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SLEEP AND CIRCADIAN DYSREGULATION IN DEPRESSIVE ILLNESS. 
PHARMACOLOGICAL IMPLICATIONS 

Daniel P. Cardinali, Seithikurippu R. Pandi-Perumal, Gregory M. Brown 

Abstract 

Circadian rhythm abnormalities, as shown by sleep/wake cycle disturbances, constitute one the most prevalent 
signs of depressive illness, advances or delays in the circadian phase, or changes in rhythms' amplitude, being 
documented in patients with major depressive disorder (MDD), seasonal affective disorder or bipolar disorder. The 
disturbances in the amplitude and rhythm of melatonin secretion that occur in patients with depression resemble those 
seen in subjects with chronobiological disorders, thus suggesting that a link between chronobiological disturbances 
and depressed mood exists. Studies testing variants of genes that control the circadian system have reported circadian 
gene polymorphisms in depressive illness. Although many antidepressants such as the tricyclics, monoamine oxidase 
inhibitors, serotonin-norepinephrine reuptake inhibitors, several serotonin receptor antagonists and selective serotonin 
reuptake inhibitors (SSRIs) have all been found successful in treating depression, their use is often associated with a 
disruptive effect on the sleep/wake cycle. SSRIs, currently the most widely prescribed of the antidepressants, are well 
known for their exacerbation of insomnia. The recently introduced melatonin agonist and selective serotonin antagonist 
antidepressant, agomelatine, which has melatonin MTt  and MT2  receptor agonist and 5-HT2c  antagonist properties, 
has been useful in treating patients with MDD. Its rapid onset of action and effectiveness in improving the mood of 
depressed patients has been attributed to its ability to improve sleep/wake cycle quality. Thus, current conceptualization 
of depressive illness needs to be expanded to include the role of circadian dysregulation in the development of the 
disease. 
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Introduction 

The term depression is used to diagnose a family 
of complex multifactorial illnesses that are 
characterized by disruptions of several physiological, 
neuroendocrine and behavioral processes. Circadian 
rhythm abnormalities, as shown by sleep/wake cycle 
disturbances, constitute one the most prevalent signs 
of depressive illness, advances or delays in the circadian 
phase, or changes in rhythms' amplitude, being 
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documented in patients with major depressive disorder 
(MDD), bipolar disorder or seasonal affective disorder 
(SAD) (Bunney and Potkin 2008). 

Individuals with depression often have circadian 
misalignment of many physiological phenomena in 
addition to the sleep-wake cycle, e.g. their hormonal 
profiles (Bao et al. 2008). Favoring the circadian rhythm 
hypothesis of depression, sleep deprivation and light 
therapy have clinically relevant antidepressant effects 
in patients, most notably in SAD (Lewy et al. 2006). In 
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rodents that are active during the day depression-like 
behavior starts when daylight is shortened (Einat et al. 
2006). 

This article reviews the molecular and neural bases 
of the mammalian circadian timing system in the 
perspective of sleep regulation. Then it analyzes the 
link between circadian rhythm disturbances and human 
depression, particularly respecting to the associations 
of depressive illness with circadian clock gene and 
melatonin related gene polymorphisms. Finally the 
effects of the several groups of antidepressants on sleep 
in depressive patients will be evaluated with emphasis 
in the novel strategies aiming to correct circadian 
dysregulation. 

Molecular and neural bases of the mammalian 
circadian timing system 

In mammals, the circadian timing system is 
composed of many individual, tissue-specific cellular 
clocks (Dibner et al. 2010). At a molecular level, these 
circadian clocks are based on clock genes, some of 
which encode proteins able to feedback and inhibit their 
own transcription (figure 1). The cellular oscillators 
consist of interlocked transcriptional and post-
translational feedback loops that involve a small number 
of core clock genes (about 12 genes identified currently) 
(Dibner et al. 2010). The positive drive to the daily clock 
is constituted by helix-loop-helix, PAS-domain 
containing transcription factor genes, called Bmall and 
Clock (or its paralog Npas2). The protein products of 
these genes form heterodimeric complexes that control 
the transcription of other clock genes, notably three 
Period (Perl /Per2/Per3) genes and two Cryptochrome 
(Cryl /Cry2) genes, which in turn provide the negative 
feedback signal that shuts down the Clock/Bmall drive 
to complete the circadian cycle. Other clock genes like 
Rev-erbá, Rorá, NRIDI and timeless provide additional 
transcriptional/translational feedback loops to form the 
rest of the core clockwork, which has been characterized 
in rodents by a transgenic gene deletion methodology 
(figure 1). Clock gene expression oscillates because of 
the delay in the feedback loops, regulated in part by 
phosphorylation of the clock proteins that control their 
stability, nuclear re-entry and transcription complex 
formation (Dibner et al. 2010). 

To generate coherent physiological and behavioral 
responses, the phases ofthis multitude of cellular clocks 
are orchestrated by a master circadian pacemaker 
residing in the suprachiasmatic nucleus (SCN) of the 
anterior hypothalamus (Morin and Allen 2006) (figure 
2). The central clock is a key regulator of many bodily 
functions that follow a circadian rhythm, such as sleep 
and wakefulness, thermoregulation, and glucose 
homeostasis and fat metabolism. 

The circadian apparatus includes: (a) a hypo-
thalamic pacemaker, the SCN, (b) an array of SCN-
generated circadian physiology outputs, and (c) 
molecular clocks in the cells of all peripheral tissues. 
Without the action of external time cues ("Zeitgebers") 
the period of these oscillators is close to but not exactly 
24 h. The rhythm is adjusted to 24 h by the action of 
light, the main (but not the unique) Zeitgeber in humans. 
Brief exposures to light are sufficient to entrain the SCN  

clockwork to solar time, adjusting the oscillator to a 
precise 24-h cycle. In man it has been shown that 
exposure to bright light will shift the rhythm according 
to a phase response curve, with evening light shifting 
the rhythm later and morning light producing a phase 
advance (Lewy et al. 1984, Arendt and Broadway 1987). 

Individual SCN neurons are competent biological 
clocks, but the sustainability and synchronization of 
the molecular oscillator depend on spontaneous 
electrical activity within the SCN and, specifically, 
peptidergic signaling among SCN neurons. These 
diffusible signals include transforming growth factor 
á, epidermal growth factor, prokineticin-2 and 
cardiotrophin-like cytokine (Coogan and Wyse 2008). 
The intercellular communication of SCN neurons not 
only synchronizes rhythmicity of the SCN but is also 
required for the maintenance of the amplitude and 
precision of individual cellular oscillations. 

