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Abstract. The evaluation and understanding of human balance and risk of falls, particularly in 
the elderly, is a growing field of study. Complementeing classic clinical tests (relying on 
comprehensive, although mostly qualitative assessments) with new devices that acquire precise 
patterns associated to the balance process, appears as a great oportunity in this area. Objective 
features can be obtained from these patterns, summarizing relevant data about balance and gait 
processes. This work presents results from the Dynamic Gait Index assessment over 42 
subjects, while wearing a specially designed 3D-linear acceleration sensing device. With 
knowledge about the test, features related to step frequency, energy expenditure and changes in 
signal shape were defined and obtained from the three acceleration signals. The evolution of 
these features over time is of interest, so a moving-window strategy was implemented. Signal 
processing strategies were tested and improved, and results were correlated with the clinical 
scores given by the physicians to better understand them, initially test their reliability and 
select the most suitable ones. Results showed promise for this strategy in providing uniform, 
meaningful and new interpretations about different processes involved in the stages of the test, 
opening the possibility to develop custom user interfaces for clinical use. 

1. Introduction 
Balance is a complex phenomenon, central to the field of human biomechanics. No matter its cause, 
the loss of capabilities associated with motor control translates into significant reductions in the ability 
to perform daily tasks. In particular, the elderly population is subject to a higher risk of falls, which is 
associated to disabilities, the development of chronic degenerative diseases, and a consequent higher 
risk of death or a worsening quality of life. The fact that the global population is ageing “at 
unprecedented rates” [1], stresses the potential impact of these links between age and falls, so the 
possibility of assessing this risk results of great importance for public health [2]. There is a number of 
well-known clinical assessments in this field, such as the Tinetti scale or the Dynamic Gait Index 
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assessment of risk of falls (DGI) [3]. While these tests rely on the expertise of specialized physicians, 
which perform comprehensive evaluations and score subjects (factoring step frequency, symmetry, 
continuity, deviations and need of assistance, etc.), the possibility of quantifying balance patterns 
through objective indexes can help provide access to new, more uniform assessments. Recent 
technologies have opened the possibility to acquire and process balance patterns in innovative ways. 
Activity monitors involving accelerometers [4] are of special interest as low-cost alternatives to 
equipments like force platforms or high-speed video motion tracking systems, and the possibilities for 
complementing current clinical tests with information from these new sensors are considered of great 
value [5][6]. In order to approach this task, a wireless portable system was developed, which records 
linear accelerations in three axes [7]. This work is based on results from the evaluation of 42 subjects, 
over 60 years of age, through the DGI test, which will be detailed in following sections. Physicians 
performed the assessments while subjects were equipped with the new sensing device. The proposed 
line of work attempts to associate scores from the clinical examinations with experimental registers 
acquired through this system. This work presents and tests three new features and their evolution 
trough the stages of the DGI test, conceived as objective measures of factors that are taken into 
consideration in the clinical assessment (walking speed or changes in balance, etc.), aiming to give 
access to superior DGI evaluations, based on precise, uniform data with biomechanical meaning. 
Features were tested, and correlated to clinical scores, in order to prove and understand their meaning 
and scope. Finally, conclusions, further improvements and future lines of work are proposed. 

2. Human Balance Assessment - Data acquisition  

2.1. Portable and programmable wireless system for gait and balance assessment 
In order to acquire relevant, objective measurements during classic clinical balance tests, a portable, 
wireless system for linear acceleration recording in three axes was developed [7]. This system 
(hardware shown in figure 1) includes a battery-powered sensing device that was conceived as a belt 
with an attached, small case, containing a Micro ElectroMechanical System, triaxial capacitive 
accelerometer, a USB-powered terminal connected to a personal computer, and a dedicated graphical 
user interface, through which the device is controlled. The sensing device is intended to be fitted 
tightly around the trunk of the subject, and its selected placement for its subsequent implementations is 
an approximation of the whole body’s center of mass (CM), having the sensor fixed at the widest part 
of the hips and at the middle of the back, a common choice for similar applications [5][6]. The device 
will respond to the motion of the CM. Two alternative representations for the 3D-acceleration vector 
are shown in figure 2: three components -AnteroPosterior (AP), MedioLateral (ML) and Vertical 
(VE)-, or the magnitude of the vector (AMOD) and two angles, θAP and θML. The resulting system is a 
versatile and programmable wearable data logger and signal processor for 3D-acceleration signals, 
with a sampling rate of 100 Hz, sensing ranges of ±1.5 Aunit, ±2 Aunit, ±4 Aunit ±6 Aunit                      
(Aunit = 9.8 m/s2), and a top resolution of 0.001 Aunit. The high sampling rate and wide, programmable 
sensing range, combined with the good sensing resolution, are the main qualities of this system, 
suitable for both dynamic and static balance measurements, and with possible, further applications in 
sports, as well as its current implementation in normal and dysfunctional human balance analysis. 
 

