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Abstract 

Combinations of fructose- and fat-rich diets in experimental animals can model the human 

metabolic syndrome (MS). In rats the increase in blood pressure (BP) after diet manipulation is 

sex-related and highly dependent on testosterone secretion. However, the extent of diet impact 

on rodent hypophysial-testicular axis remains undefined. In the present study rats drinking a 

10% fructose solution or fed a high fat (35%) diet for 10 weeks had higher plasma levels of 

luteinizing hormone (LH) and lower plasma levels of testosterone, with absence of significant 

changes in circulating follicle-stimulating hormone (FSH) or in weight of most reproductive 

organs. Diet manipulation brought about a significant increase in body weight, systolic BP, area 

under the curve (AUC) of glycemia after an i.p. glucose tolerance test (IPGTT) and plasma low-

density lipoprotein-cholesterol, cholesterol, triglycerides and uric acid levels. The concomitant 

administration of melatonin (25 μg/mL of drinking water) normalized the abnormally high LH 

levels but did not affect the inhibited testosterone secretion found in fructose- or high fat-fed 

rats. Rather melatonin per se inhibited testosterone secretion. Melatonin significantly blunted 

the body weight and systolic BP increase, the increase in the AUC of glycemia after an IPGTT and 

the changes in circulating lipid profile and uric acid found in both MS models. The results are 

compatible with a primary inhibition of testicular function in the diet-induced MS in rats and 

with the partial effectiveness of melatonin to counteract the metabolic but not the testicular 

sequels of rodent MS. 

 

Keywords: metabolic syndrome; melatonin; fructose; high fat diet; LH; FSH; testosterone; 

hypertension; dyslipidemia; glucose tolerance; uric acid. 

Abbreviations: ANOVA: analysis of variance; AUC: area under the curve; BMI: body mass index; 

BP: blood pressure: FSH: follicle-stimulating hormone; HDL-c: high-density lipoprotein-

cholesterol; IPGTT: i.p. glucose tolerance test; LDL-c: low-density lipoprotein-cholesterol; LH: 

luteinizing hormone; MS: metabolic syndrome; RIA: radioimmunoassay.  
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Introduction 

The cluster of cardiovascular disease risk factors including obesity, hypertension, 

hyperinsulinemia, glucose intolerance and dyslipidemia is known as the metabolic syndrome 

(MS) [1-4]. The MS is a major clinical challenge with a prevalence of 15-30% depending on the 

world region considered, its presence increasing overall cardiovascular mortality by 1.5- to 2.5-

fold. Indeed, the MS and the aging of the population are the two greatest public health concerns 

of the 21st century [5,6]. Each of these trends has important effects on body composition, 

functional disability and mortality. An important change in body composition with aging is the 

increase of fat mass and visceral fat [7], which increases susceptibility to the MS and 

cardiovascular disease. Adipocytes actively secrete leptin and proinflammatory cytokines and 

activate a vicious cycle leading to additional weight gain largely in the form of fat [8,9]. 

One of the factors that contributes to the increase in MS incidence is poor eating habits, 

which are mainly characterized by a large increase in fructose and fat consumption [1-4]. In the 

case of fructose, an impending increase in intake, primarily in the form of sucrose (that contains 

50% fructose) and corn syrup (55% fructose content) has been documented in the last 25 years 

[4]. High fructose intake has been commonly modeled in rats [10], and lately in non-human 

primates [11]. In both types of animals, fructose feeding induces hypertension, 

hyperinsulinemia, insulin resistance and hypertriglyceridemia [12]. In the case of high-fat diets 

they have been employed for decades to model obesity, dyslipidemia and insulin resistance in 

rodents [13]. 

The increase in body weight after a high fructose or fat diet is accompanied by increased 

systolic blood pressure (BP) and endothelial dysfunction [14-16]. This effect is sex-related and 

needs the presence of testosterone to become apparent [17]. On the other hand, obesity is 

associated with an altered hormonal milieu that can affect the reproductive system, as shown by 

the association of an increased body mass index (BMI) in men with low testosterone and sex 

hormone-binding globulin levels [18].  
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In rat models of diet-induced MS diet manipulation brought about a significant decrease in 

total plasma testosterone levels [19-21] and a loss of correlation between circulating 

testosterone and luteinizing hormone (LH) levels [19]. Other studies, however, failed to observe 

such an effect of diet on testosterone secretion [22,23]. The aim of the present experiments was 

to examine the impact of diet on the activity of the hypophysial-testicular axis after giving to rats 

10% fructose as a drinking solution or a high (35%) fat diet for 10 weeks. The possible 

corrective effect of melatonin on MS sequels was examined because among several substances 

with the capacity to curtail the MS, melatonin has received increasing attention due to its very 

low or absent toxicity that turns it potentially appropriate for human use [2,24-28]. 

