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ABSTRACT

In this work, we present the control structure selection problem based on steady-state eco-
nomics applied to a continuous cross-flow grain dryer model. The optimal selection of the
controlled and manipulated variables and their set-points can be obtained for various exter-
nal disturbance scenarios if an appropriate mathematical programming problem is formu-
lated. Simulation results show that the economics performance of classical open loop and
closed loop structure used for dryer control can be improved by the use of linear combin-
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ation of controlled variables and also by the use of a hierarchical control structure. In add-
ition, we study several alternatives (sub-optimal) control structures that show an acceptable

economic performance.

1. Introduction

The objective of the drying process in any industrial
plant is to produce a solid product at minimum oper-
ation cost while ensuring that different technical,
chemical, and biological parameters are within specific
quality limits. The drying process is a highly energy
consuming unit operation in grain processing plants
and food industries that can represent around 10-15%
of all industrial energy requirements [1]. Finding the
(possibly changing) operating point that satisfies the
quantity and quality production requirements while
the operation costs or energy consumption is mini-
mized is one of the most interesting tasks in process
operation. In this sense, the use of automatic control
strategies generally allows the industrial processes to
achieve the production objectives while the operating
costs are reduced.

The drying process involves a large number of
inputs variables (e.g., heating rate, solids feed rate, air-
flow rate, and rotational speed), output variables (e.g.,
dried-product moisture content, exhaust air tempera-
ture, temperature of the air-product mixture, exhaust
air humidity, and product quality as color, flavor, tex-
tures, etc.), and disturbances that affect performance

of the dryers (e.g., ambient air temperature, ambient
air humidity, feed moisture content, and feed compos-
ition). Also, it is important to note that there is a
high level of interaction between the drying process
variables. The highly interactive multiple input-output
(MIMO) system in combination with a typically non-
linear dynamics and the presence of time delay and
time-varying parameters make the drying process
operation and control a difficult task.

A large number of control strategies designed for
different types of dryers and products can be found in
the literature [2]. The works include: i) feedback con-
trol [3] and feedforward-feedback control [4-6], and
ii) advanced control techniques such as model-based
control [7, 8], neural net controllers [9] and fuzzy
logic controllers [10, 11]. For the main technological
advances in dryers the reader is referred to the works
[12, 13] and for excellent reviews about drying control
strategies to the works [1, 2, 14].

Generally, to design the control system in any
industrial process it is first necessary to define: i) the
number of levels or layers in the control system, e.g.,
using only regulatory control (one layer) or using
regulatory control plus high-level optimization (two
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layers), ii) the performance objectives for the layers/-
system, and iii) types of control technology available.
Then, the control structure is defined based on the
performance objectives, technology, and layers, this is,
the manipulated and controlled variables as well as
the pairing and reference values are selected. It is very
common that the regulatory control structure is
designed based on only stability and controllability
criteria, e.g., using the integral error criterion, calcu-
lating the relative gain matrix or the condition num-
ber. However, economic criteria or the existence of
higher levels of control are ignored in these
approaches.

The selection of the controlled variables, the
manipulated variables, and the set point definition
impact directly on the process operation and, there-
fore, on their economics and energy requirements.
The control structure selection based on economic cri-
teria is a research field that attends the following chal-
lenges: i) the optimal operation point of the plant can
change in the presence of external disturbances, ii) the
process constraints cannot be violated when disturb-
ance takes place, and iii) the optimal point may
change the set of active constraint for different dis-
turbance scenarios. Two of the main economics-based
strategies for control structure selection are the back-
off approach [15] and the self-optimizing method
[16]. Recently, in [17] the aforementioned strategies
were unified in a single optimization problem. These
strategies have been largely studied for a variety of
chemical industrial processes like evaporation, distilla-
tion columns, chemical reactors, compressor stations,
and heat exchanger networks [18]. However, to the
best of our knowledge, there is no work that applied
these approaches to industrial dryers.

In the drying process, the control structure is typic-
ally defined based on manufacturer recommendations,
heuristic procedures, field experience, or stability/con-
trollability criteria. Once the control structure is
selected, an optimization-based approach is performed
to improve the dynamic response of the process, eco-
nomic performance, and/or energy consumption. Still,
a sequential procedure and the use of different criteria
for selection and optimization might result in a sub-
optimal control system. Although the importance in a
global and competitive market, a simultaneous
approach for the control structure selection with con-
troller tuning or economics operation index for indus-
trial dryers has received little attention.

The focus of this paper is to systematically study
the steady-state economic performance that the con-
tinuous grain dryer process can achieve by applying

back-off self-optimizing methods and, also, by the
possible use of a hierarchical control structure with a
real-time optimization layer. Based on economic crite-
ria and a steady-state model we provide a determinis-
tic approach to design the control structure of
industrial dryers.

The rest of the work is organized as follows. In
Section 2 the related theory to economic optimal
operation, control structure selection approaches, and
real-time optimization proposed for this work are pre-
sented. A detailed description of the selected continu-
ous dryer model, process variables and constraints are
shown in Sections 3.1 and 3.2. The proposed objective
function together with the mathematical formulations
of optimization problems are carried out in Sections
3.3 and 3.4. In Section 4 several alternatives control
structures are designed and compared. Finally, Section
6 summarizes the conclusions, discussions, and future
work.

2. Theory
2.1. Optimal operation point problem

The open loop behavior of an industrial plant can be
represented by a system of differential and algebraic
equations:

fp(x.,x,w,u,d) =0, (1a)
fA(X, w,u, d) = 0, (lb)
y = F(x,w,u,d), (1c)

where fp is the vector of dimension n, that contains
the differential equations of the model, f, is the vec-
tor of dimension #,, that contains the algebraic equa-
tions of the model, and y € R™ is the vector of
output variables (measurable variables). The vector of
state variables is x € R"™, the vector with algebraic
variables is w € R™, the input or decision vector
variable is u € R™, and d € R™ is the vector of dis-
turbances variables.

Generally, continuous plants are designed for a
steady-state operation, i.e., setting x. =0 in Eq. (1a).
The optimal steady-state operation point can be
obtained by solving a nonlinear programming prob-
lem (NLP):

miny w, P(x,w,u,d) (2a)
s.t. fp(0,x,w,u,d) =0, (2b)
fa(x,w,u,d) =0, (2¢)

v <y=F(xwud) <yY, (2d)
' <u<udY, (2e)
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where ® is the objective function (the economic oper-
ation cost of the drying process for this work). While
the parameters y* and yY are the lower and upper
bounds, respectively, for output variables (Eq. (2d)),
u' and uV are the lower and upper bounds for input
variables (Eq. (2e)).

For given values of u and d, it is assumed that the
solution of the system (2b, 2c) can be expressed via a
steady-state mapping:

(x,w) = ¢(u,d) (3)
where ¢ is the steady-state mapping operator between
(u,d) and (x,w).

Similarly, the steady-state input-output mapping
between y(u,d) and ®(u,d) can be defined as follow-
ing:

®(u,d) = P(¢(u,d), u,d), (4a)
y(u,d) = F(¢(u,d),u,d). (4b)

Using these mappings, the problem (2) can be writ-
ten compactly as:

min, ®(u,d) (5a)
st yF<y(ud) <yY, (5b)
' <u<dY. (5¢)

For a defined disturbance value d, the optimal
operation point u* can be obtained by solving prob-
lem (5). In this sense, the optimal steady-state input is
function of the process disturbance, i.e., u*(d).

