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Abstract: In this work, it is demonstrated numerically that an asymmetric Moiré fiber grating
operated in reflection can provide the required spectral response to implement an all-optical fractional
differentiator. In our case, the accumulated phase shift is not associated with a point phase shift,
as when working with fiber Bragg gratings and long-period gratings with punctual defects, but is
distributed all over the grating. The proposed device is supported by numerical simulations, and a
dimensionless deviation factor is calculated to make quantitative analysis feasible. The performance
of the proposed device is analyzed using numerical simulations by computing the fractional time
derivatives of the complex field of an arbitrary transform-limited Gaussian pulse. A comparison with
the performance given by theoretical differentiation is also presented.

Keywords: optical fiber applications; all-optical devices; fiber Moiré gratings; optical processing;
ultrafast information processing; differentiation

1. Introduction

In recent years, due to the exponential development of photonic technologies, all-
optical circuits have been implemented for signal processing. When operating in the
optical domain, these devices offer a greater bandwidth and higher operating speeds than
devices operating with the traditional electronics-based system. Temporal differentiator
devices play an important role in photonics, as they are simple, have a low fabrication cost,
and have a low insertion loss. Among other advantages, they are fully compatible with
fiber optic systems and independent of polarization [1]. This device works with the field
envelope, and converts a given signal into its n-th order derivative. However, the previously
mentioned order n of differentiation was typically restricted to an integer. The performance
of all-optical integer-order temporal differentiation was demonstrated in several papers.
Depending on the operating bandwidths, two different types of fiber gratings were mainly
used. Fiber Bragg gratings (FBGs) are preferable when requiring small bandwidths (i.e.,
the tens-of-gigahertz range) [2]. Instead, long-period gratings (LPGs) are more suitable
for higher bandwidths (>100 GHz) [1]. Photonic differentiation can also occur in planar
waveguides such as silicon-on-chips, but here we limit ourselves to optical fibers due to
their inherent compatibility with already established fiber optic systems [3]. The reader can
find more information about these gratings in [3,4], and references therein.

In addition, non-integer operations, also called fractional operations, play an important
role in information processing as they offer a new degree of freedom—the fractional order—
which can be used as an additional coding parameter or to more fully define the signal being
tested. Li et al. theoretically proposed the use of an in-fiber Mach–Zehnder interferometer
(MZI) to perform integer-order differentiation [5]. To our knowledge, the first works
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demonstrating the possibility of performing photonic fractional differentiation were using
either a fiber-optic MZI [6] or an asymmetric π phase-shifted FBG operated in reflection [7].
Both setups can provide the spectral response required to implement an all-optical fractional
differentiator.

Furthermore, phase-shifted fiber Bragg gratings (PS-FBG) have been created and
employed as intricate filters, including flat-top band-pass/band-stop filters, triangle filters,
ultra-narrow filters, and filters with large channel counts [8–10]. Although they have many
applications, their manufacture is acknowledged as one of the difficulties in creating new
sensors or communication subsystems consisting of a grating, where a discrete phase
shift is introduced at particular locations. Kashyap et al. [11] were the first to propose the
phase-shift phase mask technique, where the desired phase shift was pre-inscribed in a
phase mask and the phase shift as well as the FBG itself are produced at the same time.
Although this technique provides a robust means that enables the fabrication of the PS-FBG
with higher quality and repeatability, the fabrication cost of the phase mask is high. In
1998, Fröhlich and Kashyap [12] proposed two new methods for apodizing FBGs. In the
first method, the constant average effective refractive index along the grating is obtained
by exploiting the finite coherence length of the marking laser. The second uses a double-
grating writing technique by introducing a path-length difference across the wavefront
of one of the two beams of the writing interferometer. In the same year, Ibsen et al. [13]
reported the fabrication of in-fiber Moiré filters by double exposure of a non-dedicated
chirp phase mask. In that work, the technique produces broadband filters whose structures
depend only on an intermediate stretch between two identical UV exposures.

