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Abstract: This work presents a free new database designed from a real industrial process to recognize,
identify, and classify the quality of the red raspberry accurately, automatically, and in real time.
Raspberry trays with recently harvested fresh fruit enter the industry’s selection and quality control
process to be categorized and subsequently their purchase price is determined. This selection is
carried out from a sample of a complete batch to evaluate the quality of the raspberry. This database
aims to solve one of the major problems in the industry: evaluating the largest amount of fruit possible
and not a single sample. This major dataset enables researchers in various disciplines to develop
practical machine-learning (ML) algorithms to improve red raspberry quality in the industry, by
identifying different diseases and defects in the fruit, and by overcoming limitations by increasing
the performance detection rate accuracy and reducing computation time. This database is made up of
two packages and can be downloaded free from the Laboratory of Technological Research in Pattern
Recognition repository at the Catholic University of the Maule. The RGB image package contains 286
raw original images with a resolution of 3948 × 2748 pixels from raspberry trays acquired during a
typical process in the industry. Furthermore, the labeled images are available with the annotations
for two diseases (86 albinism labels and 164 fungus rust labels) and two defects (115 over-ripeness
labels, and 244 peduncle labels). The MATLAB code package contains three well-known ML metho-
dological approaches, which can be used to classify and detect the quality of red raspberries. Two
are statistical-based learning methods for feature extraction coupled with a conventional artificial
neural network (ANN) as a classifier and detector. The first method uses four predictive learning
from descriptive statistical measures, such as variance, standard deviation, mean, and median.
The second method uses three predictive learning from a statistical model based on the genera-
lized extreme value distribution parameters, such as location, scale, and shape. The third ML
approach uses a convolution neural network based on a pre-trained fastest region approach (Faster
R-CNN) that extracts its features directly from images to classify and detect fruit quality. The classi-
fication performance metric was assessed in terms of true and false positive rates, and accuracy.
On average, for all types of raspberries studied, the following accuracies were achieved: Faster
R-CNN 91.2%, descriptive statistics 81%, and generalized extreme value 84.5%. These performance
metrics were compared to manual data annotations by industry quality control staff, accomplishing
the parameters and standards of agribusiness. This work shows promising results, which can shed a
new light on fruit quality standards methodologies in the industry.
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1. Introduction

Chile is a country characterized by having a diverse production of fruit that is then
exported to other countries. The raspberry Rubus idaeus L. has three varieties, namely red,
yellow, or black. This fruit grows in a woody, evergreen shrub that is distributed from the
Maule Region to the rest of the world. Most production comes from family farms, as the
cost of labor is very low and unskilled. Therefore, the effects and control of insects and
other pests, diseases, and weeds are crucial in raspberry production, and quality. A study
of raspberry fruit quality, plant architectures, environmental impact, sustainability, and
diseases or pest resistance are currently ongoing. We refer the reader to Section 2 for more
details on the quality standard requirements that red raspberries must satisfy. In this work,
we will concentrate on the quality selection of red raspberries in the industry, specifically
during the fresh fruit selection that will be used in the individually quick-frozen (IQF)
method. Quick-frozen raspberries are products prepared from fresh, clean, sound, ripe, and
stemmed raspberries of firm texture conforming to the characteristics of the three varieties
of Rubus idaeus L. [1]. For this purpose, a prototype quality control equipment was designed
to acquire RGB images of red raspberries in a tray to detect and classify their quality and
therefore their diseases or defects using a computer vision system (CVS). For detailed
information about this patented equipment, we refer the reader to our previous work [2].
The use of equipment is a motivation because in the industry, the process of fruit quality
verification depends on human expertise. From this manual inspection, the percentage
of fresh fruit that meets the conditions to be processed and paid as IQF is decided. This
percentage is usually about 70% and determines the price of an entire batch of fruit, see
Figure 1. This percentage is regulated according to the laws of supply and demand of the
fruit. When the harvest is poor with a lack of fruit, the industry receives the entire harvest
from the farmer and when the harvest was abundant, the industry establishes a percentage,
usually around this percentage, but it can vary between industries. Finally, the industry is
independent in deciding this percentage.