2.2. The closed loop control problem

Real processes are often affected by unmeasured or
unknown disturbances and the presence of a plant-
model mismatch. Therefore, a closed loop control
structure is generally used in industrial plants in order
to manipulate the input variables based on available
measurable process variables.

These closed loop control structure can be repre-
sented by a set of equations and incorporated into
the optimization problem (5). Consequently, we
denote by to a vector that is constructed with the
controlled output variables and the input variables
that will remain fixed. The input variables that are
not fixed in r(u,y) are input variables used in the
control loops as manipulated variables. We also
introduce the vector r® € R™ that contains the set
points values for the controlled variables and the
fixed input variables.

Thus, the behavior of the controlled plant in
steady-state can be defined by including the following
n, equations in the optimization problem:
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r(u,y(u,d)) =r®. (6)

If we add Eq. (6) in problem 5 and a control struc-
ture is defined, then the set point values r®* € R™
become now in the optimization variables of the
mathematical programming problem.

2.3. The back-off as a self-optimizing control
structure strategy

The objective of the back-off (BO) strategy for control
structure selection is to define the fixed input values
and the output set point values for the controlled and
manipulated variables by minimizing the operation
cost for a nominal disturbance (d,) while the
constraints are guaranteed for the whole set of distur-
bances scenarios d € D [15]. On the other hand, the
self-optimizing control (SOC) methods aim to select
the controlled variables that minimize the expected
value (or the weighted average value) of the economic
loss for a given set of disturbances [16]. The economic
loss is defined as the difference between the average
operation cost that can be ideally achieved with the
optimal mapping u*(d) and the average operation
cost obtained with the selected control structure.

In a recent work [17], the relationship between
both strategies has been studied and a novel general
approach for control structure selection has been pro-
posed. Authors noticed that minimizing the average
economic loss, as it is done in self-optimizing theory,
is equivalent to minimize average cost. Therefore, if
the back-off approach is forced to minimize the aver-
age cost (not only a nominal cost) the result is a
back-off self-optimizing control structure problem.

A mathematical formulation for the control struc-
ture selection problem can be obtained by introducing
in the vector of equations r(u,y) € R™ a vector of
binary variables, z, that determines the choice of con-
trol structure. Then Eq. (6) is modified as following:

r(z,u,y(u,d)) = r?. )

Commonly in the literature on self-optimizing con-
trol, controlled variables are obtained by a linear com-
bination of input and output variables. To represent
these structures, denoted as lineal combination control
structures, we can use the following expression:

r(H, wy(w d)) = HT [Y(‘L’ d) } ,

where H € RU+m)*™ i the matrix of linear combi-
nations. Notice that the entries of the matrix H (lineal
combination control structure) are continuous varia-
bles, while the entries of the vector z (classic control
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Figure 1. Alternatives control structures studied in this work. (a) Classic regulatory control structure. (b) Lineal combination regula-
tory control structure. (c) Classic regulatory control structure with supervisory real time optimization.

structure) are binary variables. Therefore the resulting
mathematical formulations for the control structure
selection are: a mixed-integer nonlinear programming
problem (MINLP) for classic control structure, or a
nonlinear programming problem (NLP) for the linear
combination control structure.

2.4. The real-time optimization control layer

In highly automatized plants the control actions are
usually separated into levels or layers. The first level is
regulatory control. At this level, the objective is to
keep the process operating in desired set point values
and to reject unmeasured or fast disturbances. In a
second level commonly a real-time optimization
(RTO) control calculates the optimum steady-state
operating point under changing conditions due to
low-frequency or measurable disturbances and gives
the optimum point to the regulatory control layer in
the form of set points.

In order to incorporate the RTO action in the con-
trol structure selection problem we explicitly classify
disturbances that affect the performance of the plant
in the measurable disturbances d € R" and the
unmeasurable disturbances d € R™. In the drying
control process measurable disturbance information
has typically been used for feed-forward control
action, i.e., it is used to anticipate the impact of the
disturbance in the process system. However, is
important to note that economic steady-state perform-
ance is not optimized by this classic feed-forward
action approach [2]. In the work [19], authors studied
the use of hierarchical control structure for grain dry-
ers and showed the impact of grain moisture disturb-
ance on the operation cost. Nevertheless, in that work,

a deterministic procedure for the selection of regula-
tory control structure closed loops is not considered,
and  controlled and manipulated variables were
defined a priory.

Installing a real-time optimization control layer
generally improves the economic performance of the
process, however, as studied in [20] the optimal hier-
archical control system would only be obtained if an
integrated regulatory plus supervisory control struc-
ture selection problem is solved. This is because the
optimization layer would attempt to change the set-
points of the available control loops and the reference
values for the fixed inputs. In other words, the opti-
mization problem solved in the RTO block receives as
constraints the regulatory control laws. Then, having
installed regulatory control loops means constraints,
and as a consequence, a particular optimization prob-
lem is solved for each regulatory control structure.
Therefore, the optimal hierarchical control structure
can be obtained if an integrated back-off self-optimiz-
ing plus RTO problem is solved [20]. With the proper
disturbance classification d = [d;d], we can take the
RTO action into account in the control structure
selection problem by using the following set point
expression:

r(z,uy(u,d,d) =r?d), V[d:d eD (9

Figure 1 resumes the control strategies that will be
studied in the present work for the drying process.
While Figure la illustrates a classic regulatory control
structure and Figure 1b uses a linear combination
matrix to create virtual controlled variables, Figure 1c
shows a hierarchical scheme with a RTO layer that
aims to change the set points values of the control
loops.
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2.5. Additional constraints

A method for designing multiple-input multiple-out-
put (MIMO) control structures is to find a diagonal
or decentralized controller. In this way, the entire
process can be viewed as a separable collection of
sub-processes that can be independently designed. In
this sense, the relative gain array (RGA) approach
facilitates the design of a decentralized control sys-
tem by analyzing control structure configurations
with minimal interaction between the control loops.
The RGA is a systematic tool used for the definition
of input-output pairing in MIMO systems. In this
paper, additional constraints are added to the opti-
mization problem to achieve a decentralized control
design. On one hand, for the classic control struc-
tures, we define the input-output pairing of the con-
trol loops based directly on the steady-state relative
gain matrix (RGA). On the other hand, if a linear
combination control structure is designed, the pair-
ings are forced by imposing a well-conditioned
matrix to the resulting controlled sub-process. In this
work, we directly force a diagonal controller with the
identity matrix. The additional constraints are given
for the steady-state gain matrix obtained at the nom-
inal optimal operation point, this is, for w*(d,).
Although this is not a sufficient controllability condi-
tion, it is useful to already exclude some control
structures from the optimization problem. Once the
optimal steady-state economic control structure is
obtained, a dynamic study is necessary to validate
the choice.

The equations for the RGA pairing are shown in
Appendix A and a reformulation as a set of linear
constraints can be found in [17].