Another way to insert a phase shift into a FBG is based on ultraviolet irradiation [14],
CO2 laser irradiation [15], and arc-discharge [16], where the phase shift is due to a change in
the effective index induced in the local region of the FBG. Recently, the infrared femtosecond
laser-writing method has been proposed to fabricate PS-FBGs [17]. However, the ultimate
requirement for extremely high precision for the manufacturing setups and excellent quality
for the employed laser beam would restrain this approach from being applied in industry
for mass output. The reader can find more details on how to insert a phase shift into a FBG
in [4], and the references therein.

As an alternative to FBGs and LPGs, Moiré gratings are one of the important structures
first proposed by Reid et al. in 1990 [18]. They are created by superimposing two Bragg
gratings with slightly different periods. It has some peculiarities, such as a perfect apodiza-
tion with a cosine profile, and it has an intrinsic π phase shift at the crossover point [19], i.e.,
it is not necessary to post-process the grating in order to introduce the phase shift. This last
feature is one of the most important in its comparison to PS-FBGs. Zhao et al. [20] proposed
and demonstrated the feasibility of writing a Moiré grating in a standard telecommuni-
cation optical fiber (SMF-28) using stretching and double exposure to ultraviolet fringes.
Consequently, in order to perform photonic fractional differentiation, Liu et al. [21] have
shown all-optical temporal differentiation based on a Moiré fiber grating (MFG) operated
in reflection, where first-order temporal differentiation is obtained with one crossover point,
and second-order temporal differentiation with two symmetrical crossover points along
the MFG length.

Here, we present, to the best of our knowledge, an all-optical in-fiber device that
acts as a fractional differentiator using an asymmetrical Moiré fiber grating (AMFG). It
is demonstrated numerically that an AMFG performs non-integer temporal fractional
differentiation on an optical pulse propagating in the fundamental fiber mode, within a
certain spectral bandwidth around the resonance frequency. It is important to mention that
making an AMFG is relatively simple. This can be achieved by overlaying two uniform
fiber Bragg gratings with slightly different periods onto standard SMF-28 optical fiber. The
reader can find more information about its preparation in [19–21].
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2. Theoretical Concepts

Differentiation, as is well known, is a technique for determining a function’s derivative;
it can be thought of as the instantaneous rate of change as a function on one of its variables.
The most typical illustration is velocity, which is the rate at which a distance changes in
relation to time. In general, the n-th time derivative of a function f can be written as [22]

f (n)(t) = dn f (t)/dtn (1)

where t is the time coordinate and n ε R+. If n is an integer, Equation (1) corresponds to a
derivative of integer-order and its calculus is simple. However, if n is not an integer, i.e.,
n = 0.33, Equation (1) represents a fractional differentiation of order 0.33 and its calculus is
less straightforward in the time domain.

Fortunately, fractional differentiation can be performed more or less easily in the fre-
quency domain. The time differentiation properties of the Fourier transform state that dif-
ferentiate a function in the time domain are equivalent to multiplying its Fourier transform
by a transfer function in the frequency domain. Therefore, for the one-dimensional signal
f (t), its Fourier transform is F(ν) = F [ f (t)] and its n-th time derivative Fn(ν) = F

[
dn f (t)

dtn

]
can be related as

Fn(ν) = (j 2πν)nF(ν) (2)

where j =
√
−1 is the imaginary unit, ν is the baseband frequency, i.e., ν = νopt − ν0,

