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STABILIZING RADIAL BASIS FUNCTIONS TECHNIQUES FOR
A LOCAL BOUNDARY INTEGRAL METHOD

LUCIANO PONZELLINI MARINELLI

Abstract. Radial basis functions (RBFs) have been gaining popularity re-
cently in the development of methods for solving partial differential equations
(PDEs) numerically. These functions have become an extremely effective tool
for interpolation on scattered node sets in several dimensions. One key issue
with infinitely smooth RBFs is the choice of a suitable value for the shape
parameter ε, which controls the flatness of the function. It is observed that
best accuracy is often achieved when ε tends to zero. However, the system of
discrete equations from interpolation matrices becomes ill-conditioned. A few
numerical algorithms have been presented that are able to stably compute an
interpolant, even in the increasingly flat basis function limit, such as the RBF-
QR method and the RBF-GA method. We present these techniques in the
context of boundary integral methods to improve the solution of PDEs with
RBFs. These stable calculations open up new opportunities for applications
and developments of local integral methods based on local RBF approxima-
tions. Numerical results for a small shape parameter that stabilizes the error
are presented. Accuracy and comparisons are also shown for elliptic PDEs.

1. Introduction

Radial basis functions (RBF) collocation methods were first developed by
R. Hardy [23] for multivariate scattered data interpolation. R. Franke showed
the benefits of using RBFs for interpolations in several numerical experiments [22].
In his pioneer works, E. J. Kansa used RBF meshless methods to find the numeri-
cal solution of PDEs to a wide range of problems [24, 25]. R. Franke conjectured
the inversibility of the interpolation matrix with multiquadric RBF and C. Mic-
chelli proved this conjecture improving and accelerating the use of RBFs in many
fields [27]. These meshless methods can easily handle high-dimensional irregular
domains and are rather easy to implement compared to mesh-based methods such
as the finite element method.
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Name of RBF Abbreviation

Smooth ϕ(r, ε)
e−(εr)2 Gaussian GA [2, 28, 16, 31]√

1 + (εr)2 Multiquadric MQ [1, 4, 6, 25](
1 + (εr)2)β , β ∈ R\N0 Generalized Multiquadric GMQ [19]

1/
√

1 + (εr)2 Inverse Multiquadric IMQ [6, 12, 19, 34]
Piecewise smooth ϕ(r)
rβ , β /∈ 2N Radial Potential RP [30]
r2β log(r), β ∈ N Thin Plate Spline TPS [4, 32, 33]
r2β−1 or r2β log(r), β ∈ N Polyharmonic Spline PHS [3, 11, 28, 29]

Table 1. Some well-known RBFs; ε is the shape parameter.

There are many choices of RBFs ϕ(r), where r = ∥x∥ and ε is the shape parame-
ter, which can be used as shown in Table 1 (see more examples in the books [10, 13]).
The references in the last column of the table indicate some PDEs solved numer-
ically for each type of RBF. In this work, we focus on the use of strictly positive
definite Gaussian RBFs that depend on this ε.

Theoretically, the use of infinitely smooth radial kernels like the Gaussian RBF
for interpolations gives a spectrally convergent meshless method [8]. In [20] it was
shown that this RBF interpolant converges to a polynomial interpolant when ε
tends to zero. In [26] the behavior of this interpolant in the limit case was studied
both theoretically and numerically to achieve higher accuracy. Therefore the prac-
tical use of a small range of the shape parameter is recommended to improve the
method’s performance. In numerical implementations, when the shape parameter
ε is small the RBFs become almost linearly dependent (‘flat RBFs’) giving rise to
an ill-conditioned system. The rows in the interpolation matrix are almost equal,
thus giving rise to a numerically ill-conditioned problem. In 1995 R. Schaback
formulated this issue as the so-called uncertainty principle [35]. This principle has
contributed to a mistaken conception in which the flat RBFs always lead to a nu-
merical ill-conditioned RBF linear system assuming that the RBF interpolants are
computed by solving by a standard RBF approach (often denoted as ‘RBF-Direct’).
The RBF interpolation problem is not itself a numerical ill-conditioned problem in
the limit case. The ill-conditioning issue is specific to this RBF-Direct approach.
So, several well-conditioned numerical algorithms have been developed in the last
decades.

The RBFs make up an ill-conditioned basis in a good approximation space, so
the purpose of an RBF stable algorithm is to stably evaluate the interpolant when
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ε decreases improving the accuracy. Several stabilizing techniques have been pre-
sented so far in the literature to bypass this ill-conditioning and allow a complete
range of ε that could be useful. B. Fornberg and co-authors made several contribu-
tions in this sense [15, 17, 18, 21, 36]. The RBF-QR was developed for the sphere
in [18] and similar ideas followed for the RBF-QR in cartesians in [15]. The Gauss-
QR method was proposed by Fasshauer [9] for the Gaussian kernels in connection
to Hilbert–Schmidt (Mercer) series expansions of positive definite kernels. The
RBF-GA presented in [17] avoids the calculation of truncated infinite series and
uses the efficient numerical implementation of the incomplete gamma function. An-
other recent development is the RBF with rational approximation (RBF-RA) [36]
following the ideas of the Contour–Padé (C-Padé) algorithm in [21].