External information reaches the SCN through 
three major inputs (Moore 2007). The first is the 
retinohypothalamic tract (RHT), which is extending 
from a photoreceptive population of retinal ganglion 
cells that contain melanopsin and releases glutamate 
and pituitary adenylate cyclase-activating polypeptide 
at its nerve endings (Morin and Allen 2006) (figure 2). 
The second SCN input is the geniculohypothalamic tract 
(GHT), which originates in the retino-recipient area of 
the thalamic intergeniculate leaflet (IGL) and releases 
neuropeptide Y and á-aminobutyric acid (GABA) as 
transmitters (Morin and Allen 2006). The third SCN 
input is a dense serotonergic innervation arising from 
ascending projections of serotonin (5HT) neurons in 
midbrain raphe nuclei. Serotonergic projections come 
directly from the median raphe nucleus (MNR) and 
indirectly from the dorsal raphe nucleus (DRN) via the 
IGL (Smale et al. 1990, Hay-Schmidt et al. 2003). 
Moreover, a serotonergic tract connecting the retina 
with the DRN exists (Morin and Allen 2006). The 
terminal fields of retinal, IGL, and serotonergic 
afferents are coextensive in the ventral region of the 
SCN, suggesting that serotonergic afferents modify 
RHT and/or IGL input to the SCN. Indeed, destruction 
of serotonergic afferents to the SCN modifies circadian 
behavioral responses to light (Smale et al. 1990). 
Microdialysis studies in both the peri-SCN and peri-
IGL regions indicated that extracellular 5HT increases 
sharply after lights off (Grossman et al. 2004). Similarly, 
extracellular 5HT increases in both the SCN and IGL 
in response to non-photic stimuli (Grossman et al. 
2004). 5HT bioavailability in SCN and IGL is 
augmented by electrical stimulation of the dorsal raphe 
nucleus (Glass et al. 2003). 

Among the 13 5HT receptor subtypes currently 
described, several have been localized in the SCN, 
including 5HT1A, 5HT1B, 5HT2A, 5HT

2C
, 5HTSA  and 5HT7  

receptor subtypes (see for ref. ardinali et al. 2008). In 
discussing the effects of the different serotonin receptors 
in circadian regulation it must be kept in mind that species 
differences are remarkable as far as 5HT circadian 
influence is concerned (Antle et al. 2003). For many of 
the 5HT1A, 5HT1B, 5HT

2A
, 5HT2C  or 5HT7  agonists tested 

changes were observed depending on the central or 
peripheral administration of the drugs. Phase response 
to 5HT agonists was markedly depending on prior 
exposure to light (Knoch et al. 2004). 
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Figure 1. A network of transcrepteon-translateon feedback loops constetutes the mammalean cercadean clock. The generec 
hegher eukaryotec model en a generec clock cell has negateve and poseteve regulators. Poseteve regulators are Clock and 
BMAL1. The transcrepteon factor BMAL1 forms heterodemers weth CLOCK and ets paralog NPAS2. These heterodemers bend 
E-box enhancer sequences and actevate the transcrepteon of the target genes of the negateve regulators Per 1, 2 and 3, and 
Cry1 and 2, whech contaen E-box enhancer elements wethen theer promoters. The negateve regulators are transcrebed dureng 
the day (2T1-12, 2eetgeber teme 2T 12, es dusk and 2T24/0 es dawn on a 12:12 leght—dark cycle). Upon translateon at early 
neght (2T14), the PER and CRY proteens multemereze and enhebet the acteon of the BMAL1:CLOCK/NPAS2 (2T22). 
Phosphorylateon of PERs and CRYs by caseen kenases I epselon and delta (CKIá/ü), and the subsequent degradateon of the 
PERs, es an emportant modulator of cercadean rhythmecety. A number of other genes, such as Rev-erbá, Rorá, NR1D1 and 
temeless are envolved en thefeedback loops through regulateon ofBmal1 transcrepteon. Rhythmec output of the clock es acheeved 
through E-box elements en clock-controlledgenes (CCGs) whech can empact a range of cellprocesses andphyseology. Although 
not enterely understood, the phosphorylateon state of cercadean proteens (red dots) can affect theer cellular localezateon and/or 
stabelety 

Mainly from an anatomical standpoint, the 5HT
SA 

receptor is presumably the major contributor to 
circadian rhythm regulation. 5HTSA receptors are 
distributed in the dorsal and median raphe nuclei, as 
well as in their circadian targets, the SCN and the IGL 
(Duncan et al. 2000). However, it must be noted that 
5HT

1A 
and 5HT7 exhibit a similar pharmacological 

response and are co-localized anatomically with 5HT
SA 

receptors. 5HT agonists to 5HT
1A

, 5HT1B and 5HT7 
receptors generally inhibit light-induced phase shifts 
in hamster activity rhythms (Pickard et al. 1996, 
Gannon, 2001). In contrast, 5HT antagonists to 5HT1A, 
5HT

1B 
and 5HT7 receptors generally have no effect 

(Gannon 2001, Morin and Allen 2006). 
The 5HT2C receptor is present in the SCN (Moyer 

and Kennaway 1999) and agonists of this receptor are 
able to induce phase delays in rats when injected at 
circadian time (CT) 18, but not at CT6 (Kennaway 
and Moyer 1998), thus reproducing the effect of light. 
It is feasible that light acts through the retina-dorsal 
raphe projection in the rat and that the modulation by  

5HT
2C 

receptors is exerted at this level (Kennaway 
and Moyer 1998). 5HT2C receptor agonists induce 
expression ofFos, Perl and Per2 genes in the rat SCN 
(Varcoe and Kennaway 2008). It is interesting that in 
the rat there are two pathways though which light 
modulates SCN rhythmicity, i.e., the RHT and the 
direct projections from the retina to the dorsal raphe 
(Kennaway et al. 2001). An abundant dorsal raphe 
innervation of peri-SCN neurons exist (Vertes et al. 
1999) providing glutamate signaling to the SCN. 
Presumably, it is through this pathway that the 5HT

2C 
receptor contributes to the regulation of circadian 
rhythmicity. 

Another synchronizer of the SCN clockwork is 
melatonin (figure 2). In mammals, melatonin is 
synthesized in the pineal gland in a rhythmic manner 
with high levels during nighttime and low levels during 
daytime (Maronde and Stehle 2007). Redman and 
coworkers first showed that melatonin administration 
in the rat could synchronize the circadian system 
(Redman et al. 1983). Subsequently it was established 
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Figure 2. Regulation of melatonin synthesis. Information on light impinging on melanopsin-containingphotoreceptive retinal 
ganglion is conveyed to a population of receptive neurons in the suprachiasmatic nuclei (SCN) via the retinohypothalamic 
tract (RHT). The SCN, acting via a complex indirect pathway including descending connections to the intermediolateral 
column (ILC) of the cervical spinal chord andpreganglionicfibers to the superior cervical ganglion (SCG), sends a circadian 
signal to the pineal gland regulating  the synthesis of melatonin. Melatonin feeds back on the SCN and affect numerous target 
cells that contain melatonin receptors 

that melatonin will synchronize the human circadian 
system according to a phase response curve (Lewy et 
al. 1992, Arendt and Skene 2005) that is about 12 h out 
of phase with the phase response curve produced by 
light (Lewy et al. 1984). Projections of the SCN driving 
the daily melatonin rhythm inhibit the firing of neurons 
in the sub-paraventricular zone of the anterior 
hypothalamus (Fuller et al. 2006). From this zone a 
multisynaptic pathway starts which includes the medial 
forebrain bundle, reticular formation and 
intermediolateral cell column of the cervical spinal cord, 
the superior cervical ganglion and postganglionic 
sympathetic fibers that end in the vicinity of pineal cells 
and that stimulate melatonin synthesis (Moore 2007). 