3. Material and methods

In this section, we provide detailed information on
the selected continuous dryer model, the proposed
objective function, and constraints. A proper reformu-
lation of the optimization problems for the selection
of the control structure is also performed to use com-
mercially available software and solvers.

3.1. Dryer model

There are several mathematical models in the bibliog-
raphy based on the drying physics process and the
drying technique [21, 22]. Considering also the dryer
design parameters and the specific characteristics of
the product to be dried, the amount of available mod-
els in the literature is extensive. Without loss of
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Figure 2. A cross-flow dryer and the simplified cross-section
case study.

generality, in this work, we will use the mathematical
model described in [23] for cross-flow dryers of rice
grains. Although the control structure selection is
made for the steady-state, a detailed dynamic model is
necessary to perform a future validation and/or
redesign of the obtained control structure. In this sec-
tion, we will briefly present both equations and varia-
bles of the drying process, as well as the spatial
discretization used in this work. A detailed description
of the model can be found in [23].

A simplified cross-section of the dryer is shown in
Figure 2. The air flows from the plenum chamber to
outside the dryer while the grain flows from the top
bin to the screw conveyor at bottom. The length and
width of the drying section are denoted by L and b
respectively. The coordinate along the latitudinal axis
of the dryer is denoted by x and the coordinate along
the longitudinal axis is denoted by y.

The corresponding model equations used in the
optimization problem (la, 1b, 1c) are:

e Material balance on the water in the grain:

oM

G 5 (10)

oM
—p(l—€¢) R=p (1—¢) 2
where G, is the dry grain mass velocity in [kg/s.m?*],
M is the moisture content of grain in [kg/ kgarygrain]»
R is the drying rate in [kgyater/Kgarygrain-s]> p is the
density of dry grain in [kg/m’] and € is the bed por-
osity in [mm)

3
mpores mtotalvolume] .

e Material balance on the water vapor in the air:

ow ow
-G, W*‘P(l—e)R—PaEW’ (11)

where G, is the dry air mass velocity in [kg/s.m?],
W is absolute humidity of air in [kg/kgarair] and
p. is the density of dry air in [kg/m?].
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e Energy balance on the grain:

00

—p (1—¢€) R (Hy —hy)

a0
=p (1—€)Cy o’ (12)

where C,, is the specific heat of wet grain in
J /kgd,ygm,-nOC], 0 is the grain temperature in [cl,
h is the volumetric convective heat transfer coeffi-
cient in [J/m?s.”C], T is the air temperature in
['Cl, h,, is the enthalpy of liquid water in [J/kg]
and H,, is the enthalpy of water vapor in [J/kg].

e Energy balance on the air phase:

oT oT

a—h (T —0) = paeCpa o
where C,, is the specific heat of humid air
in []/kgdryairo C]

e Boundary conditions: The partial differential
equations (10-13) are subject to the following gen-
eral boundary conditions:

=G, Cpa (13)

W(0,y,t) = Wiu(3: 1), (14)
T(0,3,t) = Ti(y 1), (15)
M(x,0,t) = Min(x, 1), (16)
0(x,0,t) = Oin(x, 1), (17)

In our case study we assume that the feed to the
dryer is not a function of position, this is:

W(0,5,t) = Wi(t), (18)
T(0,y,t) = Tiu(2), (19)
M(x,0,t) = Mi(t), (20)
0(x,0,t) = Ou(t), (21)

e Initial conditions: The initial conditions of the
system equations are:

W(x,5,0) = Wo(x,y), (22)
T(x,5,0) = To(x,y), (23)
M(x,y,0) = Mo(x,y), (24)
0(x,,0) = Oo(x,y). (25)
e Rate of drying (empirical relations for rice):
R=10" (4.6889 + 0.10558 (T + 0)
—4.3667 rh) (M — Me) (26)

where Me is the equilibrium moisture content, and
rh is the relative humidity of the air. The equilib-
rium moisture content is given by:

Me = E — F x In(—(T + G) x In(rh)) (27)

where, for rough rice, the following coefficients are
used: E=0.29394, F=0.046015 and G=35.703.
The relative humidity of the air, rh, is given by:

rh = 1.01325 x 10° x WMa/(WMa + Mw)Pv
(28)

where Ma is the molecular weight of air, Mw is
the molecular weight of water, in this work
28.9647 and 18.0153 [kg/kmole] respectively. The
vapor pressure of water Py at temperature T is
obtained through the Antoine’s equation:

logio(Pv) = 8.07131 — (1730.63 /(T + 233.426))
(29)

e Convective heat transfer coefficient (empirical
relation for rice): The correlation for volumetric
convective heat transfer coefficient in a packed bed
of rice:

h=8.69 x 10* G,'° (30)

e Input Mass Velocity: For our case we assume that
the input mass velocity G, and G, depend on time
only:

G, = G,(t) (31)
G, = Gy(1) (32)

The spatial derivatives are discretized by using a
finite difference approach. The cross-section dryer is
then divided into Nr rows and Nc columns as shown
in Figure 3. Using the line method, the four process
equations (10-13) lead to 4 x Nr x Nc coupled ODES
that are added to the mathematical optimization prob-
lem. The choice of Nr and Nc for the present model
is also discussed in [23]. In this work, we use a 4 x 4
discretization.

Moreover, in this work, we use a scaled version of
the model as was presented in the work [23]. We scale
the model based on the economic optimal operation
point at the nominal disturbance scenario, this is,
u*(d,). Calculations for scaled versions of process var-
iables can be found in the B. Finally, in Table 1 the
dryer parameters are listed.

3.2. Process variables and constraints

A first step in the study of control structures is to
identify the available manipulable input variables (u),
the measurable output variables (y), and the distur-
bances (d) of the dryer [1]. A second step is the
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Figure 3. Discretization of the cross-section dryer.

Table 1. Dryer parameters.

Process Parameters Case Study Dimension Value
Dryer length L [m] 21.30
Dryer width b [m] 0.28
Bed porosity € [mf,o,es/mfmg,m,ume] 0.57
Density of dry air Pa lkg/m°] 113
Density of dry grain p [kg/m3] 1394
Specific heat of humid air Coa U/kGaryair C1 1005
Specific heat of wet grain Cog [J/kgd,yg,af,,°ﬂ 2094

definition of the constraints on the process operation.
In general, these constraints vary depending on the
case study, type of dryer and product, ambient condi-
tions, etc. While manipulated variables are usually
constrained by dryer design and/or production
requirements, the limits on output variables are given
by product quality and safe operation. Also, disturb-
ance constraints are commonly obtained based on his-
torical data.

In this work, the continuous cross-flow grain dryer
model proposed by [24] is used. In this sense, the
design dryer parameters, length, and cross-section of
the dryer are fixed. Additionally, in this model, the air
temperature and the air mass velocity need to be
bounded to guarantee certain empirical relations, e.g.,
the volumetric convective heat transfer coefficient.
The grain temperature and the grain mass velocity are
also constrained to guarantee the quantity and quality
of the output product.

For this dryer model and for the considered scen-
arios, it is not feasible to reduce the output moisture
to the commonly safe value of 14%. In order to keep
a valid and useful case study model we upper bound
the output moisture in 19% which is near the average
nominal output moisture solution obtained in [24]. In
this way, the approach applied to the constrained case
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study analyzes the economic performance of the dryer
model based on available data.