νopt is the optical frequency, and ν0 is the carrier optical frequency of the signal. In this
case, Equation (2) can be viewed as the product of an operator Hn(ν) = (j 2πν)n and the
Fourier transform F(ν) of the signal. As mentioned before, its n-th time derivative can
be interpreted as a filter action performed by the operator Hn(ν). In this operator, there
is a difference in the phase depending on whether ν > 0 or ν < 0, being the phase for
Hn(ν): +nπ/2 for the former, and −nπ/2 for the latter. Therefore, the spectral behavior
of Hn(ν) implies a n× π phase discontinuity at ν = 0. For the amplitude of the transfer
function, there is simply a |ν|n dependence; essentially, a high-pass filtering in amplitude.
For example, Figure 1 shows the plot of the operator Hn(ν) corresponding to the 0.33-th
order derivative. From this figure, it can be noticed that H0.33(ν) acts as a high-pass filter,
with zero reflection at the signal’s central frequency ν0.

Figure 1. Plot of the operator Hn(ν) for the 0.33th-order differentiator frequency response in ampli-
tude, in baseband frequency.

As mentioned in the Introduction, an all-optical in-fiber device can perform a fractional
differentiation. Usually, this device consists of a grating with a discrete phase shift inserted
at a specific location inside the grating [6], which indicates either a pointwise change in the
fiber core’s refractive index or a spatial shift of the fiber with respect to the phase mask [19].
The phase-shifted structure can be recreated as a Moiré grating, though, by superimposing
two gratings with equal amplitude but different periods, Λ1 and Λ2 [12]. This structure has
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rapidly and slowly varying envelopes, whose periods are Λs =
2 Λ1Λ2
Λ1+Λ2

and Λc =
2 Λ1Λ2
Λ1−Λ2

,
respectively, as shown in Figure 2.

Figure 2. (a) Uniform fiber Bragg gratings with slightly different periods Λ1 and Λ2; (b) Schematic of
the Moiré grating structure with rapidly varying Λs and slowly varying Λc envelopes.

To obtain a fractional differentiator, an asymmetric Moiré grating operated in reflection
can be used [7]. In our case, Figure 3 shows the asymmetric crossover point of the envelope
in the case of an arbitrary phase shift. The required spectral response is obtained by using
different grating lengths on either side of the intrinsic phase shift, L1 6= L2, i.e., the phase
shift is achieved naturally when the two gratings are superimposed [18]. Furthermore,
several phase-shift values can be obtained by superimposing gratings of different ampli-
tudes. Many phase shifts can also be achieved by using gratings of different lengths, or by
changing the periods Λ1 and Λ2 while the grating length remains unaltered.

Figure 3. Refractive index modulation of AMFG generated by superimposing two gratings with
slightly different periods, Λ1 and Λ2.

The index of refraction of the grating is written as [7]

∆n(z) = ∆n
[

2 + 2 cos
(

2π

Λc
z
)

cos
(

2π

Λs
z
)]

(3)
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where z is the position along the axis of the fiber. It is important to mention that the phase
shift is not associated with a crossing point, as when working with FBGs or LPGs. Here, it
is distributed all over the grating, and it is not associated with a punctual defect.

3. Results and Discussion

We numerically computed the time-domain response of the proposed AMFG to show
how it can be used for fractional differentiation. As a typical example, Figure 4 shows the
refractive index modulation of the AMFG for 0.51th-order fractional differentiation simu-
lated with OptiGrating 4.2.2 software, and it can be seen that the profile has the fish shape
as in ref. [12]. The simulated length of the fiber grating was L = L1 + L2 = 10 mm, which is
associated with the desirable bandwidth. The index modulation depth was ∆n = 1× 10−4,
the rapidly varying envelope (the period of the fiber grating) was Λc = 0.5345 µm, the
slowly varying envelope was Λs = 13.3 mm, and the apodization was defined as

A(z) = ∆n cos
[

π

L

(
z− L

2
− L1

)]
(4)

where L1 = 3.405 mm. It is important to mention that in Figure 4, only the slowly varying
envelope is visible. Individual stripes are not visible in the figure because the rapidly
varying period is very small, i.e., Λc � Λs [23].

Figure 4. Refractive index modulation of AMFG for 0.51th-order differentiation.