(a) (b) (c)

Figure 1. Harvested fresh fruit that enters the industry’s selection and quality control process.
(a) Fruit reception. All harvested fresh fruit is received for the quality control process. (b) Fruit
selection. Harvested fresh fruit is visually checked before choosing a random sample to be inspected.
(c) Fruit sample. One kilogram of red raspberries is selected as a sample unit from an entire batch.

It is important to note that the processing companies control the quality control process
completely, which in some cases translates into bad practices, such as an underestimation
of the quality of the fruit. This causes three problems. The first is regarding visual inspec-
tion, which is subjective and error-prone. The second is that only a few samples of the
total number of trays are inspected, which usually does not reach statistical significance.
This implies that based on the human expert’s criteria for the product, the quality,
the purchase price, and the destination are determined. Finally, the industry wastes a
lot of time and resources with the process of staff training for this task, because they are



Appl. Sci. 2022, 12, 11586 3 of 27

hired only during the fruit harvest, and they are not stable industry staff. Therefore, seeking
clarity in the quality standards between the industry and the harvest by the farmer is one
of the great challenges of the agro-industry. This work fits into this purpose. Note that the
farmers do not classify the fruit, they cannot do it because this is a socioeconomic activity
of family farming that uses a workforce unskilled for the recollection of the fruit. Thus,
this responsibility is delegated to the industry, trusting in its criteria. The industry has
a responsibility to determine a fair price by recognizing, identifying, and classifying the
defects, errors, damage, and diseases of the fruit that enters the quality selection process.
Likewise, the industry can analyze and judge the criteria that it has been using to classify
this fruit and thus recognize the different biases between the industry and the harvest by
the farmer. In short, when technology allows and detection algorithms are fully validated,
fair, objective and unbiased quality ratings can be achieved. This is a challenge that begins
with the use of this database. This database aims to solve one of the major problems in the
industry. It will evaluate the largest amount of fruit as possible, and not a single sample
as representing an entire batch. It is important to highlight that the RGB images in the
database were acquired in an industrial context, just as is done, without process varia-
tions, see Figure 2a. The detection process in the machine takes between 2 and 5 min, see
Figure 2b. This is an acceptable detection time for the industry.

(a) (b)

Figure 2. Raspberries and equipment. (a) RGB image of raspberries in a tray to be evaluated. Note
that it is a sample unit of the fruit, which is uniformly distributed throughout the tray, avoiding
overlap between the fruit as much as possible. (b) Patented device for the acquisition of the images.
Observe that the tray is placed at the bottom of the device, at the top is the lighting system, and an
external computer to store the images.

Studies and investigations on the detection of the quality of the fruit are extensive and
varied, specifically as regards raspberry fruit; to the best of our knowledge, this is the first
RGB image database for the industrial applications of red raspberries’ automatic quality
estimation. Table 1 shows some freely accessible database examples from different countries
with the corresponding access to their repositories. Observe that the study objective focuses
mainly on identifying and classifying diseases or defects to detect the quality of the fruit.
This is because there is an interest in controlling the quality of the fruit since it can be
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significantly affected by damage or stains due to pathological injury, pests, or diseases,
which ultimately degrade its quality and cause financial losses to the farmers.

It is well-known that data plays a critical role in machine learning approaches.
The characteristics of these datasets must be clear and precise, such as their annotations
or labels, because they directly influence the behavior of a model, which needs a training
and testing stage to detect what has been learned, thus allowing applying the model to
new data never seen before. Image quantity and resolution play a fundamental role during
this process. In the examples in Table 1, the images are of high quality, with a very high
resolution, which allows for the additional details that are stored in the pixels. These details
are crucial in the analysis of the quality of the fruit, since, for example, a change in color,
shade, or contrast, can help identify a disease or a defect; or to apply image techniques such
as segmentation [3] or augmentation [4,5]. Please note that the images are generally cap-
tured in fieldwork, which is why it is often difficult to transport the necessary equipment
to capture the appropriate images. In general, high-resolution cameras or cell phones are
used. Furthermore, synthetic images can be generated from some samples. For example,
in [6], a near-infrared (NIR) image generation method was used to yield a set of images
re-processed from two public datasets with realistic results.