 

Material and methods 

Animals and experimental design 

Male Wistar rats (60 days of age) were kept under standard conditions of controlled light 

(12:12 h light/dark schedule; lights on at 08:00 h) and temperature (22 ± 2 °C).  

In a first experiment the effect of fructose or high fat administration on plasma LH, 

testosterone and follicle-stimulating hormone (FSH) levels and reproductive organ weight was 

measured. In addition a number of somatic and metabolic components employed clinically to 

monitor the MS, i.e. body weight increase, systolic BP, i.p. glucose tolerance test (IPGTT) and 

several circulating analytes including triglycerides, total cholesterol, high-density lipoprotein-

cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c), creatinine, urea and uric acid 

were also measured.  For the fructose experiment groups of 8 rats had ad libitum access for 10 

weeks to one of the following drinking solutions: (i) a 10% fructose solution (in which fructose 

accounted for 48–57% of total caloric intake [29]); (ii) tap water. Normal rat chow was given ad 

libitum; it contained 3% fat, 16% protein and 60% carbohydrate (mainly as starch with less than 

0.4% fructose) providing a total caloric content of 2.9 Kcal/g. For the high fat diet experiment 

groups of 8 rats had ad libitum access for 10 weeks to tap water and one of the following diets: 
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(i) high-fat chow; (ii) normal rat chow. The high (35%) fat chow contained 35% carbohydrates 

and 20% proteins, providing a total caloric content of 5.4 Kcal/g while the normal chow 

provided a total caloric content of 2.9 Kcal/g. 

In a second experiment the efficacy of melatonin to counteract the hypophysial-testicular 

sequels of the MS seen in rats fed a 10% fructose solution was examined. Animals were 

randomly divided into four groups (n= 8/group) and had free access to chow and one of the 

following drinking solutions for 10 weeks: (i) 10% fructose; (ii) 10% fructose plus 25 μg/mL of 

melatonin; (iii) 25 μg/mL of melatonin; (iv) tap water. Since ethanol was used as a melatonin´s 

vehicle, drinking solutions in groups (i) and (iv) were added 0.015 % ethanol. The activity of the 

hypophysial-testicular axis and somatic and metabolic components of the MS were measured as 

in experiment 1. 

The aim of experiment 3 was to examine the efficacy of melatonin to counteract the 

changes in the hypophysial-testicular axis seen in rats fed a high fat diet. Animals were randomly 

divided into four groups (n= 8/group) and had free access to high fat or control chow and one of 

the following drinking solutions for 10 weeks: (i) tap water; (ii) 25 μg/mL of melatonin. Drinking 

solutions in group (i) was added 0.015 % ethanol. The activity of the hypophysial-testicular axis 

and somatic and metabolic components of the MS were measured as in experiment 1. 

Chow and water consumption were measured weekly. Caloric intake for fructose-fed rats 

was calculated as sum of calories ingested as food on the basis of 2.9 kcal per gram of chow 

consumed and on that each ingested gram of fructose corresponds to 4.0 kcal. Caloric intake for 

high fat-fed rats was calculated as sum of calories ingested as food on the basis of 5.4 kcal per 

gram of chow consumed. 

The daily melatonin dosage used varied from 1.9 to 3.2 mg/kg, the higher values 

corresponding to rats drinking fructose. The human equivalence dose, calculated by using the 

body surface area normalization method [30] was  0.31 – 0.52 mg/kg (i.e. 21 – 35 mg/day for a 

70 kg adult). 
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BP measurement 

Systolic BP was measured by using a manometer-tachometer (Rat Tail NIBP System; 

ADInstruments Pty Ltd., Sydney, Australia) employing an inflatable tail-cuff connected to a 

MLT844 Physiological Pressure Transducer (ADInstruments) and PowerLab data acquisition 

unit (ADInstruments). Rats were placed in a plastic holder mounted on a thermostatically 

controlled warm plate that was maintained at 35°C during measurements. An average value 

from three BP readings (that differed by no more than 2 mm Hg) was determined for each 

animal after they became acclimated to the environment. All BP measurements were made 

between 09:00 and 12:00 h. 

Biochemical assays 

The IPGTT was performed at 09:00 h after a 2-h fast. Rats were anesthetized, and following 

the collection of an unchallenged sample (time 0), a glucose solution of 2 g/kg body weight was 

administered i.p. During the test, blood was collected by lateral tail bleeding at 30, 60 and 120 

min after glucose administration to measure glucose concentration. Glycemia was measured 

using the Accu-Check Compact kit (Roche Diagnostics, Indianapolis, Indiana, USA). The area 

under the curve (AUC) for glycemia was calculated by using the trapezoidal method test [31].  