Applications of the RBF-QR to Stefan problems were presented in [6]. In [2]
this algorithm was used in the method of fundamental solutions for boundary value
problems and in [7] for the numerical calculation of surface divergence-free RBFs
on the sphere. In [31] this technique improved the results for local integral methods
applied to elliptic PDEs in the limit case. However, there is no application of the
RBF-GA method to local integral methods that use RBF interpolation at a local
level and ε → 0 to increase accuracy.

The local integral methods that use RBFs as local interpolants have been es-
tablished as robust methods in the last decades. The appearance of the stable
algorithms mentioned above shows that the RBF interpolation operator could be
stabilized achieving accurate results, as presented in the Local Boundary-Domain
Integral Method (LBDIM) with RBF-QR by the author.

In this paper a novel local integral method is presented. The LBDIM uses
the RBF-GA method for strictly positive definite Gaussian RBFs to produce an
interpolation matrix with acceptable condition number and stabilizes the errors.
The new approach is tested for many differential problems. Its strengths and
weaknesses are compared with RBF-FD and LBDIM for some numerical tests.

The paper is organized as follows. In Section 2 we provide a background in RBFs
in the perspective for solving PDEs numerically. In Section 3 we introduce the LB-
DIM approach inspired by [31] and the stabilizing techniques to local interpolations
to reduce the ill-conditioning in the local RBF linear systems. In Section 4 we pro-
vide numerical results for a Poisson PDE over a circular domain and for two linear
elliptic PDEs over a square and an irregular domain. Some concluding remarks are
presented in Section 5.

2. Background in RBFs

Definition 2.1 ([8]). A function φ : Rd → R is an RBF when there exists a
univariate function ϕ : [0,∞) → R such that

φ(x) = ϕ(r), r = ∥x∥, (2.1)

where ∥ ·∥ is some norm on Rd (usually the Euclidean norm). When the RBF
depends on a center x0 ∈ Rd we write φ(x) = ϕ(r), where r = ∥x − x0∥ in (2.1).
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The Gaussian RBF is defined as
ϕ(r) = e−(εr)2

, (2.2)
where ε is known as the shape parameter. In Figure 1 the Gaussian RBF in two
dimensions is shown in the cases ε = 2, 1, 0.5, 0.1 over the square domain [−2, 2] ×
[−2, 2].
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Figure 1. Behaviour of Gaussian RBFs ϕ(r) = e−(εr)2 when ε → 0.

Let u : Ω → Rd. An RBF interpolant Pu with the given data Θ = {xj}n
j=1,

xj ∈ Rd, is defined as

u(x) ≈ Pu(x) =
n∑

j=1
αjφj(x) =

n∑
j=1

αjϕ(∥x − xj∥), (2.3)

where the unknown coefficients αj for j = 1, . . . , n are given by imposing the
collocation conditions

ui = Pu(xi) =
n∑

j=1
αjφj(xi), i = 1, . . . , n.

In matrix form the system could be written as
ϕ(∥x1 − x1∥) ϕ(∥x1 − x2∥) . . . ϕ(∥x1 − xn∥)
ϕ(∥x2 − x1∥) ϕ(∥x2 − x2∥) . . . ϕ(∥x2 − xn∥)

...
...

. . .
...

ϕ(∥xn − x1∥) ϕ(∥xn − x2∥) . . . ϕ(∥xn − xn∥)



α1
α2
...
αn

 =


u1
u2
...
un

 .
Taking [Φ]ij = φj(xi) = ϕ(∥xi−xj∥), α = [α1, . . . , αn]T , and u = [u1, . . . , un]T ,

Φα = u, (2.4)
where we need Φ to be invertible [27].

The RBF collocation method represents the approximate solution as a weighted
sum of the RBFs φj(x) = ϕ(∥x − xj∥2) where the unknown expansion coefficients
are determined through solving the linear system (2.4). This is known as RBF-
Direct.

Definition 2.2 ([8]). A continuous function φ : Rd → C is positive definite on Rd

if and only if
n∑

j=1

n∑
k=1

cjck φ (xj − xk) ≥ 0 (2.5)
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for every distinct node set χ = {x1, . . . ,xn} ⊂ Rd and for every c = [c1, . . . , cn] ∈
Cd, where ck denotes the conjugate of ck. The function φ is strictly positive definite
on Rd if the quadratic form (2.5) is zero only when c = 0.

Since positive definite functions satisfy the condition φ(−x) = φ(x), it is nec-
essary that φ be an even function. Also, the non-negativity of the quadratic form
is needed. It is also possible to characterize strictly positive definite functions φ
as every continuous function from the Lebesgue space L1(Rd) that is bounded and
whose Fourier transform is non-negative and not identically zero [8].