In this work, we present a free new database designed from a real industrial process
with the aim of recognizing, identifying, and classifying the red raspberry’s quality from
their RGB images in a tray, with recently harvested fresh fruit that enters the industry’s
selection and quality control process, as Figure 1 shows. This major dataset has two
large free packages: Images and Code, which allow researchers and students to improve
red raspberry quality, by identifying different diseases and defects in the fruit and by
overcoming limitations by increasing detection rate accuracy and reducing computation
time. Second, we want to stimulate multidisciplinary research in diverse disciplines, such
as agriculture, informatics, electronics, or data science, to develop practical applications
in artificial intelligence, computer vision, or machine learning. A target of our free code,
which is available with well-known methods to experiment with the data. Worth noting
is that statistical-based learning methods have not been used before as image classifiers
for fruit quality detection. In the first approach, four predictor learnings were used from
descriptive statistical measures were used, such as the variance, the standard deviation, the
mean, and the median. In the second approach, a statistical model based on the generalized
extreme value distribution was estimated. This distribution has three parameters (location,
scale, and shape) that can be used as predictor learnings from the raspberry tray image.

The two main contributions of this work are as follows:

• To the best of our knowledge, this is the first RGB image database for the industrial
applications of red raspberries’ quality estimation in a tray. The images were acquired
with a high-resolution camera in a controlled space, with a lighting system consisting
of LED lights, which diffusely emit the illumination to avoid light hits (white spots)
and shadows (black) on the fruit, as well as halogen lights. This allows excellent image
characteristics to test image signal processing algorithms and ML approaches.

• To the best of our knowledge, the well-known statistical-based learning methods have
not been used before as image classifiers for fruit quality detection. Statistical-based
learning algorithms like this are extremely quick for use in real-time systems, but lack
robustness.

This article is organized as follows: Section 2 introduces the standard quality of the red
raspberries in the industry, and the diseases and defects used in this free database. Section 3
introduces the Raspberries-LITRP Database, and Section 4 the experiments applied to
this dataset. Section 5 shows the results and discussion to apply this experimentation.
Advantages, limitations, conclusions, and perspectives for future work are finally reported
in Section 6.
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Table 1. Summary of some freely accessible databases related to studies on fruit quality. Data access
can be consulted in the references.

Fruits Study
Objetive

Image
Dataset

Image
Resolution Code Annotations Repository Country Ref.

Raspberry Diseases
Defects 286 3948 × 2748 Yes Yes Raspberies

LITRP Chile [This work]

Apple Precision
agriculture 6089+ Multifold Not Yes Fuji Apples España Gene-Mola

et al. [7,8]

Multifruit Detection 1515 3456 × 3456 Not Yes QuinceSet Japan Kaufmane
et al. [9]

Banana Diseases
Pathogens 8000 3096 × 4128 Not Yes PSFDMusa India Medhi et al.

[10]

Guava Disease 527 2320 × 1540 Not Not Guava Bangladesh Rajbongshi
et al. [11]

Multifruit Rotten
detection 12,335 Multifold Not Not Fresh Rotten Bangladesh Sultana

et al. [12]

Multifruit Detection
127k

synthetic
images

Multifold Not Yes deepNIR Australia Sa et al. [6]

Multifruit
Good, bad
and mixed

quality
19,500 3024 × 3024 Not Not FruitNet India Meshram

et al. [13]

Palm date Localization
classification 2576

5184 × 3456
4449 × 3071
4376 × 3375

Not Yes Medjool
Dates Mexico Perez-Perez

et al. [14]

Apple
To augmenta-

tion
methods

800 1080 × 1920 Not Yes Scifresh USA Gao et al. [5]

Grapes Instance seg-
mentation 300 1365 × 2048 Not Yes Embrapa

WGISD Brazil Santos
et al. [3]

Citrus Diseases 759 5202 × 3465 Not Yes Citrus Plant Pakistan Harif
et al. [15]

Multifruit
Robotic

harvesting
classification

8079 5184 × 3456
4272 × 2848 Not Yes Date Fruit Saudi Arabia Altaheri

et al. [16]

Mango
Detection in
tree canopy

images
1730 612 × 512 Not Yes Mango

YOLO Australia Koirala
et al. [17]

Apple
Mangoes
Almonds

Multifold 1120 1964
620

308 × 202
500 × 500
308 × 202

Not Yes
ACFR

Orchard
Fruit

Australia Bargoti
et al. [4]

2. Red Raspberry

Raspberries contain a wide variety of vitamins, minerals, nutrients, sugars, and acids,
which contribute to their sweetness, aroma, and healthful properties. The overall quality
is when the fruit is harvested at optimum ripeness and at its highest sugar and aro-
matic level. The raspberry’s flavor should be sweet when ripe and not excessively acidic.
The texture should be firm but juicy, and it should have a typical soft aroma. The nutritional
benefits for human health are high due to the carbohydrate, vitamin, mineral, dietary fiber,
and polyphenolic compounds that are present in the fruit. However, nevertheless, the
composition of these chemicals can be highly variable depending on the environment, such
as growing locations, fruit ripeness at harvest, and storage conditions.