The rats were eutanized by decapitation under conditions of minimal stress. All 

experiments were conducted in accordance with the guidelines of the International Council for 

Laboratory Animal Science (ICLAS). Trunk blood was collected and plasma samples were 

obtained by centrifugation of blood at 1,500 x g for 15 min. EDTA (6 g/100 mL) was used as an 

anticoagulant. Samples were stored at –70 °C until further analysis.  

Plasma LH and FSH levels were measured by a homologous-specific double antibody 

radioimmunoassay (RIA), using materials kindly supplied by the NIDDK’s National Hormone and 

Pituitary Program and by Dr. A. Parlow (Harbor UCLA Medical Center, 1000 West Carson Street, 

Torrance, CA, USA), as described elsewhere [19]. The intra- and inter-assay coefficients of 

variation were 6 and 8%, respectively. Sensitivity of the RIA was 97.5 pg/ml using the NIDDK rat 
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appropriate standard. Plasma testosterone concentration was measured by a specific RIA 

obtained from DIAsource ImmunoAssays S.A. Rue de l’Industrie, 8, B-1400, Nivelles, Belgium. 

The intra- and inter-assay coefficients of variation were 6 and 8%, respectively. Sensitivity of the 

RIA was 0.1 ng of testosterone /ml. 

The plasma lipid profile was determined by measuring the content of triglycerides, total 

cholesterol, HDL-c and LDL-c using commercially available reagent kits as per the 

manufacturer's instructions (BioSystems S.A. Buenos Aires, Argentina). Creatinine, urea and uric 

acid were measured by standard enzymatic procedures (BioSystems S.A.). 

Statistical analysis 

After verifying normality of distribution of data, the statistical analysis of the results was 

performed by a one-way or a two-way factorial analysis of variance (ANOVA) followed by 

Bonferroni’s multiple comparison or Student´s t tests, as stated. P values lower than 0.05 were 

taken as evidence of statistical significance. 

 

Results  

In fructose studies, chow consumption (g/rat/day) was similar for controls (16 ± 2) and 

fructose-overloaded rats (15 ± 2). Water consumption (ml/rat/day) was 25 ± 4 (controls) and 

39 ± 5 (10 % fructose) (P< 0.02, Student´s t test). Therefore, the individual total caloric intake 

(kcal/day) was 44 ± 3 (controls) and 61 ± 4 (fructose) (P< 0.03, Student´s t test). 

In high fat diet studies, individual daily chow and water consumption were similar for 

controls (17 ± 3 g and 27 ± 3 ml) and high fat-fed rats (16 ± 3 g and 29 ± 2 ml). Individual total 

caloric intake (kcal/day) was 44 ± 3 (controls) and 71 ± 4 (high fat diet) (P< 0.01, Student´s t 

test). Melatonin administration did not affect significantly chow or water consumption. 

The results of experiment 1 are summarized in Tables 1 and 2. The administration of a 10% 

fructose drinking solution or of a high fat chow to rats brought about significant increases in 

body weight, systolic BP and AUC of glycemia after an IPGTT (Table 1). Rats fed fructose or a 



8 

 

high fat diet had significantly higher plasma levels of LH and significantly lower plasma levels of 

testosterone, with absence of significant changes in plasma FSH. Only the weight of seminal 

vesicles of fructose-fed rats was significantly higher than that of controls (Table 1). The 

experimental manipulation of diet in rats brought about significant changes in circulating 

analytes in fructose- and high fat-fed rats with increases of LDL-c, cholesterol, triglycerides and 

uric acid (Table 2).  

The effectiveness of melatonin to counteract the hypophysial-testicular sequels in the 

fructose-induced MS is summarized in Fig. 1 and Table 3. Melatonin administration normalized 

the abnormally high LH levels but did not affect the inhibited testosterone secretion found in 

fructose fed rats. Rather a significant inhibition of testosterone levels was found in rats 

administered with melatonin alone (Fig. 1). Neither testicular nor epididymal weight were 

affected by treatment, while seminal vesicle weight augmented significantly in rats drinking the 

10% fructose solution (Fig. 1). Melatonin significantly blunted the body weight and systolic BP 

increase found in rats drinking a 10% fructose solution (Table 3). The increase in the AUC of 

glycemia after an IPGTT found in fructose-fed rats was also prevented by melatonin, as well as 

the changes in lipid profile and uric acid levels (Table 3). When analyzed as a main factor in a 

factorial ANOVA, melatonin decreased uric acid levels significantly (P< 0.01). 

