentage of
immobile nAChR molecules (~80%) (Mosqueira et al., 2020).
Moreover, antibody-tagged nAChRs interrupt their motion for
periods of confinement lasting for 340–440 ms (Mosqueira et al.,
2020). α-bungarotoxin tagged nAChRs also make stopovers, but for
much shorter periods (135–257 ms) (Mosqueira et al., 2018).

6 Concluding remarks

The decades-long studies on nAChR-lipid interactions have
provided a great deal of information on the modulation of the
protein by membrane lipids. This review has highlighted the
exceptional properties of the neuromuscular synapse, both in
terms of absolute numbers and density of its receptor dotation,
which dictate unique modes of lipid modulation of the protein and
more importantly, underscore the significant influence of the
nAChR on its interstitial lipid microenvironment. Contemporary
atomistic structural studies are increasingly contributing to the
identification and characterization of sites on the nAChR
transmembrane domains that fulfill the requirements for lipid
binding sites of low- and high-affinity and, importantly, to
confirming many of the properties of these sites previously
characterized by biochemical and biophysical approaches.
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