The main variables and constraints considered in
the present work are shown in Table 2.

3.3. Functional cost

This work aims to find control structures that minim-
ize the operating cost per unit of dried grain. In this
sense, the operation cost includes the fuel cost to raise
the inlet air temperature to the desired value and the
electric cost associated with the air blowing fan. In [6]
some additional terms are also considered in the func-
tional cost, such as the cost associated with the output
moisture content and the cost of quality loss due to
thermal damage. However, these costs are not taken
into account in this work, since the moisture content
and the product quality are guaranteed by a set of
constraints into the optimization problem. It is
important to note that the dry grain mass velocity is a
manipulated variable in our optimization problem.
Therefore, if we need to produce a predefined quan-
tity of dry grains, we only have to adjust (or set) this
variable using ' the appropriate upper and lower
bounds proposed in the optimization problem.

3.3.1. Fuel cost
Like in the work of [6], we consider a cost associated
to air heating as follows:

Cﬂgp = top Pf G, (L a)

Cpa

T — Tom 33
Z ( b) (33)
where t,, is the operation time in [s], Py is the cost of
fuel in [[$]/1], Z; is its calorific power in [J/I] and
(L a) is the dryer area in [m?]. The values used in
this work are: Py = 1, Zf = 3.6 x 10" and T, = 25.

3.3.2. Operation cost of electric fan

We also consider the electricity cost associated with
the air fan. For this purpose, we approximate the
power consumption based on the system airflow
resistance and the fan operation using a variable fre-
quency drive, see Figure 4.

First, we need to estimate the pressure drop curve
of the system, in our case, it will be based on the
model information. In [25] the airflow resistance for a
rice deep bed are studied considering different mois-
ture, fines, bulk density, and air velocities. The author
approximated the system curve as follows:

P=V, (by F+b, MC+bs BD+by V,)  (34)

where b; = 25.859, b, = —90.056, b; = 5.587, and
by = 9133.696 are regression coefficients, P is the
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Table 2. Process variables and constraints (steady-state).

Constraint
Process Variable Type Case Study Dimension Lower Bound Upper Bound
Inlet Air Temperature u Tin ra 45 65
Dry Air Mass Velocity u Ga lkg/s.m?] 0.25 0.55
Dry Grain Mass Velocity u G, lkg/s.m*] 2 12
Outlet Air Temperature y Tout ra — —
Outlet Absolute Humidity of Air y Wour lkg /kGaryair] — —
Outlet Grain Temperature y Oout ra — 60
Outlet Moisture Content of Grain y y [kg/kGdrygrain] — 0.19
Inlet Absolute Humidity of Air d Wi, lkg /kGaryair] 0.006 0.012
Inlet Grain Temperature d Oin ra 25 35
Inlet Moisture Content of Grain d Mi, 1kg /kGdrygrain] 0.20 0.25
A top Pe W
P etop — (38)
3600
System Curve
Pmax 3.3.3. Total unitary cost
\ As mentioned before, in this work we propose to
Pmin Fan Curve @rpml minimize the operation cost per unit of dried grain
[[$]/ton]. Taking into account the fuel cost (Cp,p) and
electricity cost associated with the air fan (Ccp) the
Fan Curve @rpm2 objective function can be formulated as follow:
> J = 1000 M (39)
Qmin Qmax Q top Gp ab

Figure 4. Operation point based on the airflow resistance sys-
tem curve and using a variable frequency drive control for
the fan.

pressure drop in [Pa/m], V, is the air velocity in
[m/s], F is the fines percentage [%], MC is the mois-
ture content [%Wb] and BD is the bulk density
in [kg/m*].

For simplicity let’s consider constant MC = 20%,
F=0 and BD =599.42 = p (1 —¢), then Eq. (34) for
our dryer model (with a rice deep bed b=0.28[m]) is
reduced to:

P, =V, (43342557 V,), (35)

Substituting V, = 2_ :

G, G,
p, =% (433 + 2557 —), (36)
Pa

and the power consumption in [kW] is given by:

_Pb Qa

_ , 37
1000 7 (37)

where # is the fan efficiency (in this work 0.5) and Q,
is the volumetric flow rate in [m’/s] obtained by
Q. = G,L a/p,. Finally, considering the operation
time t,, [s] and the price of energy P, [[$]/kWh] (in
this work 0.1), the operative cost of the fan is
obtained as follows:

From 33 and 38 the objective function J of 39
would be minimized if we can operate at higher G,
with reduced G, and Tj,. Considering the operation
and quality constraints for the several disturbance
scenarios, the optimal control structure and their set
point values need to be obtained by the proper formu-
lation of constrained optimization problems.

3.4. Problem formulation

In this section, a detailed description of the control
structure selection problems presented in the previous
sections (2.3, 2.4) for the drying process model is
shown. Based on the case study variables and con-
straints presented in Table 2 and for the spatial dis-
cretized dryer model (Nr = 4, Nc = 4), we define the
following variables:

u = [Ga, Gp, Tin)» (40)

y = [Wy, W, Wi, Wi, Ta, Tg, Tia, Tre, Mis, Mg,
M5, My, 013, 014, 015, O16),
(41)
d = (Wi, 0, Mjy,], (42)
where u is the vector of input variables with dimen-
sion n, = 3, y is the vector measurable output varia-

bles with dimension n, = 16, and d is the vector of
disturbance variables with dimension n; = 3. It is
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important to highlight that the j-th index used for meas-
urable output variables refers to each compartment asso-
ciated with the Nr x Nc discretization (see Figure 3), i.e.,
we are measuring temperature and moisture variables at
the compartments nearby to the dryer output.

3.4.1. Classic back-off self-optimizing control
structure

The classic control structure selection is formulated

by the following parametrization:

ZO
z=|", |, 2°eB", ZeBm, (43)
VA
y?
r'f = o | ySP e R", u® e R™, (44)
u

The entries in the vector z' with unitary value indi-
cate the input variables that remain fixed, i.e., inputs
not used for the control. Similarly, binary entries with
values equal to one in the vector z© indicates the output
variables selected to be controlled (CV). On the other
hand, the entries in y** and u® give the set point values
for controlled and fixed input variables, respectively. To
solve the control structure selection problem, we
approximate the process disturbance region by a finite
number of possible scenarios. We use a uniform
mesh where discrete disturbances are considered, i.e.,
dy = Wi, € {0.006,0.009,0.012}, dy = 0;, € {25, 30,
35} and d3 = M;, € {0.2,0.23,0.25}. This lead to a dis-
crete set of disturbance scenarios D, with N=27 pos-
sible realization of d. The nominal disturbance scenario
is selected as d, = [0.009,35,0.23]. Additionally, the
following sets are defined:

U={1,2,n,=3} Y={1,2,..,n, =16},
K=1{12,..,N =27}

Finally, the back-of self-optimizing classic control
structure selection can be formulated as follows:

N
min, Z it (ug, di) (45a)
k=1

s.t. steady — statemodelequationsVk € IC, ~ (45b)

n}’ Ny
Zzio + ZZJI = n,, (45¢)
i=1 =1

y
ZZ,'O < Nioops> (45d)

i=1
RGA pairing equations for d = d,, (45€)
yiz) <yF <y vied, (450)
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LI UL\
utz! < u;p <y ZJ-,V] eu, (45g)

yi(1=2P) <yi(updi) =y <y (1-20).Vie Y, kek,
(45h)

ui(1=2) <wjp—u <u(1-z),Vjel, ke kK,
(45i)

The objective function (45a) is a weighted sum of
the total cost (39) over the specified set of disturbance
scenarios. The parameters p; are the weights for each
disturbance scenario, in our study case we use px =
%, V k. The set of equations (45b) are the dryer model
equations in steady-state that must be solved for all
the set of disturbance scenarios. For our case study
this means the material and energy balance equations,
Eqgs. (10)-(13), the drying rate equation, Eq. (26), con-
vective heat transfer, Eq. (30), and initial and bound-
ary conditions, Egs. (14)-(25). It is important to
highlight that model equations are considered for
each discrete dryer compartment (i.e., for Nr x Nc
compartments) and, also, for all scenarios of possible
disturbances (i.e., N scenarios). On the other hand,
while Eq. (45¢) states that the total number of fixed
variables must be equal to the total number of input
variables and Eq. (45d) defines the maximal number
of control loops, the set of equations (45e) is given to
perform the input-output pairing for the selected con-
trolled loops based on RGA steady-state matrix eval-
uated at the nominal optimum wu*(d,). In this
formulation, if output and input variables are selected
as controlled and manipulated variables, their set
points have to be within the upper and lower bounds,
Egs. (45f) and (45g), otherwise, they are set to zero.
By Eqgs. (45h) and (45i) the controlled output variables
and fixed input variables of the control structure
selected are forced to follow their set point value for
all disturbance scenarios d; € D. The remaining vari-
ables that do not belong to the control structure are
restricted to their upper and lower bound for all dis-
turbance scenarios d; € D.

3.4.2. Lineal combination back-off self-optimizing
control structure

In this section, we use the linear combination matrix

H € RU+m)*" o define the control structure and

the discrete set of disturbance scenarios D. Therefore,

the problem for optimal control structure selection

can be formulated as follows:
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N
miny e Y pif (e di) (462)

k=1

s.t. steady — statemodelequations¥V k € IC, (46b)

HT {Y(uk,dk), } " (460)

uy
Vke/c,HTﬁ] _T) (46d)
Y <vy(udi) <yU.VkeK, (46¢)
ut <u <uY,VkeK. (46f)

where, in Eq. (46d), G € IR""™ is the input-output
gain matrix of the open-loop system, evaluated at the
nominal optimum u*(d,), and T € IR™*"™ is the gain
matrix imposed on the controlled process (in general,
any well-conditioned matrix). Note that the choice of
T will also determine the pairing of manipulated vari-
ables with controlled variables.

3.4.3. Back-off self-optimizing plus real-time
optimization

In order to incorporate the RTO layer, we first have

to partition the set of disturbance scenarios. We intro-

duce the measurable disturbance index set:

Q={1,2,...N,},

Therefore, the total disturbance scenarios are now
defined by N = N, x Ny. For example, if the inlet
grain moisture, M;,, can be measurable, then we can
rearrange the set of N=27 disturbances as a 3 x 9 set
as is shown in Table 3.

Then it is possible to reformulate the equations of
problem 45 by evaluating them at (ug%,dg,di) and
replacing the fixed set points strategy with a variable
set points strategy.

In problem 45, replace the set point equations
(45f)-(451) by:

L_I Sp U_I :
uzp < < uj zj,VJEU,qGQ, (47b)

yi(1=20) < yi(ug i dgi) =y <yP(1—2P),
Vie), kek, q€Q (47¢)

Table 3. Disturbance scenario discretization (d = [d; d]).

ql q2 q3
k1 k2 ... k9 ki k2 ... k9 ki k2 ... k9
My 02 02 ... 02 023 023 ... 023 025 025 ... 0.25
Wi, 0.006 0.009 ... 0.012 0.006 0.009 ... 0.012 0.006 0.009 ... 0.012
On 25 25 ... 3 25 25 .. 35 25 25 .. 35

wy(1-2) <wjgr—uy <u’(1-2z),Vjel, k
ek, qeqQ
(47d)

4, Simulation results

In this section, we study a variety of back-off self-
optimizing control structures strategies in order to
evaluate which is the best option based on steady-state
economic criteria. The mathematical programming
problems presented in Section 3.4 are implemented in
GAMS v37.1.0 environment. All study cases are solved
on an AMD Ryzen 7 3700 x 8-Core Processor
@3.59 GHz with 16 gb ram.

4.1. Optimal operation and open loop structure

Initially, we are going to solve the problem 5 for all
discrete disturbance scenarios in order to find the
minimal bound for the operation cost (J,,). Using
this procedure, we can obtain the optimal values of
manipulated variables u*(d) and determine if there
are input or output variables that remain active for
the whole set of perturbations. Recall that optimal
mapping u*(d) is an idealized condition that requires
perfect knowledge of the disturbance values, therefore
both J,,; and u*(d) are used as references. Secondly,
we are going to calculate (if possible) the cost associ-
ated with an open loop strategy (J,;). To obtain the
solution to this open loop strategy, we solve problem
45 by fixing all available manipulated variables, i.e., all
components of binary variable z! are set equal to one.

Hence, we obtain that the optimal operating cost
(lower operation cost bound) is an average value of
Jopt = 5.236 [[$]/ton] and the output variable Mg is
always active at the upper bound (M;¢ = 0.19) for all
considered scenarios. On the other hand, we found
that it is possible to set an open loop strategy that
remains feasible for all disturbances scenarios by fix-
ing the manipulated variables to the following set
points: G, = 0.31, G, = 2, T;;, = 55. The associated
operation cost for the open loop strategy
is J,; = 10.05.

This work attempts to bring self-optimizing control
(SOC) approaches to grain drying processes. As men-
tioned in Section 2.3, the idea behind self-optimizing
control is to find the control structure that automatic-
ally leads to the optimal movements of the manipu-
lated variables, u*(d), and, with it, to the optimal
operating conditions, J,,. In this sense, the SOC
approach minimizes the difference between an average
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operation cost of the controlled process, ], and an
ideal optimal average operation cost, J,,.. This object-
ive function is defined as the optimality loss and it is
useful to compare the performance of different control
structures (and find the best solution).

The optimality loss for a given control structure
(represented by the subscript c¢s) can be obtained as
follows:

Loss;s = (]cs - ]opt)’ (48)

The optimization loss can also be expressed in a
percentile as follows:

(]cs - ]opt)

Losscs|%] = 100
]opt

, (49)
Then, the optimality loss for the open loop struc-
ture has a value of 91.90[%].