It is commonly known that when the fiber grating’s crossover point is in the center
(i.e., L1/L = 0.5), it performs a derivative of first-order, n = 1. Recently, Liu et al. [21]
demonstrated that all-optical temporal differentiation based on a MFG operated in reflection
with only one crossover point at the center of the fiber acts as the first-order temporal
differentiator. Furthermore, these authors also demonstrated that a MFG incorporating two
symmetrical crossover points acts as the second-order temporal differentiator. To prove
that the proposed AMFG can perform the non-integer temporal fractional differentiation,
Figure 5 shows the n-th order derivative as a function of the relative grating length L1/L.
In this last figure, it can be seen that the relation between both parameters is monotonically
increasing. Therefore, when L1/L < 0.5, the AMFG acts as a non-integer temporal fractional
differentiator.
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Figure 5. Fractional differentiation order n as a function of the relative grating length L1/L.

In addition, a simulation of an optical signal going through the designed differentiator
was performed. The pulse’s waveform was selected to be a transform-limited Gaussian
pulse, therefore its expression may be written as:

f (t) = exp

[
−1

2

(
t

T0

)2
]

(5)

F(ν) = F [ f (t)] =
∫ ∞

−∞
f (t) exp[−j 2πνt]dt (6)

where T0 is the pulse half width at the intensity point e−1, and was chosen as 31.25 ps.
The bandwidth of the reflection dip was chosen to be wider than the bandwidth of the
initial pulse, and the center frequency was set equal to the frequency of the minimum
reflection point.

Figure 6a,b depict the reflectivity in amplitude and phase, respectively, as compared
with the ideal transfer function H0.51(ν) = (j 2πν)0.51, and the amplitude of the Fourier
transform of the pulse to be fractionally differentiated. On the one hand, it should be
noted from Figure 6a that there is a reasonable degree of similarity between the spectral
amplitudes (ideal and proposed). In addition, Oppenheim and Lim [24] found that the
Fourier representation of signals preserves many of the important characteristics of a signal
if only the phase is preserved. Furthermore, when the signal is of finite length, phase
information alone is sufficient to completely reconstruct a signal within a scale factor. On
the other hand, Figure 6b also shows a good agreement between the ideal and proposed
phases. From this last figure, it can be seen that the phase shifts of both the ideal and the
proposed 0.51th-order differentiator are 0.51 π, except for the presence of a slope for the
proposed differentiator. However, from Fourier transform theory, the addition of a slope in
phase induces a temporal delay, according to F [ f (t− a)] = e−jνaF(ν).

Figure 7 depicts the simulation result of the temporal response of the 0.51th-order
differentiator. By multiplying the initial pulse and the spectral response of the AMFG,
the differentiated time waveform was extracted from the output spectrum of the AMFG
using the inverse Fourier transform. For comparison, the original input signal and the ideal
(analytical) time derivative are also shown. In addition, all signals have been normalized to
unity to facilitate comparison between them. From this last figure, it can be seen that there
is a reasonable degree of agreement between the obtained time profile and the theoretical
time derivative of the input pulse.
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Figure 6. (Color online) Ideal (blue-dashed curve) and proposed (black-solid curve) 0.51th-order
differentiator frequency response in (a) amplitude and (b) reflection phase, in baseband frequency.
Amplitude (red-dotted curve) of the pulse under test is also shown in both figures normalized
to unity.

Figure 7. Simulated (solid curve) and ideal (dashed curve) time response of the designed 0.51th-order
differentiator. The input signal is also displayed (dotted curve); all signals were normalized to unity.