A standard criterion to measure the numerical stability of an approximation
method is the condition number. The linear system of equations is ill-conditioned
for the Gaussian RBFs defined in (2.2). The condition number of the interpolation
matrix Φ, denoted as κ(Φ), increases fast indicating that the problem is ill-posed.
For strictly positive definite RBFs, the condition number can be calculated as (see
[8])

κ(Φ) = λmax

λmin
,

where λmin > 0 and λmax > 0 denote the smallest and the largest eigenvalues
of the interpolation matrix Φ, which are positive since the matrix is symmetric,
[Φ]ij = ϕ(∥xi − xj∥).

For the strictly positive definite Gaussian RBF ϕ(r) = e−r2ε2 , it is shown that
ϕ(r) ≤ ϕ(0) = 1. Since, for any matrix, the spectral radius is less than any matrix
norm, ρ(Φ) ≤ ∥Φ∥, we have that λmax is bounded as

λmax ≤ ∥Φ∥∞ ≤ nφ(0) = n.

That is, the largest eigenvalue is of order O(n), where n is the number of centers
of the interpolation, so λmax approaches to infinity as n grows. If n is not too big,
λmax is acceptable, especially when the dimension of the interpolation problem, d,
is not too large. Hence,

κ(Φ) ≤ n

λmin
,

and therefore a lower bound for eigenvalues is needed to establish a bound for the
condition number of Φ. The separation distance of data centers is defined as

qΘ = 1
2 min

i ̸=j
∥xi − xj∥2.

Using this distance, a lower bound for λmin in the case of the Gaussian RBFs that
depend on the shape parameter ε is

λmin ≥ Cde
−40.71d2/(εqΘ)2(√

2εqΘ
)d

,

where the constant Cd depends on the problem dimension d as (see [8])

Cd = 1
2Γ
(

d+2
2
) (Md√

8

)d

, Md = 12
(
πΓ2 (d+s

2
)

9

)( 1
d+1 )

,
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Γ being the gamma function.
In the case of infinitely smooth functions, such as the Gaussian RBFs, we see

that, for a fixed number of nodes or at least for constant qΘ, reducing the value of ε
which improves interpolation accuracy, the lower bound for λmin goes exponentially
to zero and therefore the condition number of the interpolation matrix Φ grows
exponentially. This is known as the stationary approximation setting. Numerically,
the rows in the interpolation matrix become similar so the matrix becomes almost
singular, giving rise to ill-conditioning at the cost of numerical instability. The
upper bound for the error estimate increases, i.e., the accuracy of the interpolant
deteriorates. On the other hand, in the non-stationary approximation, ε is fixed
and adding more interpolation nodes in order to improve interpolation accuracy
makes the problem become increasingly ill-conditioned due to the decrease of the
separation distance. This was presented as the uncertainty principle in [35].

2.1. The Gaussian RBF expansion. The Gaussian RBF φ(r) = e−ε2r2 , cen-
tered at xj ∈ Rd, that depends on the shape parameter ε > 0 is

ϕj(x) = φj(∥x − xj∥) = e−ε2∥x−xj∥2

= e−ε2⟨(x−xj)T , x−xj⟩

= e−ε2⟨xT , x⟩e−ε2⟨xT
j ,xj⟩e2ε2⟨xT , xj⟩.

(2.6)

The expansion of the Gaussian in 2D centered at (xj , yj) ∈ R2 from (2.6) is

ϕj(x, y) = e−ε2(x2+y2)e−ε2(x2
j +y2

j )e2ε2(xxj+yyj),

where we stay in the same space ignoring the scalars e−ε2(x2
j +y2

j ), and considering
the basis function

ϕ̃j(x, y) = e−ε2(x2+y2)e2ε2(xxj+yyj), (2.7)

with the last factor expressed using the Taylor expansion

e2ε2(xxj+yyj) =
∞∑

k=0

(2ε2)k

k! (xxj + yyj)k, ε > 0. (2.8)

Keeping the term e−ε2(x2+y2) in (2.7), the Gaussian RBF depends on the basis

e−ε2(x2+y2){{1}, {x, y}, {x2, xy, y2}, {x3, x2y, xy2, y3}, . . .}. (2.9)

Defining z = 2ε2 (xxj + yyj) = 2ε2⟨x,xj⟩, the remainder can be expressed as

Gk(z) = ez −
k−1∑
j=0

zj

j! = ez

(k − 1)!

∫ z

0
e−ttk−1 dt = ez

(k − 1)!γ(k, z), (2.10)

where γ(k, z) is the inferior incomplete gamma function. We will continue this idea
in the next section.
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3. Stabilizing techniques for a local integral method

3.1. The LBDIM-GA method. Let us consider the following elliptic problem
on a bounded open domain Ω :{

L [u(x)] = f(x), x ∈ Ω,
B [u(x)] = g(x), x ∈ Γ = ∂Ω,

(3.1)

where L[·] is an elliptic operator and B[·] is a classical boundary operator related
to different kinds of boundary conditions (Dirichlet, Neumann or Robin).