4.2. Classic closed loop control structure

In this section, we propose to solve two alternative
control structures. The case (A) where all the output
variables presented in 3.4 are available to measure and
also a case (B) where the output grain moisture is not
available for control purpose. The aim of case (B) is
to contemplate industrial-drying plants where mois-
ture sensors are not available since they are expensive
or have low reliability [1]. Therefore, the vector y of
output measurable variables are:

Vi = (Wi, Wg, Wiz, Wi, Ta, Ts, Ti2, T Miz, M,
M5, Mys, 013, 014, 015, O16),
(50)
Yz = [Wa, Wy, Wi, Wag, Ty, Tsy Tha, Tis, 0135 014, 015, 016)
(51)

The obtained optimal solution for case (A) is to
control Mjs = 0.19 using the manipulated variable
G, and to fix the input variables G, and Tj, in an
optimal set point values (G, = 0.344; T;, = 51.92).
The optimization loss is reduced to a 14.24%.
Although the operation is still far from the optimal
lower bound, the economic improvement respect to
the open loop is already high. Case (B), gives the
optimal solution of controlling 0;¢ = 42.03 and also
fixing G, =0.29 and Tj, = 62.5, however, the solu-
tion still has an important optimality loss
of 65.99%.

As mentioned in the introduction section, the
selection of the control structure directly impacts the
process operation and as consequence the economic
performance. Case (B) closed-loop is a clear example
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of this. The obtained structure achieves poor eco-
nomic results when trying to satisfy the operation
constraints, for the whole set of disturbance scenarios
and with fixed set points.

The closed-loop case (A) and case (B) both fix G,
and T;,, but the set point values are different, then
the impact of these variables in the functional cost
differs. The remaining control loop uses G, as manip-
ulated variable for both structures. However, the
movement of this variable is also different and impact
in operation cost.

Case (A) aims to keep grain moisture output
M6 = 0.19, this is an expected result as this con-
straint is founded always active in the ideal optimal
operating conditions. The movements of manipulated
variable G, keep the (minimal) required output
moisture for all the disturbance scenarios. The fixed
values for G, and Tj, together with the movements
of G, are optimized to achieve the best average oper-
ation cost.

Case (B) aims to keep a fixed grain temperature
output value. This control structure needs to find a
set point for 016, and the fixed values for G, and T},
that can accomplish (at least) the output moisture of
%19 while the operation cost is also minimized for
the whole set of disturbance scenarios. This is not a
simple and trivial task. The optimization problem
finds that the best solution is to keep 0j5=
42.026, G, =0.29 and T;, =62.5. Analyzing the
obtained results we observed that variable M;s: (a)
only reaches the minimal output moisture of %19 in
one disturbance scenario (worst case), (b) is near
%]18.5 in a few scenarios, and (c) is much less than
%19, i.e., the grain is over dried, in the rest of the
scenarios. The control loop is just looking to keep the
output temperature of the grain in the defined set
point, no matter if a favorable scenario occurs (for
example a lower grain input moisture together with a
lower air humidity). This means unnecessary higher
operation costs or, as in SOC literature, a loss of
optimality.

The complete steady-state values for input and out-
put variables can be found in supplementary informa-
tion. Table 4 synthesize the findings for best classical
control structure.

Table 4. The classic closed loop BO-SOC control structure
selection problem.

Selected Variables ~ Average Cost [$/ton]  Optimal Loss [%]

Case A Mg, Gg, Tin 5.982 14.24
Case B 016, Ga, Tin 8.692 65.99
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4.3. Lineal combination closed loop control
structure

In this section, we present the result of using the lin-
eal combination matrix for control structures. We are
also going to consider a case (A) where all the output
variables presented in 3.4 are available to measure and
the case (B) where the output grain moisture is not
available for control purpose.

For case (A) we look first for the economic lower
bound that can be achieved by using all the available
measurable variables (inputs and outputs). The result
is an almost optimal operation with an average cost of
J = 5.259[[$]/ton] (this is an optimal loss of only
0.43%). Then, we progressively decrease the quantity
of output measured variables and re-calculate the
optimal coefficients for the combination matrix and
set point values. The study considers linear combin-
ation control structures by measuring 7, 11, 15, and
19 (all) variables. For case (B) we can do a similar
analysis by considering sets of 7, 11 and 15 variables.

The coefficients obtained for lineal combination
matrices are reported in supplementary material asso-
ciated with this article. The resulting average costs
and associated losses can be observed in Table 5. The
improvement in optimality loss is progressive as we
consider more variables for the lineal combination
matrix, and for the same quantity of variables, case
(A) is always better than case (B). A tradeoff between
the economic performance and the complexity of the
resulting linear combination control structure
(dynamic response, controller installation, operation,
and maintenance) has to be considered before taking
a decision. In this sense, is recommended to study the
economic performance of alternatives to the full lineal
combination matrix (which combines all available
measurable variables).

The case (B) shows some interesting results as the
optimality loss can be reduced considerably despite
the absence of online output grain moisture sensors.
The classic control structure solution for case (B) is a
65.99% of optimality loss (Table 4) and with a lineal
combination control structure strategy the optimality
loss is reduced to 0.82 %.

Table 5. The combination matrix closed loop BO-SOC control
structure selection problem.

Qty Variables

Average Cost [$/ton] Optimal Loss [%]

Case A 7 5.467 4.40
1" 5.282 0.88
15 5.261 0.48
19 5.259 0.42
Case B 7 5.606 7.06
il 5.324 1.67
15 5.279 0.82

4.4. Classic control structure plus real-time
optimization

In this final section, we propose to use a hierarchical
control structure with a real-time optimization layer.
The main objective is to find the best regulatory con-
trol structure for the two layer control system. The
analysis is again divided into case (A) and case (B).
For both studies, we run the optimal classic BO-
SOC+RTO control structure selection problem 45
with set point strategy 47 and compare the potential
economic performance of the system by measuring
inlet grain moisture versus inlet grain temperature or
inlet air humidity. When the measurable disturbances
enter the process the real-time optimization layer
recalculates the set points in order to achieve an opti-
mal economic performance (without violating process
constraints for the rest of the unmeasured disturbance
scenarios). The different strategies with the resulting
average costs and optimality losses are presented in
Table 6 and the complete report with set points values
can be found in supplementary material.

For case (A), where all output variables can be
measured, the best regulatory control layer for apply-
ing a hierarchical structure is again a unique closed-
loop Mis — G, (together with optimal reference values
for G, and Tj,). Also, from Table 6, we can observe
that effort in measuring the inlet grain temperature or
inlet air humidity lead to an improvement that is not
such as significant as the improvement obtained by
measuring the inlet grain moisture.

For case (B), the best regulatory control layer for
the hierarchical strategy depends on the available
measured disturbance. In this case the economic
improvement compared with only a regulatory layer
(see Table 4) is considerable when measuring inlet
grain moisture disturbance or inlet air humidity,
reducing the optimality loss from a 65.99% to a
18.52% or 16.77% respectively. Notice also that in case
(B) the optimal control structure obtained for a single
regulatory layer strategy (Table 4) is not the best
structure for the use of a RTO hierarchical strategy.