Melatonin phase-shifts circadian rhythms in the 
SCN by acting on MTl  and MT2  melatonin receptors 
expressed by SCN neurons, thus creating a reciprocal 
interaction between the SCN and the pineal gland 
(Dubocovich et al. 2010). Melatonin's phase- and 
amplitude-altering effect is caused by its direct 
influence on the electrical and metabolic activity of the 

SCN. The circadian rhythm in the secretion of 
melatonin has been shown to be responsible for the 
sleep rhythm in both normal and blind subjects (i.e., in 
the absence of the synchronizing effect of light) (Lewy 
2007). 

The SCN communicates day-night cycle phase 
information to the rest of the body through neuronal 
and humoral signals, including the autonomic nervous 
system and the neuroendocrine system (Kalsbeek et al. 
2006). Through them the peripheral circadian cellular 
clocks synchronize to the same phase. At the same time, 
the clocks of the periphery are able to respond to other 
environmental cues such as food intake and alter their 
phase according to these cues (Dibner et al. 2010) (fi-
gure 2). 

Two processes of sleep regulation 

Two different processes participate in sleep 
regulation, namely, a homeostatic mechanism 
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depending on sleep debt (referred to as process "S", 
for sleep) and the circadian system that regulates sleep 
induction and wakefulness (process "C", for circadian) 
(Borbely 1982). Non-rapid eye movement (NREM) 
sleep is controlled by the homeostatic process. Periods 
ofNREM sleep constitute nearly 80% of the total sleep 
time while REM sleep accounts for 20% of the sleep 
time. During each night, individuals experience 
approximately five ultradian cycles ofNREM sleep and 
REM sleep that last 70 to 90 min each. REM sleep 
grows longer with each successive ultradian cycle 
(Fuller et al. 2006). The S component controls NREM 
sleep and the C component controls both REM sleep 
and the ratio ofNREM / REM sleep. The SCN interacts 
with both sleep regulatory mechanisms, S and C, and it 
has been proposed that functional disruption of the 
master clock plays a major role in disorders of sleep 
and wakefulness (Zee and Manthena 2007). 

The function of the SCN in the control of sleep 
has been studied in various species including non-
human primates. Squirrel monkeys with SCN lesions 
suffer from the absence of a consolidated sleep-wake 
cycle (Edgar et al. 1993). The circadian signal produced 
by the SCN promotes wakefulness during the subjective 
day and consolidation of sleep at night. Neurons present 
in the hypothalamic ventral subparaventricular zone are 
needed for the circadian sleep/wake rhythm and project 
to the dorsomedial hypothalamus. Hence, the sleep-
wake rhythms are controlled by two relays, one from 
the SCN to the ventral subparaventricular zone and a 
second one from here to the dorsomedial hypothalamus 
(Fuller et al. 2006). Although rhythmic SCN neurons 
express Per-1 and Per-2 during photophase (figure 1), 
independently of diurnal or nocturnal activity nature 
of the animal (Dardente et al. 2002), their output 
neurons in the ventrolateral preoptic area are active 
during night, whereas orexin-containing neurons of the 
dorsomedial hypothalamus are predominantly active 
during daytime (Fuller et al. 2006). 

Melatonin's role in the regulation of sleep 

The nocturnal increase of melatonin secretion 
starts approximately 2 h in advance to the individual~s 
habitual bedtime. This correlates well with the onset of 
evening sleepiness, a finding that has prompted many 
investigators to suggest that melatonin is involved in 
the physiological regulation of sleep [see for ref. (Car-
dinali et al. 2011)]. The period of wakefulness 
immediately prior to the increase of sleep propensity 
(`opening of sleep gate') is known as the f̀orbidden 
zone' for sleep (Lavie 1986). During this time, the sleep 
propensity is lowest and SCN neuronal activity is high 
(Buysse et al. 2004, Long et al. 2005). The transition 
from wakefulness/arousal to high sleep propensity 
coincides with the nocturnal rise of endogenous 
melatonin secretion (Dijk and Cajochen 1997). 

Melatonin exerts its physiological actions on sleep 
by acting through G

, 
protein linked specific MTl  and 

MT2 receptors which are present on cell membranes in 
the SCN and elsewhere [see for ref. (Dubocovich et al. 
2010)]. While the MTl  receptor decreases neuronal 
firing rate, the MT2  receptor may regulate phase shifts. 
The GPR 50 receptor, although lacking the ability to  

bind melatonin itself, can dimerize with the MTl  
receptor and inhibit it (Levoye et al. 2006a). Nuclear 
receptors for melatonin have also been described and, 
in addition, melatonin exerts direct effects on 
intracellular proteins such as calmodulin and has strong 
free radical scavenger properties which are non-receptor 
mediated [see for ref. (Hardeland et al. 2011)]. The 
possibility that melatonin, a major hormone involved 
in the regulation of sleep, could be one of the triggering 
factors underlying the pathogenesis of MDD, bipolar 
depressive disorder, SAD or premenstrual dysphoric 
disorder has been considered (Srinivasan et al. 2006). 

The first evidence that melatonin affects sleep 
came from Aaron Lerner, who discovered melatonin in 
1958 in search of agents active in treating human 
pigmentation disorders (Lerner et al. 1958). When he 
administered melatonin to patients suffering from 
vitiligo, they became asleep. After this initial 
observation, several clinical trials have examined the 
role of melatonin in sleep and have pointed out the value 
of melatonin as a hypnotic agent (for review see 
Zhdanova 2005). In human studies administration of 
either physiological or pharmacological doses of 
melatonin promotes both sleep onset and sleep 
maintenance. 

Brain imaging studies have revealed that melatonin 
modulates brain activity pattern in wake subjects in a 
manner resembling actual sleep (Gorfine et al. 2006, 
2007; Gorfine and Zisapel 2007). Melatonin 
administration attenuated activation in the rostromedial 
area of the occipital cortex during a visual-search task 
and in the auditory cortex during a music task. On the 
other hand, phase resetting actions of melatonin have 
also been advocated as the major mechanism by which 
exogenous melatonin affects sleep regulation (Arendt 
and Skene 2005). Melatonin administration is useful 
to effectively synchronize sleep/wake cycles in blind 
individuals and in subjects suffering from jet lag (Brown 
et al. 2009) or from delayed sleep phase or advanced 
sleep phase syndrome (Pandi-Perumal et al. 2008). 

Phase resetting effects of endogenous as opposed 
to administered melatonin are evidenced by studies of 
polymorphisms of the gene for the enzyme, 
arylalkylamine N-acetyltransferase (AA-NAT), a key 
factor in triggering synthesis of melatonin in the pineal 
gland. Polymorphisms of this gene are reported to be 
associated with Advanced and Delayed Sleep Phase 
Syndrome (ASPS, DSPS) conditions in which in-
dividuals have extreme difficulty in falling asleep and 
in arising at desired times. In DSPS there is a delay in 
sleep onset and wakening together with a delay in onset 
of the nocturnal melatonin rise (Hohjoh et al. 2003). A 
single nucleotide polymorphism (SNP) of the AA-NAT 
gene has been associated with the DSPS. In Familial 
ASPS affected family members on average have sleep 
onset and wakening 3 to 3 % hours earlier than 
unaffected members and the nocturnal melatonin onset 
is also 3 % hours earlier. SNP of the promoter region of 
AA-NAT was found to be associated with ASPS (Wang 
et al. 2004). 