We assume that the partial differential equation can be written as

∆u (x) = b (x, u(x),∇u(x)) , (3.2)

and also in this work we consider that equation (3.2) can be expressed as

b (x, u(x),∇u(x)) = f(x) + b̃ (u(x),∇u(x)) , (3.3)

where the source function f is known and b̃ is linear in the variables u and ∇u.
According to the integral representation formula presented in [31] for the PDE

(3.3), using the corresponding Green’s second identity and the well-known Dirichlet
Green’s function (DGF), we have

u (ξ) =
∫

Γi

Q (x, ξ)u(x) dΓi +
∫

Ωi

b̃ G (x, ξ) dΩi +
∫

Ωi

f (x)G (x, ξ) dΩi, (3.4)

where ξ is the interior source point, also referred to as the collocation point, G (x, ξ)
is the DGF on the circular integral subdomain or subregion Ωi, and Q (x, ξ) its
corresponding normal derivative. By definition, over the boundary Γi the value of
G (x, ξ) is identically zero.

This approach is the main idea of the meshless boundary-domain integral method
used in this work. Formula (3.4) is applied over each local integral subdomain Ωi,
embedded into interpolation stencils Θi, which are heavily overlapped as shown in
Figure 2. In this figure we have a schematic representation of local stencils and local
circular subdomains in two dimensions for different local integral formulations.

The field variable u(x) is approximated by an RBF basis using the corresponding
nodes of the interpolation stencil, plus some boundary points if the stencil is next
to the global boundary Γ. The set {(xj , u(xj))}ni

j=1 is formed by the internal nodes
xj and the corresponding unknown nodal values u(xj) for j = 1, . . . , ni, as in the
case of Θi in Figure 2. The other set {(xj , g (xj))}n

j=ni+1 has the boundary nodes
xj and the boundary data g (xj) for j = ni + 1, . . . , n with n = ni + nb the total
number of the local stencils. These are the cases of Θj and Θk shown in Figure 2.

Thus the local approximation is given by

u(x) =
n∑

j=1
αjφj(x), (3.5)

where αj are the coefficients from the interpolation, φj(x) = ϕ (∥x − xj∥) the RBF
interpolants, and n = ni + nb, as mentioned before.
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Ω
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Figure 2. Schematic representation of the local stencils Θi, Θj ,
Θk (nodes inside the dotted line) and the local circular subdomains
Ωi, Ωj , Ωk with boundary Γi, Γj , Γk in two dimensions for local
integral meshless methods.

When the interpolation stencil Θi has nodes on the contour Γ of the global
domain Ω, we consider interpolation points on the boundary for the stencil. In
Figure 3 different cases of stencils and their respective subregions of integration
Ωi are shown: in case (a), when they are totally internal to the domain; and in
cases (b) and (c), when the stencils have contact with the boundary of the global
domain. In this last case we include data points on the contour with the boundary
conditions imposed on the boundary value problem under study. Case (b) shows a
stencil near a smooth part of Γ, and case (c) near an angular point at the boundary.

Figure 3. Local stencils and integration subdomains for n = 30.

In cases (b) and (c) from Figure 3, the RBF interpolant (2.3) is a Hermite-based
approach (see [8]). The field is approximated as

u(x) ≈ Pu(x) =
ni∑

j=1
αjϕ (∥x − xj∥) +

ni+nb∑
j=ni+1

αjBξϕ (∥x − ξ∥) |ξ=xj
.

The operator Bxj
is the boundary operator with respect to nodes xj , and Bx with

respect to x, which is the identity operator in Dirichlet boundary conditions. This
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type of interpolant has the advantage, in elliptic PDEs, of ensuring the invertibility
of the interpolation matrix for the Gaussian RBFs used this in paper. Also, in the
case of Dirichlet boundary conditions, the matrix will turn out to be symmetric,
which allows an efficient implementation.

The Hermite interpolation matrix is of the form

A =
[

Φ BξΦ
BxΦ BxBξΦ

]
, (3.6)

where [Φ] ∈ Rni×ni , [Bxj
Φ] ∈ Rni×nb , [BxΦ] ∈ Rnb×ni , and [BxBxj

Φ] ∈ Rnb×nb .
The coefficients for the four submatrices are

[Φ]ij = ϕ (∥x − xj∥) |x=xi
, i, j = 1, . . . , ni,

[BξΦ]ij = Bξϕ (∥xi − ξ∥) |ξ=xj , i = 1, . . . , ni, i = 1, . . . , nb,

[BxΦ]ij = Bxϕ (∥x − xj∥) |x=xi , i = 1, . . . , nb, j = 1, . . . , ni,

[BxBξΦ]ij = BxBξϕ (∥x − ξ∥) |x=xi, ξ=xj
, i, j = 1, . . . , nb.

The coefficients α from the interpolation are obtained from
Aα = d. (3.7)

The unknown field in the internal nodes is u = [u (x1) , . . . , u (xni
)] and the bound-

ary data in the boundary nodes is g(u) = [g(xni+1), . . . , g(xn)], where g is from
equation (3.1).

When the stencils are inside the domain, vector d is given as
dT = [u]T

for the system (3.7), while when stencils are near the global boundary, vector d is

dT = [u, g(u)]T ,
with Hermite interpolation matrix from (3.6).