The efficacy of melatonin to counteract the changes in the hypophysial-testicular axis and 

somatic and metabolic changes seen in rats fed a high fat diet is summarized in Fig. 2 and Table 

4. Diet manipulation produced a significant inhibition of testosterone secretion and a significant 

stimulation of LH release with absence of effects on FSH release (Fig. 2). Melatonin 

administration normalized the abnormally high LH levels without affecting the inhibited 

testosterone secretion found in high fat fed rats. A significant inhibition of testosterone levels 

was found in rats administered with melatonin alone (Fig. 2). Neither testicular, epididymal nor 

seminal vesicle weight were affected by any treatment.  
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Rats fed with a high fat diet showed significantly higher body weights and systolic BP after 

10 weeks. Melatonin effectively counteracted these changes (Table 4). Additionally, in high fat 

fed rats circulating LDL-c, cholesterol and triglyceride concentration augmented significantly, 

melatonin being effective to counteract the changes in lipid profile observed. Melatonin did not 

affect the increase in plasma HDL-c found in high fat fed rats nor modified the circulating lipid 

profile when given alone (Table 4). Melatonin prevented the increase in uric acid found in high 

fat fed rats and when analyzed as a main factor in a factorial ANOVA, melatonin decreased uric 

acid levels significantly (P< 0.01) (Table 4). 

 

Discussion  

Overweight and insulin resistance, which are paramount components of the MS, affect the 

endocrine system, alter the hypothalamo-hypophyseal-gonadal hormonal axis  and depress 

testosterone secretion [32]. In a metaanalysis of clinical studies on the effect of BMI on testicular 

function [18] 18 out of 20 studies measuring testosterone reported negative relationships 

between BMI and circulating testosterone. Circulating total testosterone, and in particular free 

testosterone, were negatively correlated with BMI [18]. In rodents a decrease in plasma 

testosterone has been reported in experiments involving diet-induced models of the MS [19-21], 

but not in all cases [22,23]. 

Our foregoing results indicate that rats drinking a 10% fructose solution or fed a high fat 

diet for 10 weeks had higher plasma levels of LH and lower plasma levels of testosterone, with 

absence of significant changes in plasma FSH, thus indicating a primary effect of diet on 

testosterone production at the testicular level. This endocrine profile came along with the 

expected alterations of the experimental MS induced, i.e. significant increases in body weight and 

systolic BP, impaired glucose tolerance, and increased circulating levels of LDL-c, cholesterol, 

triglycerides and uric acid.  
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Endothelial dysfunction and increased BP following insulin resistance play an important 

role in the development of secondary cardiovascular complications in MS. The presence of 

testosterone, possibly via regulation of the synthesis of vasoconstrictor eicosanoids, is essential 

for the development of endothelial dysfunction and increased BP [14-16,22]. Moreover, 

testosterone treatment of fructose fed female rats increased BP [17]. There is also information 

that a similar testosterone effect is seen in high fat fed rats [33]. Since gonadectomy was effective 

to prevent endothelial dysfunction and increased BP in fructose-fed male rats [14-16,22] , the 

low amounts of testosterone secreted after diet manipulation in the two models of MS hereby 

examined are presumably sufficient to provoke the vascular changes typically reported in these 

animals. Further studies using gonadectomized male rats could be useful to define this point, 

particularly in the case of high fat fed rats in which such information is lacking. 

In a previous study one of us reported in high-fat diet fed rats a significant decrease in total 

plasma testosterone levels and a loss of correlation between testosterone with circulating LH 

levels [19], findings which were coincident with other published observations [20,21]. Since 

saturated fatty acid treatment decreases LH-stimulated adenylate cyclase activity [34] and 

testosterone levels [35] in rat testis and induces apoptosis of Leydig cells [36], the previous and 

present results are compatible with a deleterious effect of high-fat diet on testicular function.  

Among several substances with the capacity to curtail the MS, melatonin has received 

increasing attention because of its very low or absent toxicity that turns it potentially 

appropriate for human use. A number of studies indicate that melatonin has the ability to reduce 

type 2 diabetes and liver steatosis (for ref. see [37]). In addition, melatonin treatment induces 

regeneration/proliferation of β-cells in pancreas which leads to a decrement in blood glucose in 

streptozotocin-induced type 1 diabetic rats [38]. Loss of circulating melatonin via pinealectomy 

results in marked hyperinsulinemia and accumulation of triglycerides in the liver [39]. Long-

term administration of melatonin improves lipid metabolism in type 2 diabetic rats through 

