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Abstract: The cholinergic system plays an essential role in brain development, physiology, and path-

ophysiology. Herein, we review how specific alterations in this system, through genetic mutations 

or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review 

focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegen-

erative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with in-

flammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in 

peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and 

aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic 

potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum dis-

orders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar 

bibliographic databases were searched with the keywords indicated below. 

Keywords: nAChRs; health; disease; Alzheimer disease; Parkinson disease; schizophrenia spectrum 

disorders; epilepsy; addiction 

 

1. Introduction 

Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-

gated ion (cation) channel (pLGIC) superfamily, which includes neurotransmitter recep-

tors in metazoa and other ion channels in prokaryota [1]. The various nAChR subunits 

(α1–α10, β1–β4, γ, ε, and δ) are encoded by 17 genes in vertebrates. nAChRs typically 

assemble in a combination of two pairs of αβ subunits and an accessory subunit, giving 

rise to a hetero-pentameric structure [2]. Homopentameric structures containing only α 

subunits are possible as well [2], allowing for a wide combinatorial diversity of neuronal 

and muscle-type nAChRs (fetal and adult) with distinctive pharmacological and biophys-

ical properties [3–8] 

nAChRs occur in multiple dynamic conformational states. In the absence of a ligand, 

the receptor rests with its ion channel in a closed state. In the presence of an agonist, the 

receptor protein rapidly shifts to an open state that allows the influx of small cations. The 

open channel conformer can either return to the closed state or transit to a desensitized 

(and closed) state. In the desensitized state, the nAChR is unable to be activated by ligand 

binding. 

During brain development, neuronal nAChRs contribute to neurogenesis, neurite 

outgrowth, and synaptic maturation [9–11]. In the human brain, neuronal nAChRs are 

commonly found in the basal forebrain, hippocampus, cerebellum, and temporal cortex. 

These brain locations participate in learning, cognition, and memory [11]. Among neu-

ronal nAChRs, heteromeric α4β2 nAChRs and homomeric α7 nAChRs are the most 
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abundant subtypes, whereas combinations such as α3β4, α3β2, and α6β2β3 nAChRs are 

less common and are generally restricted to specific brain regions [12,13].  

Cholinergic signaling is actively involved in the modulation of the finely tuned bal-

ance between excitatory and inhibitory neurotransmission in the brain. nAChR activation 

by the endogenous neurotransmitter acetylcholine (ACh) promotes the release of Ca2+ 

from intracellular stores and the induction of long-term potentiation (LTP) that favors a 

depolarized state of the neuron. Activation of nAChRs at pre-synaptic compartments fa-

vors the release of several neurotransmitters, including dopamine (DA), norepinephrine, 

γ-aminobutyric acid (GABA), and glutamate (Glu) [14]. Activation of α4β2 nAChRs al-

lows the modulation of synaptic architecture by regulating the abundance of dendritic 

spines and heterologous synaptogenesis [15]. Post-synaptically located α7 nAChRs can 

regulate Glu receptors, thereby modulating synaptic plasticity and GABAergic interneu-

ron activity [16,17]. Furthermore, α7 nAChRs can modulate network excitability, as either 

their activation or inhibition at the prelimbic cortex promotes the induction of LTP [18]. 

Thus, cholinergic receptors have a major role in the regulation of neural excitability and 

plasticity. Likewise, impaired depolarization of the postsynaptic membrane affects com-

munication between neurons [19].  

nAChR are expressed in non-neuronal cells as well; α7 nAChRs are present on pe-

ripheral immune cells, in astrocytes, in microglia, and in endothelial cells where they me-

diate neuroprotection and the inflammatory response to different insults [20–22]. 

α7 and α4β2 nAChRs have been associated with the pathogenesis of a range of neu-

rological disorders, e.g., Alzheimer disease (AD) [23], schizophrenia spectrum disorders 

[24], Parkinson disease (PD) [25], nocturnal frontal lobe epilepsy [26], autism spectrum 

disorder [27], attention deficit hyperactivity disorder [28], and depression [29], to name 

some of the most relevant ones. Dysfunctional nAChRs have been implicated in non-neu-

rological diseases as well, e.g., small-cell lung carcinomas and diabetes [30]. The predom-

inant α7 and α4β2 nAChRs and the role of other nAChR subtypes in different diseases is 

currently the subject of basic and clinical research. One example is involvement of the α9 

nAChR subunit in the pathophysiology of neuropathic pain [31,32] and participation of 

the α6 subunit in sensory processing and pain [31,33]. Muscle-type nAChR dysfunctions 

cover a wide clinical spectrum. Those due to inherited mutations can be associated with 

muscle weakness, myasthenia gravis, or congenital myasthenic syndromes [34,35]. 

Knowledge of nAChR involvement in neuromuscular, neurological, and psychiatric dis-

orders makes these receptors critical targets for drug development [3,27,36–39].  

Understanding the complex neurobiological mechanisms implicated in addiction is 

key to the development of a therapeutic protocol/strategy for the treatment of what is to-

day considered a chronic neuropsychiatric disorder. Epidemiological studies have pro-

vided information on the association of certain neurological diseases, such as PD and 

schizophrenia, with heavy smoking habits and decreased brain expression of specific nA-

ChRs. Therefore, information on the role of these receptors in such pathophysiological 

states is the first of many steps leading to therapeutic intervention. 