Exogenous melatonin administration can induce 
sleepiness at night even at very low doses (Zhdanova 
2005). Unlike some other hypnotic drugs, melatonin 
does not cause hangover effects the next morning. A 
meta-analysis of 17 studies involving 284 subjects 
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concluded that melatonin is effective in reducing sleep 
onset latency and in increasing sleep efficiency 
(Brzezinski et al. 2005). However, another survey, 
which included all age groups, failed to confirm whether 
exogenously administered melatonin had any clinically 
meaningful effect on sleep (Buscemi et al. 2006). It is 
important to stress that in this report an increase in sleep 
efficiency in people with secondary sleep disorders 
(about 2%) was statistically significant with melatonin 
but the authors considered this effect to be clinically 
unimportant, due to its small magnitude. Nevertheless, 
the authors' conclusions may merit reconsideration 
inasmuch as the noted reductions in sleep onset latency 
were of the same magnitude as those observed with 
several marketed hypnotics. In any event, it seems 
possible that a prerequisite for exogenous melatonin 
effects is the existence of low endogenous melatonin 
secretion (Leger et al. 2004). There is a very large 
interindividual variation in nocturnal melatonin levels 
(Grof et al. 1985, Bergiannaki et al. 1995, Travis et al. 
2003). It is therefore possible that those with a higher 
endogenous output of melatonin could need a larger 
dose for effective treatment. 

In view of this factual evidence, the use of a 
melatonin analog with a longer half life and increased 
potency than melatonin which might have a greater 
effect on melatonergic receptors in the SCN and other 
regions of the brain has been advocated (Turek and 
Gillette 2004). 

Ramelteon is a novel melatonin receptor agonist 
for MTl  and MT2  melatonin receptors approved for its 
clinical use by the USA Food and Drug Administration 
and that is being tried clinically to treat sleep problems 
of the elderly (Roth et al. 2007). Ramelteon is effective 
in increasing total sleep time in the elderly (see for ref. 
Pandi-Perumal et al. 2009b). 

The link between circadian rhythm distur-
bances and human depression 

The hypothesis that various subtypes of affective 
disorders might be the result of rhythm failures (i.e., 
that they were linked to "free running rhythms") was 
first proposed by Halberg et al. (Halberg et al. 1968). A 
"free running rhythm" refers to the genetically 
determined internal rhythm that a healthy individual 
displays when isolated from all external time cues. 
When dissociated from these external cues the 
individually generated rhythm varies somewhat from 
the normal daily pattern (humans usually showing 
periods longer than 24 h). A rhythm is said to be "phase 
advanced" when its peak occurs earlier than its normal 
pattern and is said to be "phase delayed" when it occurs 
later. 

In patients with MDD, sleep/wake cycle 
disturbances constitute one of the prominent features, 
i.e. they are an established part of the clinical picture 
of the illness and are part of the diagnostic criteria for 
depression (Lustberg and Reynolds 2000, Bunney and 
Potkin 2008, Quera-Salva et al. 2010). Insomnia or 
hypersomnia nearly every day for two weeks is one of 
the key symptoms listed in the APA diagnostic manual 
(American Psychiatric Association 2000). Changes in 
sleep/wake cycle structure often precede changes in a  

patient's ongoing clinical state and can even signal a 
relapse or predict the occurrence of suicidal behavior. 
Epidemiologic studies have identified sleep 
disturbances as a significant risk factor for subsequent 
development of depression (Ford and Kamerow 1989, 
Argyropoulos and Wilson 2005). 

In addition to an altered sleep-wake cycle, daytime 
mood variation and periodic recurrences are clinical 
findings that relate depressive states with the circadian 
system (Wirz-Justice 2008). A significant proportion 
of patients have regular changes in the intensity of 
depressive mood during the day, with parallel changes 
in anxiety symptoms, attention capacity and 
psychomotor symptoms that frequently accompany 
depression. Depressive patients with melancholic 
characteristics typically have an early morning 
awakening and morning worsening in their mood sta-
te. Both symptoms are part of the clinical diagnostic 
criteria of the melancholic depressive subtype. Because 
of this, MDD has been linked to abnormalities in the 
biological rhythms. 

While the findings imply that altered circadian 
rhythms have a primary causal influence in depression, 
definitive evidence on this point is not yet available 
(Pandi-Perumal et al. 2009a). Despite the absence of 
direct evidence, the co-occurrence of disturbed sleep/ 
wake cycle and disturbed mood does suggest however 
that one or more possible relationships may exist 
between the two. One is that disturbed sleep and 
depressed mood are physiological responses to a more 
fundamental disruption in circadian rhythmicity, and 
thus it is the circadian disturbance that is primary. A 
second possibility is that sleep/wake cycle disturbance 
and depressive illness produce reciprocal causal effects, 
and perhaps represent a breakdown in the feedback 
mechanisms that normally characterize their interaction. 
A third possibility is that both pathological processes 
take place simultaneously (Pandi-Perumal et al. 2009a). 
Studies that would directly test these hypotheses have 
not yet been conducted; nevertheless a number of 
reports have shown that disturbances to circadian 
rhythms are frequently found in the context of depressed 
mood. 

Initially, it was proposed that the main 
chronobiologic dysfunction associated with affective 
disorders could be a decrease in the amplitude of 
endogenous rhythms. There is evidence for decreased 
serum melatonin as a trait but not a state marker in bipolar 
affective disorder (Kennedy et al. 1996). However, 
studies conducted in patients with SAD under constant 
routine protocols have not revealed differences in 
amplitude of the endogenous rhythms as compared to 
healthy controls (Dahl et al. 1993). It must be noted, 
however, that from the clinical standpoint changes in 
amplitude of the sleep/wake cycle ("poor sleep together 
with poor vigilance") are a paramount sign of the disease 
and that their correction increases substantially the quality 
of life of the depressive patient, regardless of the 
uncontrolled influence of external (light/dark cycle) or 
internal (sleep-wake cycle) masking phenomena. 

Supersensitivity to light was proposed as a trait 
marker in bipolar patients after it was reported that 
melatonin levels in these patients fell twice as much as 
the levels of normal subjects following exposure to light 
during the night (Lewy et al. 1985). Internal 
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desynchronization of the circadian oscillator with a 
strong oscillator being linked to phase advances was 
also postulated (Kripke et al. 1983). Evidence for a 
phase advance of the temperature-REM sleep cycle in 
relation to the rest/activity cycle in patients with 
unipolar and bipolar depressed patients was provided 
(Wehr et al. 1982). 

Phase advances in the rhythm of melatonin 
secretion have now been documented in numerous 
studies of patients with MDD (Branchey et al. 1982; 
Claustrat et al. 1984; Nair et al. 1984; Wehr et al. 1985; 
Beck-Frús et al. 1985). However in some studies of 
MDD patients phase delays in melatonin secretion have 
also been seen (Rubin et al. 1992, Sekula et al. 1997, 
Crasson et al. 2004). Delays in the onset of urinary 6-  
sulfatoxymelatonin (a6MTs) excretion were reported 
in a study of 382 postmenopausal women with MDD 
(Tuunainen et al. 2002). In that study a close association 
between depressive symptoms and delayed offset of 
a6MTs was found suggesting that the timing of 
melatonin secretion is important for the regulation of 
mood. A number of studies have shown that the phase 
of melatonin secretion also varies systematically with 
mood changes in bipolar affective disorders. Phase 
advances in the nocturnal melatonin peak during the 
manic phase preceded that of the euthymic or depressed 
phase by at least 1 h (Kennedy et al. 1989). A delayed 
peak melatonin has also been documented in bipolar 
type 1 patients (Nurnberger et al. 2000). 