2.1. Standard Quality Requirements for Raspberries in the Industry

Standard quality control is essential for every aspect of raspberry production.
Its objective is to prevent a non-conforming product from reaching the next stage of the
process or reaching the final customer. Therefore, different types of quality control are
necessary, from the reception of the fruit to the final test of the finished product, along
with its shelf life. In the first instance, the farmer is responsible for observing the fruit
quality. The fruit that is susceptible to a slight deterioration due to its development and its
tendency to perish, or that has a slight lack of freshness and turgidity, should be discarded.
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Obviously, they cannot be offered for sale or marketed. This is the first test to know if
the conservation or the harvest criterion of the fruit should be changed. The raspberries
in the industry must have some minimum and maturity requirements to enable them to
withstand transportation, handling, and finally, to arrive in satisfactory condition at the
place of destination. According to the International Codex Alimentarious [1], 300 grams of
drained berry ingredients are used as a sample unit from an entire batch to segregate and
assess raspberry quality. In Chile, each industry has its own standard based on this codex.
On average, they evaluate 1 kilogram as a sample unit. The quality factors of raspberries
are divided into two large groups:

Quick frozen:

• of good, reasonably uniform color, characteristic of the variety.
• clean, sound and practically free from foreign matter.
• free from foreign flavor and odor.

Visual defects:

• practically free from sand and grit.
• when presented as free-flowing, practically free from berries adhering one to another,

and which cannot be easily separated when in the frozen state.
• reasonably free from uncolored berries.
• practically free from completely uncolored berries.
• reasonably free from stalks (cap stems).
• practically free from extraneous vegetable matter.
• reasonably free from damage or blemish due to pathological injury or pests (diseases).
• normally developed.
• of similar varietal characteristics.
• reasonably free from disintegrated berries or berries not intact.

2.2. Red Raspberry Diseases

Insects transmit viruses and are generally correlated to the local climate, thus they can
cause damage to roots, canes, and fruit. Diseases, such as bacteria, fungi, and those caused
by viruses, vary greatly between raspberry species and depend on soil types, such as clay
versus sand. In another way, excessive or deficient levels of plant nutrients together with
high temperatures, chemical toxicity hail, or wind, can affect the disease levels. We now
introduce the two diseases studied in this paper, which are part of the database.

Albinism: It is a mottled white and is insipid and tasteless in flavor. In the course
of the production season, the raspberries can acquire albinism during periods of warm
weather followed by overcast and foggy skies or by an excess of nitrogen fertility. Once
there is a change in the weather or throttling down on the quantity of nitrogen, albino fruit
disappears. See Figure 3a.

Fungus-Rust: Rust is a disease of the foliage of raspberries, caused by the fungus
Phragmidium rubi-idaei. Depending on the time of year, particularly during the wet weather,
this fungus can produce several different types of spores, thus it changes the raspberry’s
appearance. See Figure 3b.

2.3. Red Raspberry Defects

The defects admitted in a small percentage are the fruit bitten by birds or eaten by
beetles, larvae, or worms.

Over-ripeness: It is given by softening of the fruit, in this state the loss of firmness is
high, and its color change gives a dehydrated appearance. Its main characteristic is the
coating color that turns to a darker red. See Figure 3c.

Peduncle: Is the point of attachment or stem attached to the fruit, or flower. See
Figure 3d.
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(a) (b)

(c) (d)

Figure 3. Raspberries’ diseases and defects used in this database. (a) Albinism. (b) Fungus-Rust.
(c) Over-ripeness. (d) Peduncle. Note that to the inexpert eye, the albinism disease can be confused
with the over-ripeness defect.

We refer the reader to [18–20] for a comprehensive treatment of raspberry fruit.