Many if not all neurological diseases present an inflammatory component. nAChRs 

play a central role in the cholinergic anti-inflammatory pathway and in the regulation of 

immune functions in AD, PD, and schizophrenia spectrum disorders. Hence, activation of 

this pathway has emerged as a therapeutic tool in the amelioration of the neuroinflamma-

tory component of these diseases. Neuroinflammatory comorbidities not only decrease 

the quality of life of the patient, they represent a social, emotional, and financial burden 

to society. Research on how nAChRs are altered in disease will undoubtedly contribute to 

the development of therapies to reverse or at least hamper the progression of these debil-

itating diseases.  

The fundamental role played by nAChRs as modulators of neurotransmitter release 

determines that dysfunction or mutations of the genes encoding these receptor subunits 

affect many cognitive functions and favor the occurrence of a wide range of pathologies, 
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such as addiction, neuropsychiatric and neurodegenerative diseases and epilepsy, as crit-

ically discussed in this review. 

2. Addiction 

Addiction can be defined as a chronic neuropsychological disorder in the form of an 

intense compulsive urge to seek immediate sensory rewards; it is characterized by func-

tional alterations in brain circuits that participate in reward, memory, and self-control, 

leading to maladaptive behaviors [40]. The hallmark of addiction involves what are collo-

quially known as the four Cs: the appearance of craving, the compulsion to “use”, the loss 

of control, and adverse consequences [41]. An understanding of the neurobiological mech-

anisms and central actors involved in the development of the different stages of addiction 

is fundamental. Today, it is acknowledged that several neurotransmitters and neuromod-

ulators regulate brain reward areas acting at the level of either the ventral tegmental area 

(VTA) or the nucleus accumbens (NAc). These areas of the brain balance and modulate 

emotions, stress, and interoception. The intake of any substance that disbalances the mul-

tiple neurotransmitter-specific neuroplasticity circuitries will induce neuroadaptations 

with different effects on the individual [41]. 

Nicotine (1-methyl-2-[3-pyridyl] pyrrolidine), mainly found in tobacco, is considered 

a highly addictive drug involving all of the criteria contained in the four Cs [42]. In its 

uncharged form it can permeate the plasma membrane and enter the brain, where it can 

change to its charged form to bind and trigger nAChRs [12,43]. By activating a variety of 

nAChRs located in DAergic neurons in the VTA that projects to the NAc, nicotine pro-

motes the release of DA in the NAc, a key step in the initiation of addiction [43] (Figure 

1).  

 

Figure 1. Schematic diagram showing key nuclei and pathways involved in addiction with strong 

participation of nAChRs. Nicotine binding to α7 and α4β2 nAChRs at the ventral tegmental area 

(VTA) promotes the initiation of addictive behavior by favoring the release of dopamine (DA) in the 

nucleus accumbens (NAc). 

In the VTA, nicotine activates α4β2 nAChRs, promoting GABA release in GABAergic 

neurons and thereby inhibiting dopamine release. However, because α4β2 nAChRs rap-

idly desensitize upon agonist binding, the GABAergic flux to the dopaminergic (DAergic) 

neurons is brief. In parallel, nicotine activates α7 nAChRs in presynaptic neurons of the 

VTA, promoting Glu release, which can in turn enhance DAergic release [42]. Because α7 
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nAChRs have lower affinity for nicotine than α4β2 nAChRs, they are less prone to desen-

sitization in the presence of the nicotine concentrations found in the brain upon smoking 

[44–46]. Thus, nicotine addiction is promoted through the combinatory action of a reduc-

tion in the inhibitory GABAergic input to DAergic neurons and the potentiation of glu-

tamatergic afferents to dopamine-releasing neurons. Therefore, nAChRs are central actors 

in the modulation of DA release, and consequently in the initiation of nicotine addiction 

[47–50]. 

Unlike the natural endogenous agonist ACh, which is rapidly hydrolyzed by acetyl-

cholinesterase, nicotine cannot be removed from the synaptic cleft [6,43,51,52]; this con-

stant exposure to nicotine triggers several neuroadaptations. Chronic nicotine exposure 

leads to nAChR upregulation, with modifications in receptor assembly, trafficking, and 

degradation that contribute to maintaining adequate brain homeostasis [5,53–55]. The 

neuroadaptations taking place in neurotransmitter systems as a consequence of nicotine 

exposure are considered to participate directly in nicotine addiction [52,56,57]. 

Through the mesolimbic pathway, nicotine–nAChR interactions mediate reward and 

reinforcement effects [42]. The habenula has been found to be involved in the regulation 

of feelings such as fear, anxiety and depression [43,58–61]. The aversive effects of nicotine 

withdrawal are mediated through the medial habenula-interpeduncular (MHb-IPN) 

[62,63]. 