5. Discussion

In Figure 5, the optimality loss versus the proposed
control structure strategies for both cases (A-B) is
resumed. Based on our findings, we provide the fol-
lowing recommendations:

e Open Loop and Classic Closed Loop Control
Structures: The use of an open loop control struc-
ture operation is far from a good option. The
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Table 6. Measurable disturbance and hierarchical control structure economic performance.
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Measured Disturbance

Selected Variables

Average Cost [$/ton]

Optimal Loss [%]

Case A Oin Mg, Gg, T; 5.883 12.35
Win M, Ga, Tin 5.701 8.87
Min Mig, Gq, Tj 5.467 4.41
Case B 0,’,7 Tg, 013, T,'n 8.173 56.08
Wi Wiy, Tya, Gg 6.114 16.77
M, Gp, Gg, Tin 6.206 18.52
T T T T T
Open Loop [~ 91.9 ‘ 91.9 b
Classic [~ 14.24 ‘ ‘ 65.99 =1
Z Classic + RTO (gin) - 12.35‘ ‘ 56.08 =
Q
©
& Classic + RTO (Win) 8.87 E 16.77 8
[0
*g Classic + RTO (Min) 4.41 [ 18.52 .
&
° LinealComb.(7) - 4.4 |:[| 7.06 b
g
o
O LinealComb.(11) - 0.88 H 1.67 .
LinealComb.(15) - 0.48 | 0.82 4
LinealComb.(19) |- 0.42 q
1 1 1 A 1 | 1 1 B 1 1 |
100 80 60 40 20 0 20 40 60 80 100

Optimality Loss [%] for Study Case

traditional ~structure M — G, for continuous
cross-flow dryers is proved to be the best regula-
tory classic closed loop structure from an economic
steady-state point of view, notice although that the
proper set points values for G, and T;, for wide
disturbances scenarios must be obtained from opti-
mization. A classic output grain temperature closed
loop (0,6 — G,) is confirmed to be highly sub-
optimal.

Lineal Combination Matrix for Closed Loop
Control Structures: As we successively add measur-
able variables to the combination matrix the closed
loop control strategy improves the steady-state eco-
nomic performance (for both cases A-B), however
a tradeoff between practical implementation and
economic improvement must be considered. In the
absence of online grain moisture sensors, a control
strategy with a linear combination matrix of tem-
perature and air humidity variables significantly
improves the economic performance.

Real-Time Optimization: The installation of a hier-
archical control structure is a great opportunity for
a continuous cross-flow grain drying process. For
the studied case, a real-time optimization based on
inlet grain moisture and the classic (M5 — Gp)

Figure 5. A comparison of the average optimality loss for the different control structure strategies. In case (a) all the output varia-
bles are available to measure and in case, (b) the output grain moisture is not available for control purpose.

closed loop has shown good economic perform-
ance. As the feedback control loop (Mis — G,) is
used in industrial dryers and the inlet moisture is
also suggested to measure for a feed-forward con-
trol strategy, it seems to be straightforward the
implementation of a real-time optimization layer
in order to improve the economic performance of

grain dryers.

6. Conclusions

The results show that the selection of an adequate
control structure and set point values has a significant
economic impact on the drying process operation. For
the study case, the operation of drying process in an
open loop strategy is nearly 92% more expensive than
an ideal optimal operation. In the case where output
grain moisture sensors are available the obtained con-
trol structure and set point values significantly reduce
the operation cost to an average optimality loss of
14%. Furthermore, the proposed strategies with virtual
controllable variables is shown to improve economic
performance, even if grain moisture sensors are not
available (in the range of 7% to 0.4% of optimality
loss depending on the control structure). Also, the use
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of a hierarchical system with a real-time optimization
layer based on inlet grain moisture it is a great oppor-
tunity for improvement.

The presented formulation for control structure
selection is a useful tool for economics analysis and
decision-making. The implementation of automatic
process control strategies, online sensors investment,
and intelligent control systems development for the
study case is economically justified.

Finally, it is worth mentioning that although the
work focuses on the search for an optimal control sys-
tem for continuous cross-flow grain dryers, it is also
possible and advisable to apply the methodology to
diverse products and dryer technologies.

Future research directions may consider the
dynamics response of the dryer for the proposed con-
trol structures and an in deep study of the real-time
control layer for the case where a mismatch between
the model and the plant is present.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

The authors thank the financial support from Pontificia
Universidad Catélica Argentina (UCA), Consejo Nacional
de Investigaciones Cientificas y Técnicas (CONICET), and
Centro Franco-Argentino de Ciencias de la Informacién y
de Sistemas (CIFASIS).

References

[1] Jumah, R; Mujumdar, A; Raghavan, V. Control of
Industrial Dryers, 2007; Vol. 2, pp 597-610.

[2] Dufour, P. Control Engineering in Drying
Technology: Review and Trends. Drying Technol.
2006, 24, 889-904. DOI: 10.1080/073739306
00734075.

[3] Abdel-Jabbar, N. M.; Jumah, R. Y.; Al-Haj Ali, M.
State Estimation and State Feedback Control for
Continuous Fluidized Bed Dryers. J. Food Eng. 2005,
70, 197-203. DOL: 10.1016/j.jfoodeng.2004.09.026.

[4] Platt, D.; Palazoglu, A; Rumsey, T. Feedforward-
Feedback Control of a Cross-Flow Grain Dryer. Hilg
1992, 60, 1-27. DOIL: 10.3733/hilg.v60n01p027.

[5] Courtois, F.; Nouafo, J; Trysham, G. Control
Strategies for Corn Mixed-Flow Dryers. Drying
Technol. 1995, 13, 1153-1165. DOIL 10.1080/
07373939508917014.

[6] McFarlane, N.; Bruce, D. A Cost Function for
Continuous-Flow Grain Drying and Its Use in
Control. J. Agric. Eng. Res. 1996, 65, 63-75. DOL: 10.
1006/jaer.1996.0080.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

Liu, Q.; Bakker-Arkema, F. W. A Model-Predictive
Controller for Grain Drying. J. Food Eng. 2001, 49,
321-326. DOI: 10.1016/S0260-8774(00)00229-6.

Li, H; Chen, S. A Neural-Network-Based Model
Predictive Control Scheme for Grain Dryers. Drying
Technol. 2020, 38, 1079-1091. DOIL 10.1080/
07373937.2019.1611598.

Jin, Y.; Wong, K. W; Yang, D.; Zhang, Z; Wu, W
Yin, J. A Neural Network Model Used in
Continuous Grain Dryer Control System. Drying
Technol. 2022, 40, 1901-1922. DOIL 10.1080/
07373937.2021.1891930.

Mansor, H.; Noor, S.; Kamil, R;; Taip, F.; Farouq, O.
Intelligent control of Grain Drying Process Using
Fuzzy Logic Controller. J. Food. Agric. Environ.
2010, 8, 145-149.

Atthajariyakul, S.; Leephakpreeda, T. Fluidized Bed
Paddy Drying in Optimal Conditions via Adaptive
Fuzzy Logic Control. J. Food Eng. 2006, 75, 104-114.
DOI: 10.1016/j.jfoodeng.2005.03.055.

Hnin, K. K; Zhang, M.; Mujumdar, A. S; Zhu, Y.
Emerging Food Drying Technologies with Energy-
Saving Characteristics: A Review. Drying Technol.
2019, 37, 1465-1480. DOI: 10.1080/07373937.2018.
1510417.