From the reconstruction formula for the unknown field u over a subdomain, we
have

u(x) = ΦT (x)α = ΦT (x)A−1d,
where the vector Φ(x) has the Gaussian RBF basis. For the interior stencils Θi,
the vector Φ(x) is

ΦT (x) = [ϕ (∥x − x1∥) , . . . , ϕ (∥x − xn∥)]T ,
while in stencils near the domain,
ΦT (x)

=
[
ϕ (∥x − x1∥) , . . . , ϕ (∥x − xn∥) ,Bx1ϕ (∥x − x1∥) , . . . ,Bxnb

ϕ (∥x − xnb
∥)
]T

.

The linear term b̃ is locally interpolated with RBFs similar to the approach in (3.7):

b̃ (u(x),∇u(x)) ≈
n∑

j=1
βjφj(x), (3.8)

where βj are the coefficients from the approximation and φj are RBF interpolants.
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Using equation (2.3) in the integral formula (3.4) with ξ = xi for the interior of
the subdomain Ωi with boundary Γi, we get the following local integral formula:

u(ξ) =
n∑

j=1
αj

{∫
Γi

Q(x, ξ)φj(x) dΓx

}
+

m∑
j=1

βj

{∫
Ωi

G(x, ξ)φj(x) dΩx

}
+
∫

Ωi

G(x, ξ)f(x) dΩx.

(3.9)

The discretized form of the unknown field ui = u (xi) from (3.9) is

ui =
n∑

j=1
αj h̃ij +

m∑
j=1

βj g̃ij + f̃i,

with αj and βj from equations (3.7) and (3.8), and the coefficients h̃ij , g̃ij , and f̃i

are

h̃ij =
∫

Γi

Q (x,xi)φj(x) dΓx,

g̃ij =
∫

Ωi

G (x,xi)φj(x) dΩx,

f̃i =
∫

Ωi

G (x,xi) f(x) dΩx,

where the subscript i corresponds to the node set distribution enumeration and j
indexes the local stencil enumeration. These boundaries and domain integrals are
calculated numerically using the Gauss–Legendre quadrature.

In matrix form,
ui = h̃T

i α+ g̃T
i β + f̃i, (3.10)

with α = [. . . , αj , . . .]T ∈ Rn and β = [. . . , βj , . . .]T ∈ Rm column vectors with
RBF interpolation coefficients, h̃i = [. . . , h̃ij , . . .]T ∈ Rn, g̃i = [. . . , g̃ij , . . .]T ∈ Rm

column vectors, and f̃i ∈ R scalar data.
The ill-conditioning of the linear systems to obtain α and β could be relevant

when ε → 0. Instead, we make a local change of basis for the LBDIM using the
RBF-GA numerical technique to improve the condition number. Following [17] we
consider the new RBF-GA basis {ψj} instead of the Gaussian RBF basis {φj} for
local interpolation for the field u in (3.5) and the linear term b̃ in (3.8) that spans
the same space as the Gaussian RBFs. The construction of this basis is based on
the expansion {ϕ̃j} in (2.8) and (2.9).

For k = 0 (adding the monomial {1}):

[ φ̃1(x) ] = e−ε2∥x∥ (1 +G0(2ε2⟨x,x1⟩)
)
.

For k = 1 (adding monomials {x, y}):[
φ̃2(x)
φ̃3(x)

]
= e−ε2∥x∥

([
1
1

]
+ 1

1!

[
2ε2⟨x,x2⟩
2ε2⟨x,x3⟩

]
+
[
G1(2ε2⟨x,x2⟩)
G1(2ε2⟨x,x3⟩)

])
.
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For k = 2 (adding monomials {x2, xy, y2}): φ̃4(x)
φ̃5(x)
φ̃6(x)

 = e−ε2∥x∥

 1
1
1

+ 1
1!

 2ε2⟨x,x4⟩
2ε2⟨x,x5⟩
2ε2⟨x,x6⟩


+ 1

2!

 4ε4⟨x,x4⟩2

4ε4⟨x,x5⟩2

4ε4⟨x,x6⟩2

+

 G2(2ε2⟨x,x4⟩)
G2(2ε2⟨x,x5⟩)
G2(2ε2⟨x,x6⟩)

 .

And so on for k ≥ 3, where Gk(·) comes from (2.10).
The RBF-GA basis functions {ψj} are obtained cancelling analytically all the

Taylor coefficients in (2.8) and finding an orthonormal basis for the null space of a
matrix of data from nodes xj .

For k = 0:

[ψ1(x) ] = e−ε2∥x∥ 1
ε0 B0

[
G0(2ε2⟨x,x1⟩)

]
, with B0 = [1].

For k = 1:[
ψ2(x)
ψ3(x)

]
= e−ε2∥x∥ 1

ε2 B1

 G1(2ε2⟨x,x1⟩)
G1(2ε2⟨x,x2⟩)
G1(2ε2⟨x,x3⟩)

 , with B1 =
[
null

[
1 1 1

]]T
.