The principal nAChR subunits expressed in the mesolimbic pathway are the α4, α6, 

α7, and β2 subunits, with the α3, α5, and β4 subunits being mostly expressed in the MHb-

IPN [64]. It has been hypothesized that α5 subunits comprise ∼20% of functional nAChRs 

in rat MHb neurons that project to IPN [65]. Knockdown of α5 nAChRs in the MHb-IPN 

pathway further suggests that nicotine exerts stimulatory effects on α5-containing nA-

ChRs [66]. Nicotine and other addictive substances have been reported to interact with 

the α3β4 nAChR expressed in the MHb-IPN circuit [67,68], and it has been proposed that 

they mediate drug- or psychostimulant-seeking behavior [69].  

In addition to the many environmental and social factors affecting nicotine addiction, 

individual genetic factors play an important role [42]. The risk of developing nicotine ad-

diction has been associated with genetic variations in genes that encode for nAChRs, par-

ticularly those located in the chromosomal region 15q25 (CHRNA5-CHRNA3-CHRNB4 

gene cluster) [42], in chromosome 8 (CHRNB3–CHRNA6 gene cluster) [70], and in 

CHRNA2 [71]. The cited reports suggest a strong association between single-nucleotide 

polymorphism (SNPs) in nAChR genes and the number of cigarettes smoked per day, the 

age onset of daily smoking, and chronic smoking behaviors in adolescence and adulthood. 

Recent use of knockout/knock-in mice has contributed to our understanding of different 

behavioral phenotypes related to nicotine addiction. The rewarding DA-mediated effects 

along with the aversive consequences of nicotine withdrawal preclude active smokers 

from stopping the habit, and can often motivate relapse after periods of abstinence. 

In line with studies showing nAChR involvement in cognition, inhibitory control, 

and decision-making mechanisms [72], nicotine activation of nAChRs has been shown to 

enhance attention in animal and human studies [73–75]. Nicotine-induced enhancement 

of cognition has been reported to be weaker in non-smokers than in smokers [76]. The 

higher incidence of smoking among individuals with psychiatric illnesses such as schizo-

phrenia spectrum disorders may indicate that patients with these conditions smoke to 

ameliorate the attentional deficits associated with their disease condition [77,78]. In line 

with the self-medication hypothesis, it has been reported that schizophrenia patients have 

lower expression of nAChRs [79–81] and as such may smoke in order to up-regulate their 

nAChR and thereby augment their nicotine level [79,80,82]. 

Many epidemiological and longitudinal studies in recent years have revealed that 

most tobacco users consume cannabis as well [83–85]. Cannabis and nAChR receptors co-

distribute in the same brain areas, suggesting that the two systems can engage in cross-

talk [86]. Tobacco and cannabis are the most common drugs of abuse consumed by ado-

lescents and young adults [87,88]. The co-use of these drugs has been suggested to 
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produce mutually reinforcing effects and a decrease in adverse effects [89]. Several studies 

have indicated that consumption of Δ-9-tetrahydrocannabinol (THC), the main addictive 

component in Cannabis sativa, is associated with anxiogenic-like effects, working memory 

impairments, and ataxia [88,89]. These adverse THC effects appear to be reduced upon 

nicotine administration [90–94]. 

The CHRNA2 gene in chromosome 8 has recently been identified as one of the risk 

loci for both smoking behavior and nicotine dependence [71,95]. A recent study found that 

individuals with cannabinoid use disorder present reduced expression of the CHRNA2 

gene in the cerebellum, suggesting that the gene that encodes for the α2 nAChR subunit 

may be involved in the susceptibility to developing this disorder. Furthermore, a negative 

correlation between the gene expressions of CHRNA2 and CNR1 (cannabinoid receptor 1) 

in the cerebellar cortex and cerebellar nuclei has been reported [87]. Participation of the 

homomeric ɑ7 nAChR has been linked to the rewarding effects of cannabinoid use, while 

the ɑ4β2 nAChR subtype has been associated with a reduction in cannabinoid-induced 

ataxia, and as such with a reduction in cannabinoid-induced motor impairment. In addi-

tion, the potential roles of the ɑ5, ɑ3, and β4 nAChR subunits in cannabinoid use disorder, 

particularly in tolerance- and withdrawal-associated symptoms, have been addressed 

[87]. 

To summarize, nicotine and/or cannabis addiction induces several neuroadaptations 

involving nAChRs in brain regions that modulate the mesolimbic reward system and the 

MHb-IPN withdrawal syndrome. Preclinical studies have provided a wealth of infor-

mation on alterations to the neurocircuitry due to chronic consumption of these sub-

stances. The great diversity of nAChR subunits along with genetic differences in gene 

clusters that code for these subunits are important features of addiction and should be 

considered jointly in the design of therapeutic approaches. 

3. Central and Peripheral Inflammation 

The cholinergic system is involved in the modulation of inflammation in the central 

and peripheral nervous systems [11,31,96]. Cholinergic receptors are expressed in neu-

rons, glial cells (microglia, astrocytes), and immune cells (e.g., macrophages) [11,31,96]. In 

the nervous system, neuroinflammation is a necessary process to restore the altered ho-

meostasis caused by infections, trauma, and neurodegenerative diseases [97].  