3. Raspberries-LITRP Database

In this section, we explain the process of red raspberry RGB image acquisition in
Section 3.1, and image labeling in Section 3.2. Then, we introduce the database structure
contents in Section 3.3 so that it can be used for free.

3.1. RGB Images Acquisition

The idea behind machine vision methods is basically to mimic the recognition and
analysis process that occurs within the human brain. The objective of this acquisition
was to obtain the best RGB image quality of raspberries using a controlled environment
especially designed to be used in a typical fruit categorization routine within the indus-
try. For this purpose, a device was designed, which is patented, to acquire RGB images
of red raspberries in a tray and subsequently detect their quality through various algo-
rithms. An RGB camera in the visible spectrum was used for the raspberry tray’s image
acquisition. A Basler model acA4024-8gc GigE with a SONY IMX-304 CMOS color sensor
of a maximum resolution of 4096× 3000 pixels with a pixel size of 3.45 mm was used.
Figure 2a shows an example of the RGB image acquisition of red raspberries in a tray.
In total, 286 raspberry tray images were acquired, each one with a resolution of
3948× 2748 pixels.

3.2. Image Labeling

The database has four classes, two for diseases such as albinism and fungus rust; and
two for defects such as over-ripeness and peduncle. During the industrial-quality process,
a human expert manually tagged each class for each tray of red raspberries, and an image
was taken simultaneously. This process is crucial because we have the human expert’s
annotations that are the data’s ground truth to permit a better performance in the training
and testing stages during the classification and detection phases. The importance of these
labeled images is that instead of processing the whole image, the detection algorithm
focuses on specific Regions of Interest (RoI): diseases, or defects. For this purpose, for
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each tray image of red raspberries, the detection algorithm will seek RoIs using the results
of previously processed bounding boxes (frames). Note that these bounding boxes were
validated with the annotations of the human expert of the industry, see Figure 4. Then, for
each tray image of red raspberries, a bounding box was fitted to each raspberry disease or
defect class as follows, albinism 786 labels, fungus rust 164 labels, over-ripeness 115 labels,
and peduncle 244 labels.

Figure 4. Raspberry images labeled example. Due to the problem to resolve being to detect red
raspberry quality, the goal is to precisely locate each raspberry in a tray image using a bounding box
and label it with the relevant class, disease, or defect. Note that these bounding boxes vary greatly in
size and can be located in any region of a tray image. Therefore, the first task is to generate a large set
of ground truth bounding boxes to design a correct classifier to detect raspberry quality.

3.3. Raspberries-LITRP Database Structure

The Raspberries-LITRP database contains several folders with different images, such
as raw original images of the raspberry trays, and the labeled images with the annotated
diseases and defects previously preprocessed using bounding boxes through the MATLAB
Image Labeler app, see Figure 4. Additionally, the MATLAB code is available to apply three
approaches such as descriptive statistics, statistical modeling, and convolutional neural
networks. This database is available in the repository from the LITRP laboratory within the
Universidad Católica del Maule. To request a copy of the database, the researcher must
fill out and sign the License Agreement Form, and then send it by email to the Principal
Researcher. After receiving the email including the signed agreement document, a link will
be sent to download the database.

The contents of the database are summarized below:
RGB images package

e A folder named OriginalTray with 286 raw original images of the raspberry trays, each
one with a resolution of 3948× 2748 pixels.

e A folder named ProcessedTray with 1100 images of each raspberry tray splitting in four.
Each image was split into four equal sections and resizing each of these with a resolution
of 680× 480 pixels. This process was carried out with the aim of facilitating memory
management during the training stage; please note that the quality of the image is
maintained.

g A folder named AlbinismLabel with the next content:

e A folder named images with 786 albinism labels.
> A .mat file named AlbinismgTruth with the ground-truth information about the al-

binism disease class.
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> A .mat file named imageLabelingSession from the albinism session created by the
MATLAB Image Labeler app.

g A folder named FungusRustLabel with the next content:

e A folder named images with 164 fungus rust labels.
> A .mat file named FungusRustgTruth with the ground-truth information about the

fungus rust disease class.
> A .mat file named imageLabelingSession from the fungus rust session created by the

MATLAB Image Labeler app.

g A folder named OverripenessLabel with the next content:

e A folder named images with 115 over-ripeness labels.
> A .mat file named OverripenessgTruth with the ground-truth information about the

over-ripeness defect class.
> A .mat file named imageLabelingSession from the over-ripeness session created by the

MATLAB Image Labeler app.

g A folder named PenducleLabel with the next content:

e A folder named images with 244 peduncle labels.
> A .mat file named PenduclegTruth with the ground-truth information about the pe-

duncle defect class.
> A .mat file named imageLabelingSession from the peduncle session created by the

MATLAB Image Labeler app.