To enable a quantitative analysis, we used a similar approach as in [7], by using the
following dimensionless deviation factor

Dn =

∫ +∞
−∞ ||pn(t)|2 − |pt(t)|2| dt∫ +∞

−∞ |pt(t)|2 dt
(7)

where pn(t) represents the output of the proposed n-th-order temporal differentiator,
while pt(t) is the theoretical time derivative of n-th-order. The deviation factor for this
case is D0.51 = 0.1498. To demonstrate how sensitive this configuration is to a change in
the input signal’s bandwidth T0, Figure 8 shows the natural logarithm of the deviation
factor (ln D0.51). For this purpose, several input signals with time widths in the range of
5 ps to 155 ps and the same 0.51th-order differentiator as before were used. In this last
figure, it can be seen that the minimum occurs when the time width is close to 40 ps,
and that the deviation factor is not significantly increased by a small input bandwidth
detuning. It should also be considered that the transmission drop is not exactly zero (see
Figure 6a). Therefore, low-frequency components are not sufficiently rejected. In addition,
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the phase shift occurred over a bandwidth of 0.8 GHz (see Figure 6b), which represents 9%
as compared with the FWHM (full-width at half maximum) of the Fourier transform of
the pulse under test. It is important to mention that the length of the grating L is related to
the bandwidth. Generally, shorter devices (i.e., with shorter lengths) can process higher
bandwidths [7].

Figure 8. Natural logarithm of the deviation factor D between the theoretical and proposed 0.51th-
order temporal differentiator for different temporal widths T0.

Although in the Introduction it was stated that the fabrication of an AMFG is simple,
in order to analyze the performance of the proposed fractional differentiator, we have also
simulated the situation when the two uniform fiber Bragg gratings with slightly different
periods have different amplitudes. In this case, the amplitude of one Bragg grating was
simulated to be 10% larger than the other one. In this case, there was found a shift in the
fractional differentiation order, obtaining n = 0.55, instead of 0.51. This is a 4% difference in
the fractional order differentiation. Figure 9 shows the simulation result of the temporal
response of the 0.55th-order differentiator. For comparison, the original input signal and
the ideal (analytical with n = 0.51) time derivative are also shown, and all signals have
been normalized to unity to facilitate the comparison between them. In this last figure, it
can be seen that there is still a reasonable degree of agreement between the obtained time
profile and the theoretical time derivative of the input pulse, in spite of the shift in the
differentiator order.

Figure 9. Ideal 0.51th-order differentiator (dashed curve) and simulated 0.55th-order differentiator
(solid curve) time response. The input signal is also displayed (dotted curve); all signals were
normalized to unity.

Furthermore, it is known from Figure 5 that the fractional differentiation order n is
determined precisely by the value of L1/L. As the curve of the refractive index modulation
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of the grating is invisible, it is difficult and sometimes impossible to measure L1 and L
precisely. However, they can be determined by measuring the spectral response once it
is fabricated.

Finally, these devices have several practical applications. For example, they can be used
for instantaneous frequency detection based on the use of a 0.5th-order in-fiber fractional
calculus differentiator, as was proved theoretically in [25], and later experimentally in [26].

4. Conclusions

Finally, we proposed and numerically proved a straightforward, all-encompassing
method for implementing an arbitrary-order fractional differentiator of optical waveforms
by means of an asymmetric Moiré fiber grating. The basis of the approach is that the
proposed AMFG has an intrinsic phase shift at the crossover point. The accumulated
phase shift is not associated with a point phase shift, as when working with fiber Bragg
gratings and long-period gratings, but is distributed all over the grating. A reasonably
good match is achieved between the theoretical fractionally differentiated signal and the
proposed output temporal waveform achieved from the AMFG for the designed 0.51th-
order differentiator. The performance of the proposed device is analyzed using numerical
simulations by computing the fractional time derivatives of the complex field of an arbitrary
transform-limited Gaussian pulse. A comparison with the performance given by theoretical
differentiation is also presented, and a dimensionless deviation factor is calculated to
make quantitative analysis feasible. The proposed device is supported by numerical
simulations, showing that this approach can provide optical operation bandwidths in the
tens-of-GHz regime.
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