In the CNS, neuroinflammation comprises a dynamic multistage physiological re-

sponse orchestrated by microglia and astrocytes [97]. Both types of cells are needed to 

support and sustain adequate neuronal function. In most neurodegenerative diseases a 

chronic inflammatory state is present. Under these circumstances, microglia remain acti-

vated for prolonged periods, with detrimental consequences for neuronal cells [97]. Acti-

vated microglial cells secrete various inflammatory molecules that may lead to neuronal 

dysfunction and degeneration [98]. Likewise, during sustained inflammation astrocytes 

release pro-inflammatory cytokines and prostaglandins that can alter neuronal function 

and the blood–brain barrier [99]. 

Both microglia and astroglia express α7 nAChRs, and several studies have demon-

strated that this nAChR subtype exerts neuroprotective effects in the brain [20,100–103]. 

As such, glial α7 nAChRs are considered potential therapeutic targets in neurodegenera-

tive diseases [104]; furthermore, α7 nAChR agonists have been reported to provide neu-

roprotection against various toxic insults including β-amyloid [105], MPTP (in vivo) and 

MPP+- or LPS (in vitro) [106]. The ionotropic activity of α7 nAChRs is neuron-specific. In 

non-neuronal cells, metabotropic activity is prevalent downstream of α7 nAChR activa-

tion [97]. Activation of α7 nAChR expressed in glial cells promotes the activation of phos-

pholipase C (PLC), in turn inducing the enhanced production of inositol trisphosphate 

(IP3) [97]. This second messenger can bind to its receptor, located in the endoplasmic re-

ticulum, and induce the release of Ca2+, while the cation mediates a decrease in phosphor-

ylation, causing the activation of kinases involved in neuroinflammation. α7 nAChR acti-

vation in glial cells regulates the synthesis and release of inflammatory molecules such as 
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TNFα, IL-6, and nitric oxide [98,107,108]. In addition, α7 nAChRs expressed in astrocytes 

have been shown to mediate anti-inflammatory effects by inhibiting the nuclear factor 

kappa-light-chain-enhancer of the activated B cell (NFkB) pathway and activation of the 

nuclear factor erythroid 2-related factor 2 (Nrf2) pathway [104]. Hence, α7 nAChR in glial 

cells appears to play a significant role in the modulation of neuroinflammation in the CNS 

(Figure 2).  

 

Figure 2. Schematic diagram of nodes and tracks of the cholinergic anti-inflammatory pathway. The 

connection between the vagus and the splenic nerve via the celiac ganglion promotes noradrenaline 

release (blue circles) and activation of splenic T-cells. T-cells release acetylcholine (ACh) that can 

bind to α7 nAChR on immune cells such as macrophages, inhibiting the release of pro-inflammatory 

cytokines. Activation of α7 nAChR inhibits the nuclear factor kappa-light-chain-enhancer of acti-

vated B cell (NFkB) translocation to the cell nucleus and activation of a Janus kinase 2 (JAK2)–signal 

transducer and activator of transcription 3 (STAT3)-mediated signaling pathway. In parallel, activa-

tion of α7 nAChRs may up-regulate the expression of interleukin-1 receptor-associated kinase M 

(IRAK-M), which can negatively regulate innate Toll-like receptor (TLR)-mediated immune re-

sponses, contributing to cholinergic anti-inflammatory effects. 

Peripheral immune cells additionally express nAChRs [109], which can be activated 

by the endogenous neurotransmitter. Several studies have shown that specific ligands of 

the α7, α9, and α10-containing nAChRs can modulate the release of inflammatory cyto-

kines from peripheral immune cells [109–112]. Although the precise mechanisms of signal 

transduction in these cells have not been fully elucidated, it is known that when ACh 

binds to α7 nAChRs on cytokine-producing cells, such as macrophages, activation of a 

signaling cascade via the Janus kinase 2 (JAK2) signal transducer and activator of tran-

scription 3 (STAT3) takes place [100,113,114]. As a result, STAT3 translocates to the cell 

nucleus and interferes with the binding of NFkB to the DNA (Figure 2). The latter event 

prevents the transcription of genes that encode for inflammatory cytokines such as inter-

leukin 1β, 6, and 8, TNF-α, or monocyte chemoattractant protein-1 (MCP1) (Figure 2).  

An alternative anti-inflammatory mechanism initiated through the JAK2-STAT3 

pathway [109,111,112,115] has been described. Activation of this pathway would promote 

the expression of interleukin-1 receptor-associated kinase M (IRAK-M), which can nega-

tively regulate the innate Toll-like receptor (TLR)-mediated immune responses. The TLRs 

comprise a family of receptors that are necessary for the initiation of innate immune 
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responses [115]. Thus, activation of α7 nAChRs in peripheral immune cells would sup-

press the production of pro-inflammatory molecules by inhibiting downstream inflam-

matory signals resulting from TLR activation [109]. 

nAChRs containing the α9/α10 subunits have been suggested to partake in these anti-

inflammatory mechanisms [109]. Activation of α9/α10-containing nAChRs in human 

monocytes and whole blood cultures inhibit release of IL-1β, TNF-α, and IL-6 [116–118]. 

The mechanism by which these receptors relay this inflammatory protection appears to 

be the same as that mediated by α7 nAChR through activation of the JAK2/STAT3 path-

way [109]. Indeed, the cholinergic anti-inflammatory pathway links the nervous system 

with the immune system to counteract inflammatory activation [110,119]. The neural cir-

cuit by which the vagus nerve interacts with the peripheral immune system to provide 

anti-inflammatory action involves activation of the splenic nerve. When splenic nerve fi-

bers are activated, they release noradrenaline. Splenic T-cells release ACh in response to 

noradrenaline binding to β2 adrenergic receptors. In turn, released ACh can activate α7 

nAChR in peripheral immune cells (Figure 2) and confer anti-inflammatory protection. 