amelioration of insulin resistance [40].  
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 In high-fat/high sucrose-fed rats giving an i.p. injection of 4 mg/kg melatonin every 

morning for 8 weeks, starting after 20 weeks of feeding, weight gain inhibition occurred together 

with improved insulin sensitivity [41]. Rats fed a diet containing 60% fructose exhibited an 

inhibition of melatonin secretion and turned hypertensive unless a daily supplementation of 

melatonin (30 mg/kg in drinking water) was given [42].  In another study the melatonin activity 

on the MS induced by a diet containing 60% fructose was examined [43]. This diet increased 

serum insulin, triglyceride, total cholesterol, free fatty acids, uric acid, leptin and lipid peroxide 

concentrations as well as hepatic triglyceride and cholesterol concentrations. Insulin resistance, 

relative intra-abdominal fat and an augmented liver weight were also apparent. The daily i.p. 

administration of melatonin (1 or 10 mg/kg body weight), starting at 4 weeks of feeding, 

attenuated all these changes underlining the efficacy of melatonin to improve a fully developed 

MS [43].   

The present results indicate that the administration of melatonin significantly blunted the 

body weight and systolic BP increase and normalized glucose tolerance and circulating lipid and 

uric acid profile found in two diet-induced models of rodent MS. Collectively, the present and 

previous results are compatible with the view that melatonin can effectively reduce adiposity in 

several rodent models of hyperadiposity [44-52]. Remarkably this effect of melatonin is exerted 

in the absence of significant differences in food intake. To what extent  the weight-loss-

promoting effect of melatonin is attributable to an increase in energy expenditure by brown 

adipose tissue deserves further exploration (see for ref. [53]).  

 

 

 

At the initial phase of the MS induced in rats by fructose overload, hypertriglyceridemia 

and fatty liver without modifying or even increasing plasma glucose tolerance to a glucose load 

have been reported [54,55]. Recently we observed in  rats at this initial stage of the MS similar 
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body weights and a greater tolerance to glucose than controls, together with a significant 

increase in systolic BP and changes in the circulating lipid profile [56]. The administration of 

melatonin, although unable to modify the increased tolerance to glucose, was effective to 

normalize the altered BP and lipid profile found at this early stage of the MS. Again the data 

support the possible therapeutical role of melatonin in the MS, both at an initial and at the 

established phases. 

In the present study melatonin given simultaneously with a 10% fructose solution or a high 

fat diet normalized the abnormally high LH levels but did not affect the inhibited testosterone 

secretion found; rather it had an inhibitory effect on testosterone when given alone. The results 

support a lack of effectiveness of melatonin to counteract the testicular sequels of rodent MS. 

Indeed information has accumulated for decades on a direct inhibitory effect on testosterone 

production in mammalian and non-mammalian testicular tissue [57-60]. Such an effect of 

melatonin on circulating testosterone levels appears to be absent in humans [61-65]. 

In the laboratory rat a number of physiological parameters display seasonal changes even 

under constant conditions of temperature, lighting and food availability (see for ref. [66]). Since 

the administration of melatonin in drinking water is an equivalent to expose the animals to short 

daily photoperiod in terms of a prolonged duration of the melatonin signal [67,68], a possible 

interpretation on the the changes in testosterone and LH secretion after melatonin is that they 

reflect the gonadal inhibition found in the natural environment for wild Rattus norvegicus during 

winter. In a recent study it was reported that male rats receiving melatonin in the drinking water 

(3 µg/ml)  exhibited a profound inhibitory effect on pituitary PRL gene expression and 

circulating PRL levels, as well as a significant decrease in plasma LH and testosterone 

concentration [66].  

Hyperuricemia is considered a true cardiovascular and renal risk factor in MS. 

Hyperuricemia predicts the development of hypertension, diabetes, stroke and cardiovascular 

events [69]. Mild hyperuricemia in normal rats induces systemic hypertension, renal 
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vasoconstriction, glomerular hypertension and hypertrophy, as well as tubulointerstitial injury 

independent of intrarenal crystal formation [70,71]. Lowering uric acid in fructose-fed rats 

ameliorates much of the MS, including a reduction in BP, serum triglycerides, hyperinsulinemia, 

and weight gain [69]. In the present study melatonin besides counteracting the changes in 

plasma LDL-c, triglyceride and cholesterol, decreased plasma uric acid levels. This last effect 

could be of a potential therapeutic value in human MS [69]. 