 

 

 

Figure 1. System components: Wearable 
sensing terminal (top), battery pack 
(bottom right), and USB base (left). 

 Figure 2. 3D vector components: (a) Linear 
coordninates (AP, ML and VE). (b) Vector 
magnitude AMOD and angles θAP and θML. 
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2.2. Dynamic Gait Index assessment of risk of falls 
The Dynamic Gait Index (DGI) for gait assessment and risk of falls evaluation for the elderly consists 
of serveral excercises, mainly involving a normal, straight walk over relatively long distances            
(two 5 meters walks, in this case), with the addition of obstacles or commands given by a physician 
[3]. A detailed description for this particular implementation of this test is divided in stages as follows: 
 

 1. Straight walk 
 2. Straight walk with speed changes (slow down, normal or faster, when commanded) 
 3. Straight walk, with horizontal head turns (left or right, when commanded) 
 4. Straight walk, with vertical head turns (up or down, when commanded) 
 5. Straight walk, with pivot (180° turn, when commanded) 
 6. Straight walk, stepping over a small obstacle 
 7. Straight walk, passing around an obstacle and returning to a straight walk 
 8. Stair climbing 
 

 The aim of these stages is to evaluate each subject’s ability to respond to slight changes during a 
normal walk, with the physician assigning a score between 0 and 3 points for each activity. A score of 
0 indicates severe changes or the impossibility to perform the activity, and a score of 3 means little to 
no difficulty in making such changes. Each particular activity has some specific parameters that need 
to be accounted for in order to determine the score, for every subject. In particular, activities 1 through 
4 have certain properties that make them better suited for a joint evaluation. The highest possible score 
is 24, and scores of 19 or less have been related to a greater incidence of falls in the elderly.  
 As described, these evaluations, performed by qualified physicians, result in a comprehensive, 
although qualitative estimation for each subjet’s abilities, balance quality and risk of falling, so a 
unified standard would be needed, for example, if results from many subjects and/or evaluated by 
different physicians were to be compared (unless those physicians had previously discussed some 
basic guidelines for their scoring procedure). The actual description of the test gives some notions 
about what qualifies as each score, but the final decision as to what makes a “slight”, “moderate” or 
“severe” change falls on each specialist. Another scenario in which a unified standard would be useful 
could be the study of one single subject over time, as this subject excercises in order to correct certain 
habits or patterns that affect its balance capabilities, therefore allowing to determine how much that 
subject has improved in that time. In any case, it could be noted that a quantitative, reliable and 
uniform source of information could be of value for the work of the physicians, not only for the 
analysis of each subject, but also for possible broader, statistical studies over larger populations. 
Furthermore, for cases where changes are not too evident or difficulties are not severe, a quantitative 
source of information could be able to precisely detrmine how severe these difficulties are or how 
stable certain features remain during the excercies, allowing for a more precise scoring system. On the 
other hand, this does not mean that such examinations should be completely replaced by new, 
automated methods. Given the complexity of the human balance process, a comprehensive, justified 
analysis covering many different factors is needed for these examinations to take place. The goal of 
adding new data to these factors would be to give an additional, reliable and unified source of 
information that physicians could take into account while evaluating patients, combining their 
knowledge with new sources of information. 