MATLAB code package

e A folder name code, with the following MATLAB scripts:

> main: This script is the main file that call all the subroutines: (a) load all ground-truth
raspberry data, (b) split the data in into an 90% for training data and a 10% for testing
data, and (c) call the classification experimental methods using statistical analysis
and CNNs.

> statisticalAnalysis: to extract the features in a table for both training and testing stages
using descriptive statistics and statistical modeling.

> cnnDetector: to estimate the raspberry quality in both training and testing stages,
using CNNs approaches.

e A folder name mats, with the following .mat files:

> Tables for descriptive statistical testing and training stages.
> Tables for statistical modeling for testing and training stages.

e A folder named papers with our works on the subject in .pdf format.

> Disease and Defect Detection System for Raspberries Based on Convolutional Neural
Network [2].

> A Review of Convolutional Neural Network Applied to Fruit Image Processing [21].
> Raspberries-LITRP Database: RGB images database for the industrial applications of

red raspberries automatic quality estimation [our present work].

4. How to Experiment with the Database

In this section, we presented three well-known experimentation methodologies.
The first method in Section 4.1 uses descriptive statistics measurements such as the variance,
the standard deviation, the mean, and the median. In the second method, in Section 4.2,
a statistical model was designed across the generalized extreme value distribution in
Section 4.2. Please note that these two methods are designed to extract manual features
from the data in Section 4.3, thus the chi-squared test was used to estimate the more
significant features in Section 4.4. Finally, these features are used as inputs in a bilayer
neural network in Section 4.5 that is used as a classifier to detect the fruit quality. The last
method uses a CNN approach described in Section 4.6 of our previous work [2]. Finally, in
Section 4.7 the performance metrics are introduced.
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4.1. Descriptive Statistics

A preliminary analysis based on descriptive statistics is important because it gives
the possibility to characterize the data based on its statistical properties. In other words,
it allows us to obtain an idea of what the data are like. These properties can be summarized
in four measures:

1. Frequency distribution: It can be used to estimate how often something occurs, such as
count, percentage, or frequency.

2. Central tendency: It locates the distribution by various points, such as the mean, median,
or mode.

3. Variation or dispersion: It shows how the data are dispersed or spread, typically in
relation to one of the measures from the central tendency; such as range, mean deviation,
variance, or standard deviation.

4. Location: It is standardized scores that describe how these scores fall in relation to one
another, such as percentile ranks and quartile ranks.

4.2. Statistical Modeling

A statistical model is a probability distribution constructed to allow inferences to be
drawn or decisions made from data. A probability distribution is a mathematical function
that gives the probabilities of the occurrence of different possible outcomes to understand
a specific process that explains or predicts future results. Typically, in many statistical
applications, the interest in the process under study focuses on estimating some charac-
teristics of the central tendency of the population, such as the mean, median, and mode.
However, in some other application areas, the interest is in estimating the maximum or
the minimum values, when the data have extreme conditions or singular values more
than regular or mean values. The generalized extreme value distribution [22] is a flexible
distribution that can be used for this purpose. Please note that generalized order statis-
tics permit the unification of several models in one, via a distributional approach with
unknown parameters.

Generalized Extreme Value Distribution

The generalized extreme value is a family that combines three different class types of
distributions according to their tails, that correspond to the limiting distribution of block
maxima. The types are:

• Type I (Gumbel domain): Distributions whose tails decrease exponentially.
• Type II (Fréchet domain): Distributions whose tails decrease as a polynomial.
• Type III (Weibull domain): Distributions whose tails are finite.