There is considerable evidence that circadian misalignment is associated with increased 

risk for obesity, diabetes and cardiovascular disease [28,72]. Life style changes, such as 

nocturnality and overly rich diets, are followed by disruption of the sleep/wake cycle and other 

circadian rhythms. Due to its effects on circadian rhythmicity melatonin can provide the basis for 

a therapeutic strategy in MS. Melatonin has been therapeutically used for treatment of age-

related insomnia as well as of other primary and secondary insomnia. A consensus of the British 

Association for Psychopharmacology on evidence-based treatment of insomnia, parasomnia and 

circadian rhythm sleep disorders concluded that melatonin is the first choice treatment when a 

hypnotic is indicated in patients over 55 years [73].  

There are clinical results indicating that type 2 diabetic patients have low levels of 

circulating melatonin [74] with a concomitantly and expected melatonin membrane receptor 

mRNA expression upregulation [37]. Recently, genomic studies uncovered a link between 

specific single nucleotide polymorphisms (SNP) of the melatonin MT2 receptor (MTNR1B) locus 

and a prognostic risk of type 2 diabetes [75-77]. The SNP correlated with higher fasting glucose 

levels and a pathologically altered insulin secretion responses. These findings strongly bind 

melatonin to blood glucose homeostasis.  

As well as in animal models, clinical studies have shown that melatonin provides benefits 

on lipid profiles. Melatonin treatment (1 mg/kg for 30 days) elevated HDL-c levels in peri- and 

postmenopausal women [78]. In an open-label study which included 33 healthy volunteers and 

30 MS patients treated with melatonin, patients with MS had significantly higher values than 
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controls in total cholesterol, LDL-c, triglycerides, systolic and diastolic BP, glycemia, fibrinogen, 

and erythrocyte thiobarbituric acid-reactive substrate levels [26]. They also had lower levels of 

HDL-c and reduced activities of catalase, glutathione peroxidase and superoxide dismutase in 

erythrocytes. Melatonin (5-mg/day) decreased significantly hypertension and improved the 

serum lipid profile and the antioxidative status [26]. In another open label study comprising 100 

elderly hypertensive patients the simultaneous application of melatonin together with lisinopril 

or amlodipine had the normalizing effect on BP and metabolic parameters [79]. Collectively, the 

results suggest that melatonin therapy can be of benefit for patients with MS, particularly with 

arterial hypertension.   

Hyperglycemia leads to vascular disease through many intertwined intracellular events 

linked to oxidative stress. Vascular production of both excessive reactive oxygen species (ROS) 

and excessive reactive nitrogen species (RNS) contribute to endothelial dysfunction by directly 

damaging macromolecules and by activating several cellular stress-sensitive pathways, e.g. 

nuclear factor kappa-beta, which play a key role in the development of type 1 and type 2 

diabetes complications as well as in the insulin resistance and impaired insulin secretion 

occurring type 2 diabetes [80]. At high doses melatonin may protect against several 

comorbilities of the MS, including diabetes and concomitant oxyradical-mediated damage, 

inflammation, microvascular disease and atherothrombotic risk [25,28,81]. Since melatonin 

provides both in vivo and in vitro protection at the level of cell membranes, mitochondria and 

nucleus, due to its free-radical scavenging and antioxidant properties [81], the involvement of 

these mechanisms in melatonin´s prevention of vascular sequels and insulin resistance in the 

two diet-induced models of rodent MS herein examined seems warranted. 

It must be noted that melatonin has a high safety profile and is usually remarkably well 

tolerated. In some studies, melatonin has been administered to patients in very large doses. For 

example, 300 mg/day doses of melatonin for up to 3 years decreased oxidative stress in patients 

with amyotrophic lateral sclerosis [82]. Therefore, further studies employing melatonin doses in 
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the 50-100 mg/day range are needed to clarify its potential therapeutical implications on the MS 

in humans. If one expects melatonin to be an effective cytoprotector, especially in aged people, it 

is likely that the low doses of melatonin employed so far are not very beneficial. 
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Table 1. Changes in body weight, systolic BP, IPGTT, plasma levels of reproductive hormones and testicular, epididymal and seminal vesicle weight in rats 

receiving either a 10% fructose drinking solution or tap water (Fructose Study) or a high fat or normal diet (High Fat Study) for 10 weeks .  