In contrast to bipolar depressed patients, the 
majority of patients suffering from SAD exhibit delayed 
circadian rhythms (Lewy et al. 1988). Delayed offset 
of melatonin secretion of about 2 h has been reported 
in SAD patients (Terman et al. 1987). It has been 
hypothesized that the symptoms of hypersomnia and 
late awakening seen in SAD patients are due to the 
delayed phase and long duration of melatonin secretion 
that occur in this patient group (Putilov et al. 2005). 
Indeed, SAD patients fall into two groups when their 
dim light melatonin onset, i.e., the onset of melatonin 
secretion under dim light conditions, considered as the 
most accurate marker for assessing the circadian 
pacemaker, is examined. The majority show a phase 
delay while a minority shows a phase advance. Those 
with a phase delay can be treated successfully with 
bright light treatment in the morning normalizing their 
mood and their phase shift. Conversely, those with a 
phase advance are best treated with bright light in the 
evening. Moreover a low dose of melatonin given in 
the evening in those with phase delay but given in the 
morning in those with phase advance will normalize 
the phase shift (Lewy et al. 2006, 2007). 

Associations of circadian clock gene 
polymorphisms with depressive illness 

The evidence linking mutations of circadian clock 
genes with depressive illness arises from studies that 
linked genomic alteration with certain sleep/wake 
circadian disorders. One of the first demonstrations of 
a disorder directly related to the human molecular clock 
was a polymorphism of human Per identified in a family 
diagnosed with familial advance sleep phase disorder 
(FASPD) (Jones et al. 1999). The resulting amino acid  

change in the PER2 protein affects its phosphorylation 
by casein kinases I epsilon and delta (CKIá/á) (figure 
1) and its stability and intracellular localization, thus 
the short period and advanced sleep phase of the 
patients. 

Polymorphism in the human Per3 gene was 
associated with delayed sleep phase disorder (Ebisawa 
et al. 2001, Archer et al. 2003). Per3 variants have also 
been associated with morning-evening preference, 
subjects homozygous for the Per3,5 allele exhibiting 
significant differences in sleep (greater sleep propensity, 
increased slow-wave sleep and greater susceptibility 
to the effects of sleep deprivation) as compared to those 
homozygous for Per3,4 including (Viola et al. 2007). 
The results suggest that different clock genes may affect 
chronotype. 

Polymorphism of the human Clock gene was 
associated with delayed timing of the sleep-wake cycle 
and evening preference (Katzenberg et al. 1999, 
Mishima et al. 2005). Individuals carrying one or two 
copies of the Clock 3,1,1,1C allele showed increased 
eveningness and reduced morningness, while those 
carrying the3,1,1,1,T/T allele exhibited morning 
preference. 

Associations have been detected of some 
polymorphic variants in genes belonging to the human 
circadian clock in patients with affective disorders 
inasmuch as chronobiological variables such as 
seasonality and chronotype (Johansson et al. 2003), 
number ofrecurrences (Benedetti et al. 2003), evolution 
of insomnia during antidepressant treatment (Serretti 
et al. 2005), age of onset of the disorder (Benedetti et 
al. 2004), sleep and activity patterns (Benedetti et al. 
2007) and response to mood stabilizing treatment 
(McClung 2007) are implicated. A finding that indicates 
that evening chronotype could increase the risk of 
psychiatric disorders is that bipolar disorder and 
schizophrenia/schizoaffective patients show greater 
eveningness scores than controls (Mansour et al. 2005). 
In bipolar disorder patients, but not in schizophrenia/ 
schizoaffective patients, younger individuals were more 
extreme evening types. Although this may suggest a 
relationship between circadian and psychiatric 
disorders, whether one precedes the other or they co-
occur is difficult to determine. 

Concerning susceptibility to suffering bipolar 
disorder, an analysis of 46 single nucleotide 
polymorphisms (SNP) in eight clock genes (Bmal1, 
Clock, Per1,2,3, Cry1,2, timeless) using family-based 
samples with bipolar disorder has been reported 
(Mansour et al. 2006). SNP of Clock, NR1D1, Rorá 
and Rorá has also been associated with bipolar disorder 
(Shi et al. 2008, Kripke et al. 2009, Le Niculescu et al. 
2009, Lavebratt et al. 2010). It is interesting that tNpas2 
deficient mice (Dudley et al. 2003) and Clock mutant 
mice (Roybal et al. 2007) display behavior pattern 
resembling the manic state in bipolar disorder. 

Other studies suggest that polymorphisms ofPer2, 
Npas2 and Bmal1 could be associated with an increased 
risk for SAD. These three clock genes were analyzed 
for SNPs in a sample of 189 SAD patients and an equal 
number of matched controls. Specifically, 
polymorphisms of Per2, Npas2 and Bmal1 were 
associated with SAD, but together, certain allelic 
combinations of SNPs of these three genes have an 
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additive effect, increasing the risk of developing SAD 
(Partonen et al. 2007). This reinforces the existence of 
an association between certain clock gene 
polymorphisms and chronotype. Summarizing, the 
results are a strong indication that certain abnormalities 
in the circadian molecular clock can increase the 
susceptibility to mood disorders. However, most findings 
await replication in other samples and populations. 

Associations of melatonin related gene 
polymorphisms with depressive illness 

A limited number of studies have been done to 
date on variation in genes related to melatonin in 
depressive disorder. However, some interesting findings 
are emerging that deserve to be corroborated and 
extended. It is now known that the enzyme arylal-
kylamine N-acetyltransferase (AANAT) is a key 
enzyme in the melatonin synthesis pathway that 
regulates the timing of melatonin production (Klein 
2007). A recent study of this enzyme in depressed 
patients provided evidence of the association of genetic 
variability in the AANAT gene with susceptibility to 
MDD (Soria et al. 2010a). Both bipolar and unipolar 
patients were included in the population studied. As 
noted by the authors further analysis and sub-
classification ofthe patients according to their symptom 
profiles is important. It would also be important to 
determine whether phase advances or delays in 
nocturnal melatonin correlate with alterations in the 
AANAT gene. 

The rate limiting enzyme in melatonin synthesis, 
acetylserotonin methyltransferase (ASMT, formerly 
HIOMT), is now known to control the absolute levels 
of melatonin produced during the night (Ceinos et al. 
2004, Liu and Borjigin 2005). Recently it has been 
reported that there is an association between two 
polymorphisms of ASMT gene and a lower risk of 
recurrence of depression (Galecki et al. 2010). 
Moreover patients with depression were characterized 
by reduced mRNA expression for ASMT. These 
findings support the concept of a low melatonin 
syndrome as a susceptibility factor for depression 
although the findings must be confirmed and extended. 

The G-protein linked receptor GPR50 is now 
known to inhibit the function of the melatonin receptor 
MTlby heterodimerization (Levoye et al. 2006a,b). A 
sex specific association between bipolar illness in 
women and GPR50 polymorphism has been reported 
(Thomson et al. 2005). Another study failed to find this 
association although there may have been genetic 
heterogeneity between the populations studied (Alaerts 
et al. 2006). A linkage between a second site on the 
same gene has been reported more recently that is 
stronger in females with some evidence of a role in 
symptom severity (Macintyre et al. 2010). These 
findings suggest that GPR50 may play a role in bipolar 
affective disorder especially in women. 