Recently, Simon and coworkers further described that in addition to the already 

known α7-mediated anti-inflammatory effects via vagus nerve stimulation, splenic nerve 

terminals that release noradrenaline can interact directly with noradrenergic receptors in 

splenic myeloid cells and exert anti-inflammatory effects [120]. Vagus nerve stimulation 

therapy was introduced in the 1980s to treat epilepsy [121]. The procedure is a non-inva-

sive tool that has been applied more recently to AD [122], PD [123], and schizophrenic 

[124] patients. Furthermore, preclinical studies performed in rodents have shown that va-

gus nerve stimulation limits the accumulation of β-amyloid plaques, while clinical studies 

have shown promising results in the modulation of cognition. 

In summary, neuroinflammation constitutes an ubiquitous pathology in the various 

CNS diseases discussed in this review. As the best characterized nicotinic receptor sub-

type in the immune system [96], stimulation of α7 nAChR is emerging as a promising 

target to counteract neuroinflammatory processes and a major contributor to the restora-

tion of CNS homeostasis. A better understanding of the functionality of nAChR in both 

central and peripheral immune cells and their ability to abrogate inflammatory processes 

is of great clinical relevance.  

4. Alzheimer Disease 

AD is considered the most common form of dementia among elderly persons [125]. 

The development of amyloid senile plaques, containing amyloid peptides, and deposits 

of neurofibrillary tangles rich in tau protein are pathognomonic postmortem hallmarks of 

AD [126]. Reports contend that these plaques and deposits occur in the brain long before 

the clinical manifestations of AD become evident [125,127]. Moreover, it is these patho-

logical alterations that have been suggested to induce neuronal dysfunction associated 

with clinical dementia, a strong decline in memory and cognitive functions, and a deteri-

oration in the visual and motor coordination manifested in symptomatic AD dementia 

[128]. 

Cortical nAChRs are markedly reduced in the brains of AD patients, explaining the 

cholinergic deficits associated with AD [129]. In particular, altered expression levels and 

function of α7 nAChR have been described in AD [110,125]. Reduced α7 nAChR levels 

have been shown to correlate with β-amyloid (Aβ) plaque deposition and cognitive im-

pairment [130–132], and there is strong evidence that α7 nAChR interacts directly with 

the Aβ peptide [125]. The Aβ peptide can bind to α7 nAChR at the surface of neurons with 

very high (pM) affinity [133]. Endocytic internalization of the α7 nAChR–Aβ complex and 

the ensuing Aβ aggregation then promotes the phosphorylation of microtubular tau pro-

tein, leading to the formation of neurofibrillar tangles [133]. 

In recent years, innate immune activation has been ascribed an important role in both 

the pathogenesis and progression of AD. While microglia can interact with Aβ and Aβ 

precursor protein (APP) through membrane receptors and clear Aβ from the brain 
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through phagocytosis, it can release pro-inflammatory cytokines that result in damage to 

the surrounding neurons [134]. Therapeutic interventions targeting microglia in neuro-

degenerative diseases are currently in their infancy [134]. Future therapeutic approaches 

targeting microglial activation in AD should aim at specifically inhibiting the release of 

inflammatory factors without interfering with microglia’s beneficial effects on Aβ clear-

ance. 

Several genes encoding for immune receptors have been linked to AD development 

[135]. It is now recognized from preclinical and clinical evidence that systemic inflamma-

tion can affect the brain in many ways and can lead to the development of neurodegener-

ative diseases including AD [135]. Indeed, preclinical data have provided a large body of 

evidence on the association between peripheral inflammation and AD pathology [135]. 

Likewise, several clinical reports have described how systemic inflammation caused by 

specific environmental factors is associated with an increase in cognitive decline in AD 

[136–138]. Activation of α7 nAChRs expressed in rat hippocampal astrocytes was able to 

counteract this inflammatory scenario by reducing the Aβ protein load [139]. However, 

Aβ concentration changes as AD progresses; hence, α7 nAChRs may play different roles 

as the disease develops. At low picomolar concentrations, Aβ triggers the conversion of 

α7 nAChR to a desensitized conformation that is nevertheless able to respond to agonists 

and exert anti-inflammatory action, whereas at high nanomolar concentrations Aβ acts as 

a negative modulator of the receptor and possesses associated neurotoxicity [140–142]. 

Thus, the concentration of Aβ should be critically evaluated in terms of the benefits of α7 

nAChR stimulation therapies. Furthermore, because of the strong affinity interaction be-

tween Aβ and α7 nAChR, the pharmacological selection of a competitive Aβ antagonist 

has been challenging [143]. Different drug candidates have emerged, including partial and 

allosteric modulators of the α7 nAChR. Many trials have been abandoned, however, either 

because of poor efficacy or high toxicity [143]. There are significant gaps to be filled be-

tween preclinical and clinical data in the interests of better AD therapeutic strategies. 