 

 FRUCTOSE STUDY HIGH FAT STUDY 

 Control 

(tap water) 

10% 

Fructose  

t P Control 

(4% fat) 

High Fat  

(35% fat) 

t P 

Initial body weight (g) 263 ± 15 287 ± 12 1.25 NS 253 ± 19 267 ± 19 0.51 NS 

Final body weight (g) 311 ± 28 406 ± 34 2.16 0.049 376 ± 32 492 ± 40 2.26 0.040 

Systolic BP (mmHg) 107 ± 8 132 ± 8 2.21 0.044 110 ± 8 132 ± 9 2.20 0.045 

IPGTT (AUC, mg/dL.120 min) 7623 ± 631 10042 ± 898 2.20 0.045 8567 ± 828 15892 ± 1603 4.06 0.001 

Plasma LH (pg/mL) 34 ± 6 98 ± 21 2.93 0.011 47 ± 9 93 ± 15 2.63 0.020 

Plasma FSH (pg/mL) 199 ± 74 290 ± 46 1.04 NS 245 ± 56 335 ± 45 1.25 NS 

Plasma testosterone (ng/mL) 1.56 ± 0.22 0.9 ± 0.1 2.73 0.016 1.69 ± 0.42 0.93 ± 0.13 2.26 0.040 

Testicular weight (g) 1.55 ± 0.04 1.63 ± 0.03 1.60 NS 2.11 ± 0.33 2.53 ± 0.56 0.65 NS 

Epididymal weight (g) 0.54 ± 0.08 0.50 ± 0.02 0.24 NS 0.43 ± 0.11 0.65 ± 0.23 0.83 NS 

Seminal vesicle weight (g) 0.79 ± 0.03 1.06 ± 0.08 3.16 0.007 0.56 ± 0.07 0.65 ± 0.12 0.65 NS 

 

For experimental details see Methods. Shown are the means ± S.E.M (n= 8 per group). Student´s t and the corresponding P values are quoted. NS: not 

significant. 
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Table 2. Changes in circulating lipid profile and plasma levels of creatinine, urea and uric acid weight in rats receiving either a 10% fructose drinking solution 

or tap water (Fructose Study) or a high fat or normal diet (High Fat Study) for 10  weeks .  

 

 FRUCTOSE STUDY HIGH FAT STUDY 

 Control 

(tap water) 

10% 

Fructose  

t P Control 

(4% fat) 

High Fat  

(35% fat) 

t P 

Lipid Profile         

 LDL-c (mg/dL plasma) 46 ± 6 89 ± 10 3.68 0.002 35 ± 5 63 ± 6 3.58 0.003 

 HDL-c (mg/dL plasma) 64 ± 5 55 ± 6 1.15 NS 59 ± 9 65 ± 9 0.47 NS 

 Cholesterol (mg/dL plasma) 65 ± 7 119 ± 24 2.16 0.049 69 ± 9 94 ± 7 2.19 0.046 

 Triglycerides (mg/dL plasma) 182 ± 32 345 ± 63 2.31 0.037 169 ± 29 307 ± 32 3.19 0.006 

Creatinine (mg/dL plasma) 1.3 ± 0.2 1.2 ± 0.2 0.35 NS 1.3 ± 0.1 1.2 ± 0.2 0.45 NS 

Urea (mg/dL plasma) 64 ± 5 56 ± 6 1.02 NS 49 ± 6 41 ± 7 0.86 NS 

Uric acid (mg/dL plasma) 1.2 ± 0.3 2.2 ± 0.4 2.36 0.034 1.3 ± 0.1 1.8 ± 0.2 2.23 0.041 

 

For experimental details see Methods. Shown are the means ± S.E.M (n= 8 per group). Student´s t and the corresponding P values are quoted. NS: not 

significant. 
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Table 3. Effect of melatonin on body weight, systolic BP, IPGTT and plasma levels of several analytes in rats drinking a 10% fructose solution for 10 weeks. 

 

 Control Fructose  Fructose + 

Melatonin 

Melatonin F P 

Initial body weight (g) 245 ± 28 267 ± 24 258 ± 27 262 ± 30 0.12 NS 

Final body weight (g) 381 ± 21 520 ± 35 a 380 ± 42 330 ± 16 7.25 <0.001 

Systolic BP (mmHg) 108 ± 4 128 ± 3 b 112 ± 4 100 ± 4 9.73 <0.001 

IPGTT (AUC, mg/dL.120 min) 8624 ± 631 13442 ± 1003 c 7563 ± 823 6678 ± 567 15.1 <0.001 

Lipid Profile 

 LDL-c (mg/dL plasma) 55 ± 6 99 ± 6 c 39 ± 5 32 ± 4 32.0 <0.001 

 HDL-c (mg/dL plasma) 58 ± 5 75 ± 6 82 ± 3 d 61 ± 5 5.47 0.004 

 Cholesterol (mg/dL plasma) 77 ± 4 138 ± 14 c 81 ± 10 65 ± 4 12.9 <0.001 

 Triglycerides (mg/dL plasma) 161 ± 12 372 ± 53 c 205 ± 32 180 ± 19 8.62 <0.001 

Creatinine (mg/dL plasma) 1.1 ± 0.1 1.2 ± 0.2 1.1 ± 0.1 1.3 ± 0.1 0.52 NS 

Urea (mg/dL plasma) 54 ± 5 60 ± 6 48 ± 5 42 ± 6 1.97 NS 

Uric acid (mg/dL plasma) 1.1 ± 0.1 1.9 ± 0.2 a 1.3 ± 0.1 0.8 ± 0.1 12.3 <0.001 

 