Antidepressant treatment and sleep 

Pharmacotherapies for the treatment of depression 
have been in use since 1950's. They include tricyclic  

antidepressants (TCAs), monoamine oxidase inhibitors 
(MAOIs), selective 5HT reuptake inhibitors (SSRIs), 
5-HT-norepinephrine (NE) reuptake inhibitors (SNRIs), 
several serotonergic receptor blockers, and the recently 
introduced melatonin agonist and selective 5-HT 
antagonists (MASSAs) whose prototype is agomelatine. 
Antidepressants are the third most widely prescribed 
class of therapeutic agents worldwide, with SSRIs 
accounting for 80% of the total market share (Celada 
et al. 2004). 

To define the effect of an antidepressant on sleep 
is very important because it influences clinicians' 
decision for the type of antidepressant to be prescribed 
(DeMartinis and Winokur 2007). Most antidepressants 
have different effects on the sleep profile. This is related 
to degree of inhibition of 5-HT or NE uptake, the effects 
on 5-HT1A  or 5HT2  receptor sites or actions on ál- and 
á
2

adrenoceptors or histamine Hl  receptor sites (Mayers 
and Baldwin 2005). While some antidepressants cause 
improvement in sleep efficiency (SE) by ameliorating 
the depressive symptoms, others exert more rapid 
beneficial effects on initiation and maintenance of sleep 
(Sharpley and Cowen 1995, Tsuno et al. 2005, Thase 
2006). The introduction of SSRIs and SNRI (the SNRI 
venlafaxine and duloxetine are currently the physician's 
drugs of choice) has drastically changed the strategies 
for clinical treatment of the MDD (Rosenzweig-Lipson 
et al. 2007, DeMartinis and Winokur 2007). Because 
of administration of SSRIs is commonly associated with 
insomnia (Anderson 2000), most pharmacoepi-
demiological surveys indicate that at least one third of 
patients taking SSRIs receive concomitant sedative-
hypnotic medications e.g. (Thase 2006). Hence 
clinicians tend to consider the antidepressants effects 
on sleep as a potentially important determining factor 
in selecting the therapeutic option to treat patients with 
depressive symptomatology (Winokur et al. 2001, 
DeMartinis and Winokur 2007). 

Tricyclic antidepressants (TCAs) 

For over 30 years, from the 1960s to 1990, tricyclic 
drugs were the mainstay treatment for MDD. TCAs are 
known to decrease sleep onset latency (SOL), improve 
sleep SE and decrease wake time after sleep onset 
(WASO) (Ware et al. 1989). Because of their 
antihistaminic properties these drugs also produce 
sedating effects during the day, and it has thus been 
suggested that their use should be avoided in depressed 
patients who are sensitive to these effects (Winokur et 
al. 2001). 

With the exception of trimipramine all TCAs re-
duce or suppress REM sleep and increase REM latency 
(Vogel et al. 1990)   It has been suggested that REM 
sleep suppression associated with these drugs is an 
essential component of their therapeutic action. NE-
and 5-HT-containing neurons in the brain, which are 
directly affected by TCAs, are not only involved in the 
pathophysiology of affective disorders but also have a 
significant impact on sleep regulation. NE and 5-HT 
are known to inhibit electrical activity of the 
ventrolateral preoptic nucleus which contains a group 
of sleep active, á-aminobutyric acid (GABA)-galanin 
producing neurons (Saper et al. 2005). It has also been 
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suggested that blockade of histamine Hl  receptors or 
antagonism of á

,
-adrenoceptors is at the basis of their 

sleep promoting effects (Mayers and Baldwin 2005). 
Polysomnographic (PSG) studies support that TCAs 
generally cause sedative effects and clinical experience 
indicates that drugs like amitriptyline and trimipramine 
shorten SOL and improve sleep continuity and 
efficiency (Winokur et al. 2001, DeMartinis and 
Winokur 2007). 

Monoamine oxidase inhibitors (MAOIs) 

The use of the MAOIs tranylcypromine and 
phenelzine results in subjective complaints of insomnia, 
with PSG studies confirming prolonged SOL, impaired 
sleep continuity and increased WASO (Kupfer and 
Bowers 1972, Winokur et al. 2001). REM sleep 
suppression has also been noted in depressives who 
were on phenelzine and tranylcypromine. It is present 
soon after initiation of treatment and persists for months 
during continuation of therapy. However use of 
reversible monoamine oxidase A inhibitors such as 
moclobemide causes less pronounced REM sleep 
suppression (Monti 1989). 

Serotonin-norepinephrine reuptake inhibitors 
(SNRls) 

Venlafaxine, duloxetine and milnacipran belong 
to the SNRI category of drugs that inhibit presynaptic 
uptake of both 5-HT and NE (Stahl et al. 2005). In a 
double-blind placebo controlled study, administration 
of venlafaxine, at doses ranging from 75 to 225 mg/ 
day, induced increases in WASO after one month of 
treatment. REM sleep latency increased significantly 
while the total amount of time spent in REM sleep 
diminished (Salin-Pascual et al. 1997, Winokur et al. 
2001, Argyropoulos and Wilson 2005). Yang et al. 
reported that venlafaxine was associated with REM 
sleep suppression and increased in REM sleep latency, 
although, in contrast to previous studies, no differences 
in SOL or SE were observed between depressed patients 
and control subjects (Yang et al. 2005). Venlafaxine 
was also found to increase the frequency of periodic leg 
movements in sleep (PLMS). These repetitive and highly 
stereotyped limb movements can occur during sleep and/ 
or the waking state. PLMS movements are the result of 
EEG arousals or awakenings and might cause difficulties 
in initiating and maintaining sleep. Venlafaxine induced 
significant increases in PLMS movements, presumably 
the result of enhanced serotonergic availability and 
secondarily decreased of dopamine (DA) effects caused 
by the drug (Yang et al. 2005). 

Selective serotonin reuptake inhibitors (SSRls) 

The SSRIs, the most commonly used anti-
depressants, have been considered a major treatment 
breakthrough ever since the importance of 5HT in mood 
regulation was recognized. Two recent meta-analyses 
of clinical trials found that in mild and moderate 
depression, which constitute the vast majority of  

depression cases, the effect of SSRI is very small or 
none compared to placebo, while in very severe 
depression the effect of SSRIs is clinically significant 
(Kirsch et al. 2008, Fournier et al. 2010). 