2.3. Experimental setup 
The studies presented in this work correspond to evaluations made by specialised physicians over 42 
subjects (31 women and 11 men), with an average age of (77 ± 8) years, which manifested a level of 
risk of falls. Every evaluated subject gave informed, written consent, before performing the tests, 
which were previously authorized by the Ethics Committee of the medical institution where the 
evaluations took place (Unidad Asistencial Dr. César Milstein), and described to the subjects before 
taking place. Subjects are patients of the neurology service of the instiution, and they performed three 
classic evaluations of gait and balance: the Tinetti Test for gait and balance assessment, the DGI 
evaluation, and a Get Up and Go test, while wearing the new sensing device, placed at the desired 
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position (estimation of the center of mass). This work focuses on the DGI assessment. The setting for 
the experiments involved marking the straight path that would be followed by the subjects (indicating 
start and stop marks, and with intermediate marks), calibrating the measuring devices and positioning 
cameras for image acquisition. High-speed videos were recorded with two Casio EXFH25 cameras, at 
120 frames-per-second, with one camera recording the sagital plane and the other on the frontal plane. 
Regular videos were also recorded. Before the beginning of the tests, several anthropometric 
measurements were taken for each subject (height, weight, foot length, a stride record and leg lengths 
with and without footwear). Both the weight and single stride records were taken with a Vernier force 
platform (range: -800 N to 3500 N, accuracy: ±1.2 N), and acquired through a Logger Pro 3 data 
collector, by the Logger Pro software. A portable height meter (±1 mm), and tape measure (±1 mm) 
was used for height and leg measurements. While performing the tests, patients wore their usual 
footwear and viewing aids. Test scales were agreed upon and scored, simultaneously and 
independently, by a neurologist and a specialist in kinesiology, for a better control of the scoring 
procedure. A chronometer and mechanical step counter were also used for specific gait assessments. 
Subjects were finally equipped with the accelerometry sensing device (calibration strategy detailed in 
[7]), and its distance from the ground was also measured. From this point on, the clinical evaluations 
took their normal course, with the sensing device and the cameras recording the procedure. 

3. Feature definition – Signal Processing 
The stages for the DGI assessment involve a subject performing normal tasks, sometimes with the 
addition of obstacles or responding to commands. In general, a low-risk subject should be able to 
perform these activities making fast but steady changes as needed, without showing disturbances or 
great discomfort. In this section, a quantitative approach to the evaluation of such changes is 
presented, taking the form of a moving-window feature extraction process, so that its user is able to 
see how much these features change over time, during each stage.  

3.1. Main factors involved in first DGI stages 
When physicians evaluate a subject while performing the DGI assessment, they follow a series of 
general guidelines that point out what could be related to a specific score, from 0 to 3 [3]. Evaluations 
for stages 1 through 4 rely mainly on factors related to changes in speed or balance patterns, as well as 
to each subject’s ability to continue performing the tasks. Quantifying these factors would be useful 
then for a joint analysis of all of these stages, since the scoring process relies heavily on the physicians 
defining what is to be considered severe, minor, good or bad, so their evaluation becomes subjective.  

3.2. Feature definition 
With the main factors involved in the evaluation of stages 1 through 4 in mind, the following 
quantitative features were proposed as a potential supplement for the clinical assessment: 

I. Changes in speed    Subjects can walk shorter distances over a constant period of time (resulting 
in lower speeds) for two reasons: a lower average step frequency at a constant stride length, or a 
reduced energy expenditure per step at a constant step frequency. The opposite would occur when 
increasing the speed. Considering the charactristics of the acquired acceleration signals, this 
translates into two features that can be calculated to factor speed changes, and other features: an 
average step frequency estimate (Favg), and an average energy expenditure per step factor (Estep). 
II. Changes in balance patterns, deviations, imbalance  When the two previous features are 
removed from the acceleration signals, what is left is the actual “shape” of the acceleration pattern 
on each axis. The absolute value of a Fast Fourier Transform for the windowed signals ( |FFT| ), 
normalized by Favg in the x-axis and by a factor related to Estep in the y-axis, would carry this 
information about the windowed signals. If this information is compared to an average pattern for a 
normal walk by the same subject, it would indicate how much that shape changed ( FFTevol ). 
III. Subject’s ability to continue walking    Physicians can easily detect this event without the need 
for an automated source of information, so it will not be accounted for in the following sections.  
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3.3. Signal processing  

3.3.1. Feature calculation Up to this point, three features have been selected as sources of useful 
information about performance on stages 1-4 of the test. These features are described in detail as 
follows: 
 