For experimental details see Methods. Shown are the means ± S.E.M (n= 8 per group). F values in ANOVA and the corresponding P are quoted. NS: not 

significant. Letters indicate the existence of significant differences between the experimental groups after a one-way ANOVA followed by a post-hoc 

Bonferroni´s test, as follows: a P< 0.02 vs. the remaining groups; b P< 0.01 vs. control and melatonin alone groups, P< 0.04 vs. fructose + melatonin group: c P< 

0.01 vs. the remaining groups; d P< 0.02 vs. control and melatonin alone groups. For further statistical analysis, see text. 
  



26 

 

Table 4. Effect of melatonin on body weight, systolic BP, IPGTT and plasma levels of several analytes in rats fed a high fat diet for 10 weeks. 

 

 Control High Fat Diet  High Fat Diet 

+ Melatonin 

Melatonin F P 

Initial body weight (g) 254 ± 32 289 ± 32 267 ± 15 260 ± 23 0.35 NS 

Final body weight (g) 351 ± 30 479 ± 36 a 370 ± 32 371 ± 30 3.29 0.035 

Systolic BP (mmHg) 102 ± 8 129 ± 6 a 103 ± 4 100 ± 8 b 4.18 0.014 

IPGTT (AUC, mg/dL.120 min) 9666 ± 731 17729 ± 1435 c 7867 ± 866 8629 ± 465 23.4 <0.001 

Lipid Profile 

 LDL-c (mg/dL plasma) 35 ± 5 69 ± 7 c 39 ± 4 25 ± 4 13.5 <0.001 

 HDL-c (mg/dL plasma) 64 ± 8 59 ± 8 42 ± 7 68 ± 5 d 3.61 0.025 

 Cholesterol (mg/dL plasma) 65 ± 6 88 ± 4 e 67 ± 5 71 ± 4 4.71 0.009 

 Triglycerides (mg/dL 

plasma) 

175 ± 23 302 ± 26 f 215 ± 19 164 ± 13 9.04 <0.001 

Creatinine (mg/dL plasma) 1.1 ± 0.1 1.2 ± 0.2 1.1 ± 0.1 1.3 ± 0.1 0.52 NS 

Urea (mg/dL plasma) 44 ± 5 40 ± 6 38 ± 3 42 ± 4 0.31 NS 

Uric acid (mg/dL plasma) 1.4 ± 0.1 1.9 ± 0.2 g 1.2 ± 0.1 1.1 ± 0.1 7.23 <0.001 

 

For experimental details see Methods. Shown are the means ± S.E.M (n= 8 per group). F values in ANOVA and the corresponding P are quoted. NS: not 

significant. Letters indicate the existence of significant differences between the experimental groups after a one-way ANOVA followed by a post-hoc 

Bonferroni´s test, as follows: a P< 0.05 vs. control; b P< 0.03 vs. high fat diet, c P< 0.01 vs. the remaining groups; d P< 0.03 vs. high fat diet + melatonin group; e 

P< 0.03 vs. control and high fat diet + melatonin groups; f P< 0.02 vs the remaining groups; g P< 0.01 vs. high fat diet + melatonin and melatonin alone groups. 

For further statistical analysis, see text. 



Figure Legends 

Figure 1.  

Effect of melatonin on plasma LH, FSH and testosterone levels and reproductive organ 

weight in rats drinking a 10% fructose solution. Hormone levels were determined by 

specific RIA as described in Methods. Shown are the means ± S.E.M (n= 8 per group). 

Letters indicate the existence of significant differences between the experimental groups 

after a one-way ANOVA followed by a post-hoc Bonferroni´s test, a P< 0.01 vs. the 

remaining groups; b P< 0.05 vs. control and melatonin alone groups. 

 

Figure 2.  

Effect of melatonin on plasma LH, FSH and testosterone levels and reproductive organ 

weight in rats fed a high fat diet. Hormone levels were determined by specific RIA as 

described in Methods. Shown are the means ± S.E.M (n= 8 per group). Letters indicate the 

existence of significant differences between the experimental groups after a one-way 

ANOVA followed by a post-hoc Bonferroni´s test, a P< 0.04 vs. control; b P< 0.01 vs. the 

remaining groups. 
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