SSRIs block the presynaptic uptake of 5-HT and 
enhance the activation of the postsynaptic receptors, 
thus prolonging the interaction of 5-HT with the multi-
ple 5HT receptor subtypes. However, SSRIs also have 
a number of side effects, the most prominent being their 
effects on sleep and sexual function (Moltzen and Bang-
Andersen 2006). In an early study, sertraline (with 
maximum doses up to 200 mg/day achieved within a 
10 day period) significantly prolonged SOL and reduced 
TST 14 days after treatment (Winokur et al. 2001). 
However, there was neither a reduction in SE nor an 
increase in WASO. It has been reported that nearly 25% 
of depressed patients treated with SSRIs have subjective 
complaints of insomnia (Armitage 2007). Fluoxetine 
administration has been shown to cause disruption of 
sleep continuity, reductions in SE and increases in 
WASO (Winokur et al. 2001). In a group of patients 
with major depression, fluoxetine at doses of 20mg/ 
day for 4 weeks caused significant decreases in SE, a 
finding that correlated well with the plasma fluoxetine 
levels (Armitage et al. 1997). This decrease in SE was 
also noted in other studies with fluoxetine, e.g. (Trivedi 
et al. 1999). REM sleep suppression has also been a 
consistent finding in depressed patients who are being 
treated with fluoxetine (Armitage 2007) Concerning the 
influence of paroxetine on sleep in depressed subjects 
it has also been noted that this drug similarly reduces 
SE, with an increased the number of awakenings being 
observed after 4 weeks of treatment. It did not, however, 
influence TST or SOL (Staner et al. 1995). Similar 
effects were also noted in normal healthy subjects 
receiving paroxetine (20mg/day). Subjects receiving 
paroxetine demonstrated significant reductions in SE, 
and an increase in WASO when compared to placebo. 
REM sleep minutes were reduced and REM latency 
was significantly prolonged (Sharpley et al. 1996). Yang 
et al. used PSG measurements to study 274 patients 
who had been receiving SSRIs and found an association 
between the use of the drugs and suppression of REM 
sleep and increases in REM sleep latency (Yang et al. 
2005). No differences in SOL or SE were apparent as 
compared to control subjects. A significant increase in 
PLMS was observed in patients receiving SSRIs, 
similar to that of venlafaxine, as reported above. PLMS 
can contribute significantly to difficulties in initiating 
and maintaining sleep, and caution should therefore be 
exercised in choosing antidepressants for the treatment 
of depressed patients who have pronounced sleep 
complaints (Yang et al. 2005). 

Serotonin-2 receptor antagonist/serotonin 
reuptake inhibitors (SARls) 

Trazodone and nefazodone are the two drugs that 
belong to the SARIs category, their main action being 
inhibition of 5-HT2  receptors, which are also involved 
in the regulation of sleep (Millan 2006). Trazodone also 
inhibits the ál-adrenergic and the histamine Hl  receptors 
(Stahl et al. 2003). Nefazodone inhibits ál  adrenergic 
receptors and inhibits NE uptake but has weak actions 
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on histamine receptors. Because of its effects on Hl  
receptors trazodone administration produces sedating 
effects and causes daytime somnolence (Winokur et al. 
2001). Administration of trazodone to depressed patients 
has been found to increase TST, reduce SOL, reduce the 
number of awakenings and arousals, reduce total REM 
sleep time, and prolong REM latency (Winokur et al. 
2001). In an eight week study of six depressed patients 
who also had symptoms of insomnia, trazodone treatment 
resulted in a 44% improvement in SOL, a 14% 
improvement in TST, and noteworthy improvements in 
SE (Scharf and Sachais 1990). Nefazodone 
administration to depressed patients preserves sleep 
continuity and decreases the number of awakenings 
(Rush et al. 1998). Evidence of its effects on sleep 
efficiency however has been less consistent, with either 
increases or no effects reported (Armitage 2007). 

Serotonergic-noradrenergic antidepressant 
drugs 

Drugs belonging to this category, e.g. mirtazapine 
and mianserin have a dual-action profile, combining 
the enhancement of the noradrenergic neurotransmitter 
system with specific actions on particular serotonergic 
receptor subtypes. They exert a potent antagonism of 
presynaptic á2- heteroceptors and á

2
autoreceptors that 

results in increased release of both 5-HT and NE 
(Wilson and Argyropoulos 2005). They also act as 5-  
HT2  and 5-HT

, 
receptor antagonists that contribute to 

the anxiolytic and soporific actions (Haddjeri et al. 
1995, de Boer 1996, Shen et al. 2006). Mirtazapine also 
exhibits potent antihistamine (Hl) activity. The use of 
mirtazepine in patients with major depression results 
in significant reductions of sleep disturbances (Winokur 
et al. 2000, Shen et al. 2006). In a study conducted on 
six adult patients with MDD, the administration of 15 
mg/day of mirtazapine for one week followed by 30 
mg/day for an additional week caused significant 
reductions in SOL and significant increases in TST as 
compared to baseline (Winokur et al. 2000). 
Comparison of mirtazepine with other antidepressants 
indicates a better SE than with fluoxetine (Winokur et 
al. 2003) or paroxetine (Ridout et al. 2003). Mirtazapine 
has also been found better than venlafaxine (Guelfi et 
al. 2001) or paroxetine (Schatzberg et al. 2002) in 
improving Hamilton Depression Rating Scale (HAM-
D) sleep scores. In the earliest PSG study conducted 
on sleep architecture in normal volunteers, mirtazapine 
(30 mg/day) decreased SOL, WASO and stage-1 sleep 
and increased SWS (Ruigt et al. 1990). A similar effect 
was found in another study conducted on healthy 
volunteers in whom the administration of mirtazapine 
(30 mg/day) caused a significant improvement in SE 
with reductions in nocturnal disturbances as compared 
to placebo (Aslan et al. 2002). Although mirtazapine is 
as effective as SSRIs as antidepressants, its side effects 
like increased appetite, weight gain and excessive 
daytime sedation (mediated by Hl  blockade) have 
prevented its acceptance as a first-line medication 
(Thase 2006). 

Mianserin has sleep promotion properties, possibly 
through inhibition of histamine (Hl) receptors (Sharpley 
and Cowen 1995, Mayers and Baldwin 2005). Earlier  

studies conducted on depressed patients revealed that 
mianserin (10-20 mg/day) caused reductions in HAM-
D sleep scores as compared to placebo for depressed 
women with cancer (Costa et al. 1985). 

Sedative-hypnotic medications 

Benzodiazepines are widely used for the treatment 
of insomnia although they were originally developed 
as anxiolytics and later used as hypnotics. 
Benzodiazepines cause reductions in SOL and prolong 
sleep time but their long-term use is debatable as these 
drugs cause development of tolerance, rebound 
insomnia and cognitive deficits (Jindal and Thase 2004, 
Thase 2006). In one of the placebo-controlled long-term 
trials in patients with MDD, it was found that the 
beneficial effects of clonazepam on patient's sleep 
complaints were limited to the first three weeks of 
therapy (Smith et al. 2002). 

Despite its clinical use for nearly 20 years, there 
is a lack of controlled studies using PSG for assessing 
the effectiveness of benzodiazepines as an add-on 
therapy with either SSRIs or SNRI in MDD (Thase 
2006). Moreover, the APA's Task force on 
benzodiazepine's Dependence, Toxicity, and Abuse has 
recommended against the long-term use of 
benzodiazepines in the treatment of insomniacs 
particularly in elderly patients (Jindal and Thase 2004). 

As sleep disturbances, particularly insomnia, are 
often found with antidepressant medications, the use 
of hypnotic drugs have been resorted to offset the sleep 
problem. Several of the atypical antidepressants have 
a sedative action but the extent varies. It is problematic 
with clozapine and very common with quetiapine. 
Sedation is common with risperidone, olanzapine, 
paliperidone and amisulpride. It is not unusual with 
ziprazodine. On the other hand the newer atypical 
antidepressant aripiprazole occasionally causes 
insomnia (Stahl 2009). Recent data indicate that atypical 
antipsychotics may increase the risk of sleep disorders 
like obstructive sleep apnea independently of weight 
and neck circumference (Rishi et al. 2010). 