• Average step frequency estimate (Favg)    Previous work related to the sensing device and 
acquired balance and gait acceleration signals [8] has shown that information given by the sensor in 
the AP axis is the most reliable individual source for average step frequency estimation on normal gait 
evaluations. These signals are the most consistent, and their |FFT| have a peak at a fundamental 
frequency component (Fmax{|FFTAP|}) that can be directly linked to the actual mean frequency of the 
steps. Only when a very significant asymmetry between left and right steps occurs, that peak will take 
place at approximately one half of the actual mean step frequency, and those particular cases can be 
detected and compensated by comparing the three axes [8].Considering that the relevant information 
for these tests is the change in the average step frequency estimate, and not its absolute value, the 
proposed calculations of Favg will be obtained by this method. When further analyzing this feature, this 
can be compensated, and relative indexes will be defined (Favg/mean{Favg}, for example) in order to 
overcome the possible difference between the real mean step frequency and the estimated Favg. 

   Favg = Fmax{|FFTAP|} (1) 

• Average energy expenditure per step factor (Estep)   An average energy expenditure factor Eavg 
for an acceleration signal x[n], from sample n0 to n0+ W, is defined in (2). Finally, the proposed 
average energy expenditure per step factor (Estep) is detailed in (3). 
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• Signal shape evolution factor (FFTevol)   The first step in order to obtain this feature is to calculate 
the FFT for the three signals provided by the accelerometer (mean values are subtracted in order to 
consider the dynamics, and a Hanning window is applied for better results). The results are then 
normalized by re-scaling both axes: the x-axis (f) is re-scaled dividing it by Favg, (fN = f/Favg) and the    
y-axis is re-scaled by avgE . The normalized spectrum for a signal is defined as follows: 
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 Once a normalized, new spectrum is obtained, it can be compared with other results. In particular, it 
is desired to compare the average |FFTN| of a normal walk with the |FFTN| of other stages, for the same 
subject, allowing to see how different the registers are. In order to determine this difference between 
two signals, named |FFT1N|(fN) and |FFT2N|(fN), a mean square error is obtained: 
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where Nbins is the number of bins for the normalized FFT (in this case 10000). FFTevol will be 
calculated for the three acceleration signals, comparing each FFTN spectrum to its mean counterpart 
for a normal walk. A higher FFTevol implies a greater difference between signals. For a sampling rate 
of 100 Hz, fmax will be less than 50 Hz. As part of the process, bins over fNmax = 10 (fmax = 10 Favg) 
are discarded, as they do not hold significant information compared to the lower frequencies. 
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3.3.2. Moving-window signal processing strategy   Subjects were equipped with the accelerometer 
sensing device while performing the DGI assessment. Registers from stages 1-4 should be cut to 
remove initial and final transients. With the isolated relevant sections of the registers, three signals of 
variable length are left, as the duration of each stage depends on how fast the subjects can perform the 
activity. The goal of this work is to analyze the evolution of the proposed features while each stage is 
performed. In order to do so, a moving-window strategy was selected (figure 3). A window of size 
Wsize (in seconds) was defined to select smaller segments of the signals, under which each feature 
would be calculated (for either one or the three signals). By moving the window one sample at a time 
(or 0.01s for a 100 Hz sampling rate), and recalculating the features within that new segment, the end 
result for each feature will be a plot showing its evolution over time, i.e. Favg(t). With this information, 
physicians will have access to accurate data indicating which changes have occurred, when they took 
place, and how severe they have been, adding relevant and objective information to their assessment.  
 
 

 

Figure 3. Moving-window feature extraction strategy for a signal. As the 
window is moved, a time chart for the feature (Feature(t)) is created. 

 
  

The selected window size was defined as four times the average step period estimate of the normal 
walk (or 4/Favg0). Information obtained from the Tinetti test for the subjects involved in the DGI 
assessment showed that their average step frequency was above 1 Hz for a normal walk [8]. With this 
information in mind, this window size was selected because Wsize needs to be large enough to contain 
at least a few steps (more than two consecutive steps) so that features preserve their meaning for the 
three axes, and also short enough to be sensitive to changes in the features. This Wsize should also be 
compatible with the estimation of an average time between commands given by the physicians. The 
complete feature extraction process through this moving-window approach requires at least one 
normal walk register, as it is the basis against which the other stages are compared. The following are 
simplified signal processing stages required for the final feature extraction process: 

 

1. Calculate mean Favg and mean normalized spectrum FFTN(fN) for a normal straight walk record 
(stage 1). Results are 1: Favg0 and 2: FFTN0(fN) for each signal. 