For k = 2:

 ψ4(x)
ψ5(x)
ψ6(x)

 = e−ε2∥x∥ 1
ε4 B2


G2(2ε2⟨x,x1⟩)
G2(2ε2⟨x,x2⟩)
G2(2ε2⟨x,x3⟩)
G2(2ε2⟨x,x4⟩)
G2(2ε2⟨x,x5⟩)
G2(2ε2⟨x,x6⟩)

 ,

with B2 =

null

 1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6

T

.

And so on for k ≥ 3. The construction of this basis using null-spaces and the values
of the inferior gamma function in Gk(z) are available in an efficient way without
numerical cancellations.

Finally, with this new basis {ψj}, the discretized matrix form for ui in (3.10) is

ui = fi +
(

hT
i A−1 + h̃T

i Ã−1AbA−1
)

d, (3.11)

where the matrix Ab corresponds to calculation of the vector b̃. Following [31] to
avoid the numerical computation of the inverse matrix A−1 from equation (3.7)
and the interpolation matrix from equation (3.8), Ã−1, we rewrite expression (3.11)
as

ui = fi + zT
i d,

where the algorithmic procedure to calculate this equation is
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Step 1. Solve Ãw̃i = h̃i (since Ã is symmetric).
Step 2. Calculate wi = hi + Ab

T w̃i.
Step 3. Solve AT zi = wi.
Step 4. Calculate ui = fi + zT

i d.
Thus, equation (3.11) is collocated at each trial point at each stencil to form a
global sparse matrix system. This system of equations is solved efficiently using
the GMRES iterative method.

3.2. The LBDIM-QR method. The LBDIM-QR method was presented in [31]
as LBDIM-St. In this case the local RBF interpolants for the field u and the term
b̃ were developed using the RBF-QR basis. This approximation follows a similar
integral formula approach to the LBDIM and uses the RBF-QR basis {ψj} for the
local interpolations. It was shown that it reduces the numerical error due to the
instabilities of the low shape parameter ε without the drawback of ill-conditioning
at local level for the Gaussian RBFs. Also, it makes a stable computation which
circumvents the ill-conditioning of local systems of linear equations arising from
RBF interpolations. It was applied in several elliptic PDEs with Dirichlet and
Neumann boundary conditions over different 2D domains obtaining the best results
for quasi-uniform node distributions. Nevertheless, the calculation of the expansion
of the Gaussian RBFs in the RBF-QR method has a computational cost.

4. Numerical results

In this section we adopt benchmark solutions defined over the unit disk, the unit
square and an irregular domain in two dimensions. We present numerical results
for the novel LBDIM-GA and compare them with the LBDIM and the LBDIM-
QR formulations presented in [31]. Moreover, we present comparisons with other
numerical methods. We study the variation of the shape parameter ε, the stencil
size n, and N , the total number of nodes in the interior domain.

The domains Ω considered are discretized using scattered nodes in 2D from
the repellent distribution presented in [3] and from the quasi-uniform node distri-
butions presented in [14]. The latter algorithm generates a set of nodes with an
advancing front method using a density function starting from the boundary Γ into
the domain.

In order to show the solution accuracy, we define the L2-norm error

L2-error =

√√√√∑N
i=1 (uexac

i − uapprox
i )2∑N

i=1 (uexac
i )2

and the root mean square error

RMSE =

√∑N
i=1 (uexac

i − uapprox
i )2

N
.
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4.1. Poisson’s equation over the unit disk. Let us consider the following Pois-
son equation with Dirichlet boundary conditions defined in the domain Ω = {(x, y) |
x2 + y2 ≤ 1} shown in Figure 4:

∇2u (x, y) = (−200) sin[10(x+ y)]. (4.1)
The exact solution to this problem is u (x, y) = sin[10(x + y)], which has an

oscillatory behavior. This problem was solved by Bayona et al. [3] using the RBF-
generated finite difference (RBF-FD) method, combining polyharmonic splines (see
Table 1) with multivariate polynomials.
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Figure 4. Repel node distribution and local stencils.

The numerical example (4.1) is solved for three different domain discretizations
based on the repel algorithm mentioned in the aforementioned paper, corresponding
to h = 0.05, 0.025, 0.01. These result in N = 1185, 4880, 9639 interior nodes, and
Nb = 125, 251, 349 boundary nodes, respectively. The left subplot in Figure 4
shows the repel node distribution for N = 1185; the structure for N = 4880, 96390
is similar but denser. The right subplot in the figure shows the local stencils with
n = ni + nb = 50 over the unit disk, one of them close to the boundary with the
data value from the Dirichlet boundaries conditions.

The objective of this example is to explore the effect of increasing the number
of stencil nodes from n = 10 to n = 90 with steps of 10 and also varying ε ∈ [1, 10].

4.1.1. Accuracy isolines. In Figure 5 we show accuracy isolines (log10(L2-error))
for N = 1185, 4880, 9639 in rows. In the first column the LBDIM with Gaussian
RBF interpolations ϕ(r) = e−(εr)2 is presented. In the second column we show
the LBDIM-GA and in the third column the LBDIM-QR. These are the LBDIM
versions with the two local stabilizing techniques: the RBF-GA and the RBF-QR
algorithms.