Su, Y; Zhang, M.; Mujumdar, A. S. Recent
Developments in Smart Drying Technology. Drying
Technol. 2015, 33, 260-276. DOI: 10.1080/07373937.
2014.985382.

Martynenko, A.; Biick, A. Intelligent Control in
Drying. CRC Press: Boca Raton, 2018; Vol. 3.

Heath, J. A.; Kookos, I. K.; Perkins, J. D. Process
Control Structure Selection Based on Economics.
AIChE ]. 2000, 46, 1998-2016. DOIL 10.1002/aic.
690461012.

Skogestad, S. Plantwide Control: The Search for the
Self-Optimizing Control Structure. J. Process Control
2000, 10,  487-507. DOI: 10.1016/S0959-
1524(00)00023-8.

Bottari, A.; Marchetti, P. A,; Marchetti, A. G. Self-
Optimizing Steady-State Back-Off Approach for
Control Structure Selection. Ind. Eng. Chem. Res
2019, 58, 13699-13717. DOI: 10.1021/acs.iecr.
8b06296.

Jaschke, J; Cao, Y.; Kariwala, V. Self-Optimizing
Control - A Survey. Annual Reviews in Control
2017, 43, 199-223. DOI: 10.1016/j.arcontrol.
2017.03.001.

Vasconcelos, L. G. S.; Maciel Filho, R. Development
of a Supervisory Control Strategy for Optimal
Operation of Grain Dryers. Drying Technol. 1998,
16, 2017-2031. DOI: 10.1080/07373939808917509.
Bottari, A.; Zumoffen, D. A. R; Marchetti, A. G.
Economic Control Structure Selection for Two-
Layered Real-Time Optimization Systems. Ind. Eng.
Chem. Res 2020, 59, 21413-21428. DOI: 10.1021/acs.
iecr.0c02591.

Parry, J. L. Mathematical Modelling and Computer
Simulation of Heat and Mass Transfer in
Agricultural Grain Drying: A Review. J. Agric. Eng.
Res. 1985, 32, 1-29. DOI.  10.1016/0021-
8634(85)90116-7.

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620


https://doi.org/10.1080/07373930600734075
https://doi.org/10.1080/07373930600734075
https://doi.org/10.1016/j.jfoodeng.2004.09.026
https://doi.org/10.3733/hilg.v60n01p027
https://doi.org/10.1080/07373939508917014
https://doi.org/10.1080/07373939508917014
https://doi.org/10.1006/jaer.1996.0080
https://doi.org/10.1006/jaer.1996.0080
https://doi.org/10.1016/S0260-8774(00)00229-6
https://doi.org/10.1080/07373937.2019.1611598
https://doi.org/10.1080/07373937.2019.1611598
https://doi.org/10.1080/07373937.2021.1891930
https://doi.org/10.1080/07373937.2021.1891930
https://doi.org/10.1016/j.jfoodeng.2005.03.055
https://doi.org/10.1080/07373937.2018.1510417
https://doi.org/10.1080/07373937.2018.1510417
https://doi.org/10.1080/07373937.2014.985382
https://doi.org/10.1080/07373937.2014.985382
https://doi.org/10.1002/aic.690461012
https://doi.org/10.1002/aic.690461012
https://doi.org/10.1016/S0959-1524(00)00023-8
https://doi.org/10.1016/S0959-1524(00)00023-8
https://doi.org/10.1021/acs.iecr.8b06296
https://doi.org/10.1021/acs.iecr.8b06296
https://doi.org/10.1016/j.arcontrol.2017.03.001
https://doi.org/10.1016/j.arcontrol.2017.03.001
https://doi.org/10.1080/07373939808917509
https://doi.org/10.1021/acs.iecr.0c02591
https://doi.org/10.1021/acs.iecr.0c02591
https://doi.org/10.1016/0021-8634(85)90116-7
https://doi.org/10.1016/0021-8634(85)90116-7

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

[22] Parde, S. R;; Jayas, D. S.; NDG White. Grain Drying:
A Review. Sci. Aliments 2003, 23, 589-622. DOI: 10.
3166/sda.23.589-622.

[23] Platt, D.; Rumsey, T.; P, A. Dynamics and Control
of Cross-Flow Grain Dryers: 1. Model Development
and Testing. Drying Technol. 1991, 9, 27-60. DOIL:
10.1080/07373939108916640.

[24] Platt, D;; Rumsey, T. R; Palazoglu, A. P. Dynamic
Modelling of a Cross-Flow Rice Dryer. Hilg 1990,
58, 1-46. DOI: 10.3733/hilg.v58n04p046.

[25] Siebenmorgen, T. J.; Jindal, V. K. Airflow Resistance
of Rough Rice as Affected by Moisture Content,
Fines Concentration and Bulk Density. Trans.
ASABE 1987, 30, 1138-1143.

DRYING TECHNOLOGY 15
/Zp.i,j are the elements of the matrix Ap, zf} are the elements
of the matrix Z°, and 6" and Y are the lower and upper
bounds for the elements of the RGA matrix.

The values of 6% and oY are design parameters that
enforce a desired degree of interaction for the input-output
loops. In this work the selected values are 6" =0.5
and 0V = 1.5.

Appendix B: Nominal variables values

Table Bl show principal variable values for the optimal
operation point in the defined nominal disturbance
scenario.

The scaled version of process variables can then be cal-
culated by:

Appendix A: Relative gain matrix equations Yo M (B1)
Let the full input-output gain matrix of the open loop sys- Min,n
tem evaluated at the nominal optimum u*(d,) be defined \ 0= 00
as G e IR ™. Let Gs(z) € IR"™™ be the square sub- 0 = Ton =0, (B2)
matrix, with #n; loops, determined by the selected control ' g
structure. Then, the RGA bounding constraints approach W* = w (B3)
aims to solve the followings equations for the controlled Winn
sub process:
p 2 T - Qin,n
—1 T T = 5 (B4)
A(z) = Gs(z) ® [G. ' (z)] (Ala) Tinn — Oinn
Ap(2.2°) = A(z) © Z°(2) (A1b) Gt =2, (B5)
" Ga,n
L ) U .
< pij(2.2°(2) < 0, i=1.,nm  (Al) ce_ G (56)
= =G
pn
ny n h
p_ P _
S, =30, 10 o -
i=1 j=1 n
where A(z) is the RGA matrix corresponding to the R — R (BS)
selected control structure z; ZP € B"*" is the input-output R,
pairing decision matrix (binary variables); the matrix Ap €
IR" ™ store the elements of the matrix A selected by ZP°;
Table B1. Nominal values (steady-state).
Process Variable Type Case Study Dimension Value
Inlet Air Temperature u Tin,n ra 45
Dry Air Mass Velocity u Gan [kg/s.m?] 0.250
Dry Grain Mass Velocity u Gp,n [kg/s.m?] 2.135
Inlet Absolute Humidity of Air d Win,n tkg /kGaryair] 0.009
Inlet Grain Temperature d i n ra 35
Inlet Moisture Content of Grain d Min, n [kg/kgdry%min] 0.23
Convective heat transfer coeff. var hy, U/mis. 14333
Drying rate var Rn [kGwater / kGarygrain 5] 2.062 % 107>
Operation Cost Functional Iy [[$]/tondrygrain] 5.071
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