The CHRFAM7A gene is exclusively found in humans [142,144–146]. This gene is the 

product of the partial duplication of exons 5 to 10 of the α7 nAChR-encoding gene 

CHRNA7 [147,148]. The CHRFAM7A human-specific gene that lacks the N-terminal do-

main of the CHRNA7 subunit codifies the dupα7 protein [142]. Thus, the agonist binding 

domain is absent in the dupα7 protein. The dupα7 protein cannot by itself assemble into 

functional nicotinic receptors. However, in combination with at least two α7 nAChR sub-

units it can form functional ion channels [142], albeit exerting a dominant negative effect 

on the latter [149]. Furthermore, polymorphism as well as a two base pair deletion of the 

CHRFAM7A on exon 6 has been described [147]. These genetic modifications translate into 

the dupΔα7 protein [147]. The number of CHRFAM7A copies varies [142], some individ-

uals being non-carriers of the CHRNA7 duplication and others expressing one or two cop-

ies. The occurrence of the Δ2bp allele varies between different ethnic groups [142]. There 

is evidence that the number of CHRFAM7A copies carried by an individual may affect the 

response of α7 nAChR-positive allosteric modulators (PAM), agonists, and antagonists 

[142,150–152]. Interestingly, the expression of dupα7 has been associated with a protective 

role during the accumulating phase of Aβ [150]. The authors cited above describe the pres-

ence of CHRFAM7A as mitigating Aβ uptake in cells; thus, its expression could exert a 

protective role when Aβ concentrations are above physiological levels [150]. Previous re-

ports using a transgenic mouse model of AD [153] on a knockout α7 nAChR mouse [154] 

showed that deletion of the α7 nAChR gene ameliorated cognitive deficiency and further 

improved synaptic physiology [155]. Altogether, these studies highlight the importance 

of α7 nAChR in the pathophysiology of the cognitive impairment associated with AD 

[133]. CHRFAM7A is expressed in non-neuronal cells as well; therefore, it can alter the 

anti-inflammatory effects mediated via α7 nAChR activation [149,156]. In one study, LPS-

induced inflammatory responses were reported to down-regulate CHRFAM7A expression 

at the mRNA and protein levels. Conversely, CHRNA7 mRNA was upregulated [156].  
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Approximately 25% of the AD population are non-carriers of the CHRFAM7A gene. 

Considering that preclinical drug testing is carried out in animal models, any molecule 

screened to target the α7 nAChR will benefit a quarter of the population at most [150–

152]. Therefore, future preclinical models examining the CHRFAM7A gene in greater de-

tail should turn the focus to the rest of the population [151]. Non-carrier individuals 

should experience better outcomes based on preclinical data of AD drug trials, while more 

specific research is needed to understand the impact of CHRFAM7A on the pathogenesis 

of AD. 

5. Parkinson Disease 

The second most frequent neurodegenerative disease is PD. PD patients exhibit mo-

tor deficits, cognitive decline, and sleep and affective disturbances, and they progressively 

lose DAergic neurons from the substantia nigra (Figure 3). 

 

Figure 3. Dopaminergic neurons from the substantia nigra are substantially reduced in PD. Current 

treatments are aimed at counterbalancing the reduction of dopamine (DOPA) by exogenous admin-

istration of L-DOPA. nAChR agonists may offer amelioration of dyskinetic symptoms in PD by pro-

moting the endogenous release of DOPA. 

The most common treatment for PD is replacement therapy with L-DOPA to enhance 

DA transmission, with beneficial effects on PD-associated motor dysfunction. However, 

this approach does not suffice to improve other PD-associated symptoms, nor does it help 

to prevent the progression of the disease. In addition, a common side effect of L-DOPA 

therapy is the induction of dyskinesias that are incapacitating. 

Activation of nAChRs at presynaptic terminals can enhance DA release from DAer-

gic neurons. Promising results for treating PD have been obtained in animal models and 

human studies involving activation of the nigrostriatal pathway by nAChR agonists [157–

160]. The potential cognitive-enhancing properties of nAChR-targeting drugs may be of 

additional benefit to those patients suffering cognitive decline [25,159,161]. 

PD neuroprotection from toxin-induced DAergic cell loss by nAChR agonist admin-

istration has been described in animal models [162]. Indeed, the specific activation of α7 

nAChRs in several PD animal models has proven beneficial for ameliorating PD-associ-

ated symptoms and for its antidyskinetic effects. In contrast, administration of methyl-

lycaconitine, a specific α7 nAChR antagonist, hinders neuroprotection [106,162].  

Activation of nAChRs containing the β2 subunit, as is the case with the abundant 

α4β2 subtype, has shown protection against 6-OHDA-induced nigrostriatal damage in 

rodents [25]. The nAChR β2 subunit has been suggested to mediate this neuroprotective 
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effect, as nigrostriatal damage was not prevented in α4 subunit-knockout mice models 

lacking α4β2 nAChRs [163]. The β2 subunit has been found to modulate the expression of 

induced dyskinesia in several nonhuman primate models [164–167]. 

Nicotine-mediated α7 nAChR activation has been shown to produce an inhibitory 

effect on L-DOPA-induced dyskinetic side effects in nonhuman primate models [168,169]. 