The generalized extreme value distribution has three parameters, called scale (σ > 0),
shape (−∞ ≤ κ ≤ ∞), and location (−∞ ≤ µ ≤ ∞), and its probability density function
(PDF) is given by

f (x, µ, σ, κ) =
1
σ

t(x)κ+1 exp−t(x) (1)

where

t(x) =

{
(1 + κ( x−µ

σ ))−1/κ , if κ 6= 0

exp
x−µ

σ , if κ = 0
(2)

κ determines the domain of the PDF as follows:

x ∈
[

µ− σ

κ
,+∞

)
, when κ > 0, type II (3)

x ∈ (−∞,+∞), when κ = 0, type I

x ∈
(
−∞,

µ− σ

κ

]
, when κ < 0, type III
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The parameters µ and σ can be calculated using the maximum likelihood estimators

µ̂ = −σ̂ log

(
1
n

n

∑
i=1

exp
Xi
σ̂

)
(4)

σ̂ = X̄− ∑n
i=1 Xi exp−

Xi
σ̂

∑n
i=1 exp−

Xi
σ̂

(5)

The cumulative density function (CDF) for x ∈ (2) and (3), is given by

f (x, µ, σ, κ) = exp−t(x) (6)

The generalized extreme value distribution has the following advantages: (1) It can be
adapted to the types of non-homogeneous patterns of extreme value variation observed
in the dataset. (2) It is easy to incorporate all relevant information into an inference,
and (3) it is beneficial to quantify uncertainties in estimation. Second, this distribution
has the following disadvantages: (1) the model is developed using asymptotic arguments,
which implies that necessary to take care is needed in treating them as exact results for
finite samples. (2) The model is derived under an idealized circumstance, which may be
reasonable, not exact, or only for a process under study. (3) The model may lead to wastage
of information when implemented in practice because in the worst case, it can store only
the maximum observed value over a specified period [23].

4.3. Feature Construction

The feature construction process is crucial for the design of a model and, consequently,
the success of a machine-learning application. A model may use some or all of the estimated
features to learn from the data. A ranking test, such as the Chi-square, can help make that
decision, with the aim that the features may interact with each other to improve the model
target. Please note that in a classification scheme, features may be differently correlated
depending on the different classes. For example, for disease or defect classes, a model
that uses descriptive statistics might use various features such as variance (σ2), standard
deviation (σ), mean (µ), and median (x̄). On the other hand, a statistical model that uses the
generalized extreme value can have characteristics according to its parameters, such as scale
(σ), shape (κ), and location (µ). The features are also called attributes, predictor variables,
explanatory variables, or independent variables [24]; and have their corresponding domain.
Observe that Equation (7) shows the predictors for the descriptive statistical domain, and
Equation (8) shows the predictors for its statistical model domain.

xDS = [σ2, σ, µ, x̄] (7)

xSM = [σ, κ, µ] (8)

4.4. Feature Ranking

An important defining characteristic of a learning system is its use of features or rules
as a fundamental building block of modeling [25]. Please note that the features or rules
are defined from statistical parameters calculated from the data. Basically, a feature or rule
defines a condition or a specific state to decide a class or take an action. The features can be
used to generalize relationships between characteristics in the data and the target class to
be classified or detected. Therefore, a feature ranking is interesting for discovering the most
useful parameters and to design strategies to solve the model. The final model solution
is a collaborative and competitive ensemble of classifiers or detectors, which captures
generalized relationships between specific feature values in each condition designed and
specific outcomes in the action or class. For this purpose, the Chi-square test can be used.
The goal of this test is to examine whether each predictor variable is independent of a
response variable using an individual chi-square test, and then rank the features according
to their level of importance features according to their level of significance.
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Chi-Square Test

The chi-square test is defined as

χ2 = ∑
i

[
(ni − Ei)

2

Ei

]
(9)

where ni represents the number of trials resulting in outcome i and Ei represents the number
of trials we would expect to result in outcome i when the hypothesized probabilities
represent the actual probabilities assigned to each outcome.

It is important to note that if a boxplot or normal probability plot from data shows a
substantial skewness or a substantial number of outliers, the chi-square-based inference
procedures should not be applied. We refer the reader to [26,27] for a comprehensive
treatment of the mathematical properties of the chi-square test.