When looking along the left edge of the subplot in the first column corresponding
to LBDIM, we observe an unstable region for small values of ε and high values of
n (yellow region in the figure). On the other hand, for LBDIM-GA in the second
column and for LBDIM-QR in the third column, we observe that instability issues
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Figure 5. Accuracy isolines (log10(L2-error)) with N = 1185, 4880, 9639.

are no longer present. We obtain a great stability area (blue region in the figure)
for a small ε regime and for stencils with a higher number of nodes. The best order
of accuracy is 1 × 10−5 for both stable methods when N = 1185.

The middle row in Figure 5 presents results for N = 4880. Accuracy results
for LBDIM present stability issues in the whole upper triangular part of the left
subplot. There is a tradeoff between n and ε when using LBDIM. For LBDIM-GA
and LBDIM-QR, we obtain great areas of stability attaining the best results for an
order of accuracy of 1 × 10−7.

The bottom row in Figure 5 gives results for N = 9639. The L2-error for
tLBDIM is unstable in the whole upper triangular part of the left subplot. Besides,
when using both stabilizing techniques, we obtain a great blue stable region with
a best order of accuracy of 1 × 10−7. We observe that the L2-error decreases
as the node distribution is refined. These results for tLBDIM-GA improved the
numerical L2-error presented in [3] using the the RBF-FD method with polynomial
augmentation.

4.1.2. Conditioning isolines. In Figure 6 we show the condition number isolines
(log10(κ(Ai))) for the interpolation matrix (3.7) for N = 1185, 4880, 9639, row-
wise. As before, in the first column we have the condition number for LBDIM, in
the second column for LBDIM-GA, and in the third one for LBDIM-QR.
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Figure 6. Condition number isolines (log10(κ(Ai))) with N = 1185, 4880, 9639.

In the first column with double precision, when using Gaussian RBFs with-
out employing a stable algorithm, we obtain a great region with condition number
greater than 1×10+20. This occurs when the shape parameter of the Gaussians de-
creases and n increases. When N increases from 1185 to 9639, the worst condition
number increases in the figure (yellow area). This means that the high condi-
tion number encountered is harmless in actual numerical computation of LBDIM’s
approximate solution. This corresponds to the unstable areas from Figure 5.

In the second column we present the conditioning for LBDIM-GA. In this case
the condition number of the interpolation matrix with RBF-GA increases as the
stencil size increases. The last two rows of subplots show that, for n ≥ 50, the con-
dition number is 1 × 10+11 and also the condition number tends to be independent
of the shape parameter since the isolines are almost horizontal.

In the last column we give results for the conditioning of LBDIM-QR. A similar
behavior is obtained but with a condition number of order 1 × 10+10.

4.1.3. Computational time. The numerical experiments were performed on a PC
with 7.5 GB of RAM and an Intel Core i7-7500U 7th generation CPU running
at 2.70 GHz. All timings were performed using the MATLAB R2017a implemen-
tations of the 2D algorithms. Figure 7 illustrates the computational cost of the
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LBDIM compared with the LBDIM-GA and the LBDIM-QR for N = 1185. The
subplots show the computational time for ε = 2, 3, 6.
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Figure 7. CPU runtime as function of n for N = 1185 and ε = 2, 3, 6.

The cost for the LBDIM increases for higher number of stencil sizes n when ε
decreases and, for the LBDIM-QR, the CPU time remains the same for different
values of the shape parameter. For higher stencil sizes and low shape parameter
corresponding to best accuracy, the LBDIM-QR cost is less than that for the LB-
DIM. The CPU time for computing the LBDIM-GA is similar to the cost of the
LBDIM-QR but, for small stencil size, the stabilizing RBF-GA technique is faster.

It is well known that the computational cost of the RBF-GA algorithm is dom-
inated by the QR factorization to obtain the Bk matrices and the computation
of the incomplete gamma function. Also, the RBF-QR method is slower than the
RBF-GA since the CPU time lies in the expansion of the new basis. This is shown
in all subfigures for n ≤ 50.

Local interpolations with RBF-QR and RBF-GA algorithms overcome the insta-
bility of the LBDIM at the cost of more computational time. However, introducing
these stabilizing techniques into a local integral method represents an improvement
since we increase the accuracy.

4.2. Convection-diffusion-reaction equation with variable coefficients. For
this test, we consider the scalar two-dimensional problem studied in [5] with Dirichlet
boundary conditions in the square domain {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

∇2u+
(
xy + x2) ∂u

∂x
+ x sinh(y)∂u

∂y
+ sin(x+ y)u = f(x, y), (x, y) ∈ Ω. (4.2)

The analytical solution of this problem is u = y sin(πx)+x cos(πy) and the term
f(x, y) in (4.2) is forced to satisfy the exact solution. The stencil size n is fixed in
20 and 30. The node distributions in the 2D domain Ω are quasi-uniform [14].