2. Define Wsize. 
3. Use the moving window to calculate the evolution of Favg and Eavg over time (for registers from 

stages 1-4), results are 1: Favg(t) , and 2: Eavg(t)  and Estep(t)  for each signal 
4. Normalize |FFT| on each sample with Favg(t) and Eavg(t), to calculate FFTN1(fN), for each signal 
5. Get FFTevol(t)  for each component with FFTN1(fN) and FFTN0(fN). 

 

It should be noted that step 1 actually requires to perform a variation of steps 2 through 5 on the 
normal walk signals, in order to get the three mean normalized |FFT| for that stage. Since Estep, as 
defined in (3), is not filtered, its evaluation through the moving-window process can lead to a feature 
that, while accurate, is sensitive to sudden peaks, which are expected for gait registers, especially for 
VE and ML or AMOD and θML signals. A filtered version of this feature (Estep’) was developed, taking 
advantage of the FFT and the Hanning window relation to the signal energy, resulting in a smoother 
estimate (figure 5) that focuses on the energy expenditure in the central portion of the windowed 
signal. However, Eavg and Estep should not be discarded, and Eavg is needed to calculate FFTevol.  
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4. Results 
Figure 4 is a hystogram for the final scores of the DGI test. In can be seen that only 5 out of 42 
subjects were diagnosed with a lower risk of falls. Considering the results of this test, most subjects 
would have a high risk of falling, and less than a 11.9% of them would be in better conditions. A more 
specific analysis, divided in stages, would point to particular conditions or difficulties for each subject. 
Some subjects could not perform all stages. A minimum of 40 registers per stage were obtained.  
 A total of 165 registers from stages 1-4 of the DGI assessment were pre-processed in order to 
satisfy the requirements set in section 3.3.2. Both linear coordinates and magnitude and angular 
components were obtained from each acceleration register, and the proposed features were calculated 
from these signals. Register length was variable, with a mean of (8.94 ± 3.79) seconds, a minimum of 
4 seconds and a maximum of 26 seconds. Wsize resulted in values of (2.63 ± 0.49) seconds. Window 
sizes remained adequately inferior to register lengths, as a lower Favg0 implies a larger Wsize, but also 
that subjects will take longer to perform the tasks, resulting in longer registers.  
 

• The proposed set of features is an attempt at isolating three characteristics of a gait signal: its 
fundamental frequency, and its intensity and shape on each axis. As described, these parameters 
should be independent, and this has been proved in some cases, (shown in figure 5 for θAP). However, 
this does not mean that features will be independent for every case and stage (i.e.: attempting to walk 
faster can lead to an increased energy expenditure, as well as a faster step rate). Subjects’ ability to 
change these features independently is what will determine how related they are in practice.  

 

 

 

Figure 4. Results for DGI 
assessment of 42 subjects - 
Hystogram. Only 5 subjects 
received a positive evaluation. 

 Figure 5. Independence between features for θAP signal    
(top-right): Favg’(t) (bottom-left) decreases, while EstepAP(t)          
(bottom-right) grows, and FFTevolAP(t) (top-right) remains 
steady at a low value. 

 

• Favg0 responded as expected for every normal walk assessment. One way to test this was to divide 
the number of steps in the registers (with previous, combined knowledge about the three normal walk 
signals for better accuracy) by the register time. Additionally, Favg(t) has shown good response to 
speed changes in the other excercises. However, for some cases where subjects drastically changed 
their gait patterns, this feature has shown jumps to lower frequencies on those periods (22 cases, for 
stages 2-4). If this occurred in response to a sudden change in the actual step frequency, it would not 
be considered an issue. In these cases, however, it could be seen that the highest frequency component 
of the signal was lower than any detected or observable step rate, and that it no longer reflected the 
fundamental step frequency, but a lower drift, possibly due to changes in posture, or sudden 
imbalances. This implied that the biomechanical meaning of the parameter was lost for these cases, 
affecting the subsequent calculation of Estep and FFTevol. Both an example of this and the proposed 
solution are shown in figure 6. Two additional frequency estimators have been calculated to solve this: 
one is a filtered version of Favg(t), limiting its maximum change between samples; the other is the 
frequency maximum of the combined |FFT| of the AP and ML signals (considering that the ML-peak 
frequency for a normal walk should be half of the AP-peak frequency, and scaling the axes 
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accordingly). With these three frequency values, the final, new average step frequency estimate (Favg’) 
was chosen as the one that most greatly reduced FFTevol (the difference from a normal walk) for the 
three signals, on each sample. This estimation has shown improved resistance to these discontinuities. 
In result, the original Favg(t) will show jumps related to drastic changes in balance (which is relevant to 
the test), while Favg’(t) will allow for the features to retain their biomechanical meaning (figure 6).  