However, α7 nAChR seems not to be the specific mediator of this effect, as mutant mice 

lacking the α7 subunit reduce the L-DOPA-induced abnormal movements when exposed 

to nicotine.  

Neuroinflammatory processes are present in PD, and increased density of astrocytes 

and active microglia is observed as well. Microglial cells initiate the immune response, 

and astrocytes surround the area so as to localize the secretion of pro-inflammatory cyto-

kines [170,171]. In consequence, when activated, microglia and astrocytes release pro-in-

flammatory cytokines in PD, and degeneration of dopaminergic neurons can occur [172]. 

Recent preclinical research has focused on preventing microglia activation to delay the 

progression of the disease [172,173], although the use of these drugs in clinical practice is 

far from being a reality. PD patients accumulate α-synuclein in the form of Lewy bodies 

[174]. This α-synuclein accumulation in PD contributes to neuroinflammation by promot-

ing the release of pro-inflammatory molecules from glial cells, which has neurotoxic ef-

fects [174]. Although the origin of α-synuclein aggregation remains uncertain, two hy-

potheses have been proposed [175]. In the first hypothesis, α-synuclein accumulation is 

purported to arise in the brain and project into the peripheral autonomic nervous system. 

A second hypothesis postulates that α-synuclein pathology originates in the gastrointes-

tinal tract and reaches the brain via the vagus nerve [175]. Because α7-nAChR is expressed 

in glial cells and in peripheral immune cells, this receptor subtype is envisaged as a pos-

sible therapeutic target to reduce neuroinflammation in PD. The expression of α7 nAChR 

in astrocytes is considered a novel therapeutic strategy for the treatment of PD [104]. Like-

wise, vagus nerve stimulation is becoming more accepted as a non-invasive therapeutic 

method to tackle neuroinflammation in PD [123]. 

6. Schizophrenia Spectrum Disorders 

Schizophrenia and associated disorders have a profound negative impact on the 

quality of life of patients. These complex chronic neuropsychiatric disorders have an early 

onset [176]. The symptoms experienced by schizophrenic patients have been classified as 

positive symptoms (delusions, hallucinations), negative symptoms (social withdrawal, 

anhedonia), and cognitive deficits (learning and memory deficits, alogia) [177]. Altered 

neurotransmission has been proposed as the basic common pathophysiological mecha-

nism in schizophrenia [178]. Augmented levels of pro-inflammatory cytokines have been 

found in schizophrenic patients as well [179]. 

Several forms of schizophrenia spectrum disorders have a heritable genetic compo-

nent. However, no single causative gene has been reported to date. Trubetskoy and 

coworkers [180] recently studied the genomes of 76,755 individuals with schizophrenia as 

well as 243,649 healthy (control) participants. Their study demonstrated the occurrence of 

342 common genetic variants that could increase the risk of developing schizophrenic dis-

orders. Therefore, as with other neurological and neuropsychiatric diseases, it is likely 

that a combination of many genes and environmental factors contribute to the pathogen-

esis of this group of disorders. 

Regarding alterations in cholinergic neurotransmission in schizophrenic patients, 

studies performed in postmortem hippocampus, cortex, thalamus, and striatum of schiz-

ophrenic patients have revealed that expression of α7 nAChR is lower than in control pa-

tients [24,181]. The lower number of receptors in schizophrenic patients does not appear 

to be region-specific.  

The gene encoding for α7 nAChR is located in chromosome 15q14, which is linked to 

genetic transmission of schizophrenia spectrum disorders [177,182]. As is the case with 

AD, carriers of the CHRFAM7A gene mutation are associated with certain forms of this 
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spectrum [142,177,183,184]. Additionally, the reduced expression of α7 nAChRs may re-

sult from increased expression and insertion of heteromeric dupα7/α7 nAChRs 

[177,185,186].  

An endophenotype of schizophrenia spectrum disorders is the presence of P50 audi-

torily evoked response deficits. In these patients, the involvement of a nicotinic receptor 

is clearly apparent [187], as administration of nicotine transiently normalizes the P50 def-

icit. Furthermore, a strong link between α7 nAChRs and sensory gating deficits has been 

reported in some patients with schizophrenia [142,188,189]. Therefore, it is not surprising 

that these patients use smoking as a form of self-medication (see the above section on 

Addiction). Indeed, about 80% of patients with schizophrenia consume tobacco products, 

a figure that dramatically contrasts with 25% among the general population [190,191]. 

These statistics are underscored by the observation that therapeutic strategies targeting 

α7 nAChR show beneficial effects [142,192–195]. 

The presence of heteromeric dupα7/α7 nAChRs, increased CHRFAM7A, and/or re-

duced CHRNA7 expression in the prefrontal cortex has been reported in patients with 

bipolar disorder and schizophrenia spectrum disorders [142,196,197]. However, there are 

contradictory findings in the literature regarding the association of these variants with 

some forms of schizophrenia, probably due to differences in the ethnic groups and num-

ber of subjects under study and the phenotype under consideration [183,196,198]. Future 

preclinical trials should include these genetic variants in order to gain greater insight into 

the possible involvement of nAChR genes as risk factors in the development of schizo-

phrenia spectrum disorders in order to improve therapeutic outcomes. 