In a study on SSRI treated depressed patients, it 
was found that those receiving daily doses of fluoxetine 
(~ 40 mg), sertraline (~100 mg) or paroxetine (~40 mg) 
reported significant insomnia. These patients were then 
entered into a double-blind phase where they were 
assigned randomly to zolpidem (10 mg) or placebo for 
4 weeks followed by single blind placebo for one week. 
Those depressed patients who received zolpidem 
demonstrated significant improvements in sleep with 
longer TST, better sleep quality and reduced WASO 
(Asnis et al. 1999). 

Melatonin agonist and selective serotonin 
antagonists (MASSA) 

Agomelatine, developed by Servier, France, is a 
novel antidepressant with MTl  and MT2  receptor 
agonist activity that has 5-HT2c  antagonist properties. 
It is the first representative of a new type of 
antidepressant (MASSA). Agomelatine is a 
naphthalenic compound with an overall selectivity for 
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MT1  and MT2  receptors but no significant affinity to 
muscarinic, histaminergic, adrenergic or dopaminergic 
receptor subtypes (Rouillon, 2006). In multicenter trials 
undertaken in Europe (Loo et al. 2002, Kupfer 2006, 
Kennedy and Emsley 2006) agomelatine at a dose of 
25 mg/day given before bedtime was found to be 
effective in reducing the depressive symptoms in 
patients with MDD. The effectiveness of agomelatine 
in severely depressed patients is particularly significant 
inasmuch as this patient group is resistant to SSRIs or 
SNRIs. Agomelatine represents an innovation in the 
treatment of depression because it has few adverse 
effects and is associated with early resolution of 
depressive symptoms (Pandi-Perumal et al. 2006, 
Kennedy and Rizvi 2010). 

In addition agomelatine is effective in reducing 
sleep complaints in depressed patients. Treatment of 
depressed patients with agomelatine for six weeks 
increased the duration ofNREM sleep without affecting 
REM sleep thus causing improvements in both sleep 
quality and continuity (Quera Salva et al. 2007, 2010). 
In a study which compared agomelatine with 
venlafaxine, agomelatine at 25 mg/day promoted earlier 
and greater improvement on the "criteria of getting into 
sleep" in a Leeds sleep evaluation questionnaire 
(Guilleminault 2005). The improvement in sleep quality 
was evident at the first week of agomelatine, but not of 
venlafaxine, use. In another study it was reported that 
agomelatine normalizes NREM sleep changes found 
in depressed patients. The changes in NREM preceded 
the improvement seen in Hamilton depression scores 
(Lopes et al. 2007). Agomelatine is thus a dual action 
drug that can produce rapid antidepressant effects while 
also improving sleep quality. This is very important 
clinically inasmuch as improvements in sleep among 
depressed patients are associated with a reduced rate 
of recurrence of depressive symptoms and, conversely, 
complaints of poor sleep in depressed patients are 
associated with a poor response to subsequent 
antidepressant treatment. A recent study provides strong 
support for the superior chronobiological effects of 
agomelatine in patients with MDD (Kasper et al. 2010). 
As compared to sertraline, agomelatine increased the 
relative amplitude of the circadian rest-activity cycle 
by the end of week one and in parallel there were 
improvements in sleep efficiency and in sleep latency 
from week one to week six. Over a six week treatment 
period depressive and anxiety symptoms improved 
more with agomelatine than with sertraline. 

Agomelatine is unique because it has a 
chronobiological basis for its action. Since agomelatine 
effects are mediated through both MT1  and MT2  
melatonergic receptors and 5-HT2c  serotonergic 
receptors it acts differently in different circadian phases 
of the day-night cycle. While it promotes and maintains 
sleep at night, it also maintains alertness during the day. 
At night the sleep promoting melatonergic effects 
prevail over its potentially antihypnotic 5-HT2c  
antagonism, whereas during the day the antidepressant 
actions through antagonism of 5-HT2c  receptors is 
uncoupled from melatonin's nocturnal hypnotic effects 
(Millan 2006). These effects are in contrast to traditional 
antidepressants which elevate the mood of depressed 
patients of the patients during daytime, an effect that is 
sustained in the night causing impairment in sleep  

quality (Ruhe et al. 2007). 
One criticism of this dual interpretation of 

agomelatine action is the large differences in affinity 
for the putative action on serotonergic receptors as 
compared to the melatonergic one (about 3 orders of 
magnitude greater concentration are needed to exert 5-  
HT

2C 
antagonism) (Millan et al. 2003). Moreover, both 

melatonin and ramelteon have been shown to display 
antidepressant-like effects even though they are not 
reportedly known to affect serotonergic activity 
significantly (Detanico et al. 2009, Crupi et al. 2010, 
McElroy et al. 2011). 

All available evidence suggests that agomelatine 
is a promising antidepressant that can address the sleep 
disturbances and abnormalities seen in depression. 
However, although the compound was very well 
tolerated according to subjective ratings, the issue of 
long-term toxicity has not been yet fully addressed 
(Cardinali et al. 2011). 

Conclusions 

Converging lines of evidences suggest that an 
abnormality in the timing of clock-controlled processes 
and of melatonin related processes may play a pivotal 
role in the pathogenesis of depression. It could be 
proposed that disturbed circadian rhythm regulation 
impacts on sleep rhythms to produce changes in 
monoamine regulation of mood. The altered mood could 
then influence sleep. However, the working hypothesis 
on a possible direct causal relationship between 
alterations of the circadian system and depression 
cannot be presently warranted. Indeed, the circadian 
abnormalities observed could be a consequence, rather 
than the cause of the depressive status, or be a 
manifestation of conditions that directly affect both 
biological rhythms and the mechanisms involved in 
mood regulation. 

The systematic investigations of clock gene and 
melatonin related gene polymorphisms in depression, 
the characterization of behavioral phenotypes in mouse 
circadian mutants and the identification of new genetic 
factors that contribute to circadian and behavioral 
function will undoubtedly shed light into the 
relationship between circadian rhythm alterations and 
depression. In addition studies are needed that consider 
more refined clinical and circadian subphenotypes in 
MDD, such as treatment response, sleep/wake cycle 
abnormalities, diurnal mood variation, and seasonality 
(Soria et al. 2010b). The existence of such relationships 
will certainly have profound therapeutic implications. 

Since insomnia is one of the hallmark symptoms 
of depressive disorders, a major difficulty with 
conventional antidepressant therapy, especially the 
SSRIs, is that they often disturb sleep and may therefore 
increase sleep problems. Recently a novel melatonergic 
antidepressant with both melatonin agonist properties 
and 5-HT2c  antagonist properties (agomelatine) has been 
introduced. It is effective not only for ameliorating 
symptoms of depressive illness and reducing Hamilton 
depression scores, but also for improving sleep quality 
and reducing sleep complaints. More clinical trials are 
needed to confirm the efficacy of melatonergic drugs 
for long term use in the treatment of chronic primary 
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insomnia as well as for insomnia associated with 
depression and other psychiatric conditions. 
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