 An analysis of Favg’(t) and its general link to scores in the test was performed. Results from one 
subject showing great asymmetry between steps, as mentioned in section 3.3.1. (with video records 
supporting this) were adapted to allow the presented analysis, comprising all subjects. Table 1 shows 
results for Favg0 and Favg’(t) (mean, maximum and relative standard deviation σ), grouped and averaged 
by score (which is specified for each stage). Results show consistency between Favg’ and the logic 
behind evaluations: more confident subjects perform tasks at higher speeds, with higher (speed 
changes) or lower (normal walk or with head turns) relative changes to Favg’(t) than those with lower 
scores. Additionally, the last feature (σ{Favg’(t)}/mean{Favg’(t)}) is independent of the absolute value 
of Favg’, as proposed in section 3.3.1. 
 

Table 1. Favg’(t) sweep: Results from stages 1–4 of DGI test, grouped by score. Subjects with higher scores 
show a higher mean or peak step frequency on all stages. When asked to change speed, subjects with 2-3 
points show higher relative standard deviations in Favg’, and when asked to walk normally while turning their 
heads, they show lower deviations than subjects with 0 or 1 point. 

Score 0 - 1 2 3  

 Favg0 1.57 1.56 1.69 Hz 
 σ{ Favg’(t) } / mean{ Favg’(t) } 0.04 0.03 0.02 adimensional 

Normal  
Walk  

 Number of cases 7 25 10 Subjects 
Score 0 – 1 2 3  

 max{ Favg’(t) } 1.80 1.87 1.95 Hz 
 σ{ Favg’(t) } / mean{ Favg’(t) } 0.08 0.10 0.11 adimensional 

Speed 
Changes 

 Number of cases 12 23 5 Subjects 

Score 0 - 1 2 3  

 mean { Favg’(t) } 1.46 1.58 - Hz 
 σ{ Favg’(t) } / mean{ Favg’(t) } 0.08 0.04 - adimensional 

Horizontal 
Head turns 

 Number of cases 26 15 0 Subjects 
Score 0 – 1 2 3  

 mean { Favg’(t) } 1.39 1.58 1.65 Hz 
 σ{ Favg’(t) } / mean{ Favg’(t) } 0.08 0.05 0.06 adimensional 

Vertical head 
turns 

 Number of cases 18 20 2 Subjects 
  

 It should not be expected, however, that every subject with a score of 0 should have a lower mean 
step frequency than every subject that received a score of 3. Physicians take many factors into 
consideration while scoring, but the analysis of general tendencies for this feature should put its 
reliability to test. Averaging between subjects was only implemented to allow for a general 
interpretation of the results, while taking this into account. Finally, the highest relative change in 
Favg’(t) was found on subjects with a score of 3 in the walk with speed changes (0.11), meaning that 
they showed the most significant changes in speed, in relation to their average step frequency. Similar 
calculations were obtained from Estep’(t), for each acceleration coordinate, showing higher maximum 
values and relative standard deviations for stage 2 than for stage 1 for Estep’ from θAP and AMOD, as 
well as greater relative deviations for stages 3-4 than for stage 1 on all components, for example.  
 

• Estep’(t) is a less noisy estimation than the unfiltered Estep(t) (figure 5). In figure 7, Estep’(t) is 
variable, and different, between axes. Isolating Estep’ values from the three signals is of interest, but the 
ratio between AP and ML results (indicating how much of the actual energy expenditure is dedicated 
to moving forward) is another feature that should be considered, and it can easily be obtained from 
these features, while it would be difficult for physicians to estimate it. Alternative filters (and energy 
estimators) can additionally isolate other important signal characteristics, like sudden peaks, etc. 