7. Epilepsy 

Epilepsy comprises many syndromes characterized by the chronic occurrence of sei-

zures [199]. The latter results from excessive neuronal activity in the brain [200]. Epileptic 

syndromes show heterogeneous origins, mechanisms, and clinical manifestations [201]. 

Because gliosis and microgliosis have been described in epilepsy, it is evident that this 

malady shares a neuroinflammatory component with other neuronal diseases [202]. 

Therefore, future preclinical and clinical studies should consider including agents to re-

duce neuroinflammation in their therapeutic approaches.  

A high proportion of individuals presenting alterations in neurodevelopment suffer 

comorbid seizures. Again, nAChRs have been shown to play an important role in regula-

tion of the excitatory microcircuitry that leads to seizures, and a vast body of evidence 

implicates nAChR dysregulation in epileptiform activity [199]. 

Both nAChRs and muscarinic receptors (mAChRs) have been associated with epi-

lepsy, as their hyperstimulation can lead to the onset of seizures [203,204]. Different nA-

ChR subtype mutations have been linked with genetic sleep-related epilepsy [26,199,205–

208]. nAChRs can induce epileptogenic effects both during development and in adult 

stages due to their participation in synaptogenesis and the regulation of mature synaptic 

circuit excitability. Hyperactivation of M1 mAChRs upon application of the muscarinic 

agonist pilocarpine has been used as a model of temporal lobe epilepsy, to induce transi-

ent status epilepticus, and to generate chronic epileptic seizures [203,204,209]. 

In vivo studies have shown that nicotine doses over 2–3 mg/kg in rodents suffice to 

induce tonic–clonic convulsions [210,211]. Clinical data suggest that seizures can occur 

after multiple applications of transdermal nicotine patches [212]. In addition, repeated 

subconvulsive doses of nicotine in mice have been used as kindling agents [213]. Interest-

ingly, it has been suggested that the sex dependency of nicotine-induced kindling is re-

lated to the lower availability of antioxidant defenses in females [214]. nAChR antagonists 

prevent the induction of pro-convulsive activity [215–217]. More difficult to explain is the 

fact that high concentrations of nAChR antagonists can have pro-convulsive activity as 

well [215,218]. Reports indicate that mutant mice deficient in α5 and/or β4 nAChR subu-

nits are less prone to developing seizures [219,220]. One proposed mechanism of nicotine 

kindling and activity-dependent nAChR-induced seizures argues that the two 
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pathologies are due to the induction of glutamatergic overactivation [221]. Autosomal 

dominant nocturnal frontal lobe epilepsy (ADNFLE), now renamed (AD)SHE, or (Auto-

somal dominant) sleep-related hypermotor epilepsy [222], was first linked to a missense 

mutation on CHRNA4 (α4S248F) [26,206,223]. More recently, CHRNA2 was found to be 

linked to ADSHE [224]. In these forms of epilepsy, hypermotor seizures or tonic–dystonic 

postures that last on average ∼30 s are observed. The new terminology, ADSHE, reinforces 

the concept that sleep-related seizures are not exclusively nocturnal and enhances the im-

portance of hypermotor seizures as the central feature of the pathology. In addition to 

motor hyperactivity, ADSHE families that carry the CHRNA4 and CHRNB2 mutations 

present cognitive disabilities, mental retardation, and schizophrenia-like symptoms [199]. 

How nAChR-expressing mutant subunits are linked to the onset of the pathologies of AD-

SHE requires knowledge of the roles these receptors play in multiple neuronal circuits 

during development and in adulthood.  

Deletion of CHRNA7 in mice does not alter the induction of seizures by nicotine ad-

ministration [225,226]. Furthermore, human-based studies have revealed a genetic predis-

position to developing an idiopathic form of generalized epilepsy [227,228] and to some 

of the neurodevelopmental disorders accompanied by seizures [227,229,230] when micro-

deletions of the chromosome region 15q13.3 that codes for CHRNA7 are present. These 

microdeletions have been associated with phenotypes that lead to schizophrenia- and ep-

ilepsy-related alterations in animal studies [231]. Additional studies are required in order 

to understand the possible implications of α7 nAChRs in epilepsy. Deeper knowledge of 

the molecular mechanisms by which nAChR mutations induce ADSHE in response to ag-

onist/antagonist exposure is essential for the formulation of pharmacological strategies 

targeting these forms of epilepsy. 

8. Concluding Remarks 

By regulating neuronal excitability, immunity, inflammation, neuroprotection, and 

the release of other neurotransmitters or targeting the receptors for other neurotransmit-

ters, nAChRs modulate multiple physiological, behavioral, and pathophysiological pro-

cesses. Different levels of expression of nAChRs in specific brain regions and at different 

neurodevelopmental stages can be affected by dysfunction and lead to disease. The design 

of specific nAChR ligands, including PAMs, able to target specific diseases and be tailored 

to subtle variations in each pathophysiological scenario, calls for several translational gaps 

to be filled in preclinical and clinical trials. The inter-individual variability in genes that 

encode for nAChR subunits needs to be carefully considered in future personalized ther-

apies, along with adequate genetic screening. In addition, nAChR-based or nAChR-tar-

geted therapeutic strategies must include multiple genetic variants in order to improve 

the potential of these drugs in all populations.  
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