In Figure 8 we show the RMSE versus ε for several numbers of nodes N =
443, 960, 1678, with quasi-uniform distributions using n = 20, 30 stencil size. The
error on the LBDIM-Direct solution (solid blue line) converges only for large val-
ues of ε and starts diverging as soon as ε becomes too small. The error on the
LBDIM-QR solution (green dashed line) converges for the small range of the shape
parameter. Furthermore, when increasing the stencil size from 20 to 30, we observe
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that the divergence of the RMSE starts for higher ε since the RBF interpolation
matrices are larger.
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Figure 8. RMSE comparison between LBDIM and LBDIM-QR
with Gaussian RBFs for N = 443, 960, 1678 quasi-uniform nodes.

Comparing the results obtained through LBDIM-QR against those obtained by
Castro et al. [5] with the Method of Approximate Particular Solutions (MAPS)
using multiquadric RBFs (see Table 1) in two dimensions, we can say that the
stabilized LBDIM-QR improves the RMSE in four orders of magnitude. The RMSE
for the MAPS on cartesian node distributions with N = 443, 960, 1678 total points
is of order 1 × 10−4, while the LBDIM-QR achieves an order of 1 × 10−8 on quasi-
uniform node distributions as in Figure 9 with stencil size n = 30. These results
were obtained by trial and error in order to find an optimum shape parameter εopt,
which produces the lowest error for each N .

4.3. General elliptic equation over an irregular domain. Finally, let us con-
sider the following elliptic equation with Dirichlet boundary conditions defined
on the irregular domain Ω ⊂ R2 with a hole and sharp boundaries illustrated in
Figure 10. The PDE is given by

∇2u+ α(x, y)∂u
∂x

+ β(x, y)∂u
∂y

+ γ(x, y)u = f(x, y), (x, y) ∈ Ω. (4.3)

The oscillatory coefficients in equation (4.3) are given by α = e−y2+cos(4πx) sin(3πy),
β = −y sin(4πx), and γ = x2y. The exact solution to this problem is u(x, y) =
sin(2πy2 + 3πx) − cos(πy− 2πx2). A similar PDE over this region was numerically
solved using the RBF-FD method in [3], and the same PDE was solved in [31] for
the LBDIM-QR.

We study the accuracy in double precision for L2-error as a function of the stencil
size n and the shape parameter ε. Similarly to subsection 4.1.1, in Figure 11
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Figure 9. Quasi-uniform node distribution and exact solution.
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Figure 10. Domain discretization of irregular domain Ω with a
repel node distribution and local stencils for n = 28.

we show the accuracy isolines for the LBDIM (first column) and the LBDIM-
GA (second column) with N = 1146, 2217 repel nodes. The stencil size varies as
n = 10, 15, 21, 28, 36, 45, 55, 66, 78.

In the first column on the top left of each subfigure, we observe the unstable
region (yellow area in the subfigure) when the shape parameter decreases and
the stencil size increases. In the case N = 1146 we obtain a great stable region
(blue area in the subfigure) of order 1 × 10−5 that extends for 2 ≤ ε ≤ 6 and
n ≥ 30. When N = 2217 the stable region is reduced due to ill-conditioning of
local Gaussian RBF-Direct interpolations, although we get an order 1 × 10−6 for
the L2-error.

For the LBDIM-GA in the second column we observe that the stability region
extends over reaching an L2-error order of 1 × 10−5 and 1 × 10−6 with N = 1146
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Figure 11. Accuracy isolines (log10(L2-error)) for LBDIM and
LBDIM-GA with N = 1146, 2217.

and 2217 respectively. Thus, this approach for reaching high accuracy spans the
same function space for Gaussian RBFs and extends the range for a small ε regime.

An interesting observation is that the stencil size may be variable over the do-
main Ω. In Figure 10 we get different shapes for the stencils when the collocation
points are near a smooth part of the boundary, near a sharp point or totally inside.
Although not studied here, a possible strategy is to use adaptive meshless centers
for the RBF stencils in this type of domain.

5. Conclusions

We proposed a new algorithm for generating numerical approximations for solv-
ing boundary value problems with Dirichlet conditions. This method, named
LBDIM-GA, is a local integral method that improves the numerical stability of
the error for low ε range using the same space as the Gaussian RBFs, but the space
is better conditioned. The local RBF interpolation matrices are well-conditioned,
providing high accuracy for general linear elliptic PDEs with Dirichlet boundary
conditions over general domains. The presented experiments show that the RBF-
GA algorithm works effectively in local interpolation for numerical integral methods
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in 2D. We also compared results with the LBDIM-QR established in the literature
(presented as LBDIM-St in [31]), where the LBDIM-GA method improves the com-
putational time. In double precision, using a stable algorithm such as RBF-QR
or RBF-GA on a local integral method such as LBDIM gives numerical access to
small ε-values. It remains an open task to provide further stable implementations
for other RBF stabilizing techniques in local integral methods. Also, the extension
of implementations to higher dimensions and non-stationary problems is currently
under research.
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