9th Argentinean Bioengineering Society Congress (SABI 2013) IOP Publishing
Journal of Physics: Conference Series 477 (2013) 012029 doi:10.1088/1742-6596/477/1/012029

8



 
 
 
 
 
 

 

 

 

Figure 6.  θAP(t) signal (top) and 
Favg(t) estimates (bottom): 
Favg’(t) holds its meaning, while 
Favg(t) detects discontinuities. 

 Figure 7. Filtered Estep’(t) results for subject in walk with 
speed changes (score: 2). Signals show different, significant 
changes in Estep’(t), while the average step frequency Favg’(t) 
shows minor changes, stressing the relevance of this feature. 

 

• As defined, FFTevol is able to detect changes in signal shape, compared to the mean shape of a 
recent normal walk, but also independently. Since the mean shape of a normal walk is constant, 
changes in FFTevol(t) reveal changes in the actual signal, so FFTevol can be used to assess how much the 
gait pattern changes over time, for all stages. Figure 8 shows the standard deviation of FFTevol(t) from 
two signals (θAP vs. AMOD) during the normal walk (8(a)), and for the walk with horizontal head turns 
(8(b)), for all subjects. Subjects with higher scores tend to show lower values for both signals, 
especially in (8(b)). A similar tendency was found for the walk with vertical head turns. Results for 
θML did not follow this trend. Additionally, the maximum standard deviation is significantly lower in 
the normal walk (0.07), compared to its equivalent in the walk with head turns in (8(b)) (0.30). This is 
consistent with the test, and can be used as a new feature, when evaluating a single subject. 
 

 

Figure 8. FFTevol variations for (a) normal walk and (b) walk with horizontal head turns: Standard 
deviation of FFTevol(t) for θAP vs. AMOD, for each subject. Overall values in (a) are lower than those 
encountered in (b). Additionally, subjects with lower scores show scattered, more significant values.  

5. Conclusions and Future Work 
In this work, a comprehensive analysis of human gait registers obtained from a 3D-accelerometer 
during the DGI assessment of risk of falls in the elderly has been proposed, based on three features, 
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each of them holding a specific, uniform biomechanical meaning between subjects, laying the required 
foundations for an objective analysis. Information from the assessment of these features on 42 subjects 
was processed, and summarized through parameters that were separated by the scores received during 
the clinical evaluations. Results showed promise in the implementation of the features for the 
objective evaluation of gait registers, and also allowed to determine which ones are best suited for 
discerning good and poor general responses, with features from ML signals showing the most variable 
response, due to the many factors that affect their shape between subjects (ranging from almost square 
signals to less recognizable ones), which can be assessed in the future. While a direct indiviual 
relationship between any feature and the final score for a stage should not be expected, unless it 
showed extreme values (a combination of the three features and other assessments made by the 
physicians is what should determine the score), the presented results show the practical viability of this 
method as a uniform source of detailed, precisely graded information, as well as a verification of the 
tendencies that they are expected to follow in practice. More advanced, custom analyzes can be 
developed on this basis. A new graphical user interface, through which a user can process this 
information during the DGI assessment, obtain the features and show them to the physicians, either 
graphically or with simple, select indexes as shown in table 1, can be developed, providing access to 
relevant, objective information that can improve and broaden the scope of this assessment.  
 During the evaluation process, physicians remarked the possible effect of “training” on some of the 
tests. As subjects repeatedly perform these similar tasks, they get used to doing so, and this habit can 
affect how they respond in specific parts of the tests (stressing its effect on the timed, Get Up and Go 
evaluation). The proposed features can be used to actually measure this effect, by comparing two 
separate normal walks from the same subject at the beginning and end of the combined tests. Finally, 
it should be noted that certain variables from the original test can affect the proposed features: for 
example, the number of times and how often physicians command each subject to perform head turns 
or speed changes, which are not considered in the clinical assessment. For future work, commands can 
be emitted automatically, and saved with the acceleration signals, opening the possibility for an even 
more precise analysis (determining how much the features change, and how long it takes for the 
subject to perform the change).  
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