4.5. Bilayer Neural Network

The ANN aims to associate a given input feature that represents the pattern to one
of the classes of interest. The simplest ANN can be represented by the model given in
Figure 5. The inputs X = x1, x2, · · · , xn are signals, samples, or features of the data. They
are usually normalized to improve the learning algorithm. The weights W = w1, w2, · · · , wn
are values used to weigh each one of the inputs. Their objective is the quantification of
their relevance within neuron functionality. The bias (b) is a variable used to specify an
appropriate threshold, in other words, it is the way to generate a trigger value toward the
neuron output by the linear aggregator. The linear aggregator (Σ) assembles all input signals
weighted by the weights to produce an activation of the neuron. The activate function ( f )
limits the neuron output within a reasonable range of values given by the difference (δ)
between the linear aggregator and the activation threshold. An excitatory potential for
a positive δ value or inhibitory otherwise. The activation functions can be classified into
two groups: (1) partially differentiable functions such as step function, signal function,
and a symmetric ramp function. (2) fully differentiable functions such as logistic function,
hyperbolic tangent function, and Gaussian function. The outputs Y = y1, y2, · · · , yn are the
final values produced by the neuron for a particular set of input signals. The model for one
output y can be expressed as

y = f (δ) (10)

δ =
n

∑
i=1

wi.xi − b (11)

A Rectified Linear Unit (ReLU) layer can be used to perform the threshold operation
on each element of the input, where any value less than zero is set to zero as follows

f (x) =
{

x, x ≥ 0
0, x < 0

(12)

A bilayered neural network is a network with two hidden layers, see Figure 6.
Each layer extracts patterns associated with the process of interest, where their learning
algorithms architectures are based on the backpropagation algorithm and the competitive
rules. During this process is when the network extracts discriminant characteristics from
the input layer to make the feature map. Moreover, in the training stage, the forward (when
the input is inserted into the network) and backward (when the weights are tuned) stages
let the weights and thresholds of the neurons be adjusted automatically in each iteration,
to reduce the final error between the network responses and the desired responses. For
example, for a binary detection pattern, the first output may be for a healthy pattern, and
the second output for a defective pattern.
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x2 = σ w2 Σ f

Activate
function

y
Output

x1 = κ w1

x3 = µ w3

Weights

Bias
b

Inputs

Figure 5. Structure of a classical artificial neural network. The model shows how each neuron in a
network can be implemented. This example is for data from three input features.

x0

x1

...

xn

H1
1

H1
1

...

H1
m

. . .

. . .

. . . H`
1

H`
2

...

H`
m

y1

y2

...

yc

input layer
1st hidden layer `th hidden layer

output layer

Figure 6. A Topological configuration of a bilayer neural network used only two hidden layers ` = 2.
The input is propagated layer-by-layer toward the output layer, note that the outputs of the neurons
from the first neural layer are the inputs of the neurons from the second hidden neural layer. This
example is a multilayer-perceptron for xn input features data, `th layers, and yc outputs.

To use the bilayered neural network as a quality detector, the observations are clas-
sifiers according to their scores using the softmax activation function. These scores,
which accompany the end fully connected layer in the network, are estimated through the
decision rule or posterior probability, that an observation x is of class k

P̂(k|x) = P(x|k)P(k)

∑K
j=1 P(x|j)P(j)

=
exp(ak(x))

∑K
j=1 exp(aj(x))

(13)

where P(x|k)P(k) is the conditional probability of x given the class k, K is the number of
classes in the response variable, P(k) is the prior probability for class k, it tells us how likely
each of the classes is a prior, or before the data x is observed, and ak(x) is the k output
from the end fully connected layer for the observation x. We refer the reader to [28,29] for a
comprehensive treatment of the mathematical properties of the neural networks.

4.6. Convolutional Neural Network

The convolutional neural network also called ConvNet or simply CCN is a special
kind of multilayer ANN whose original architecture, called LeNet-5, was first proposed
by LeCun et al. in [30]. CNNs were inspired by the behavior of how neurons in the visual
brain cortex fired each other (activation function) to respond to different input stimuli such
as an image (features). Therefore, a certain group of neurons comes together focusing on
particular properties to carry out a specific task. This is the idea behind the CCNs and
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their direct relation with the CVS. The underlying idea of CVS is to describe the world that
we see in one or more images, and reconstruct their properties, such as shape, lighting,
or color distributions, in the most similar way possible to how our brain would do it,
in our case, mimic the process of the quality fruit recognition analysis that carries out by
the industry human expert. The idea is to detect natural objects in heterogeneous samples
with high variability between their classes, such as the quality and diseases of raspberries.
To achieve this, different artificial neural network (ANN) architectures are widely used.
ANNs are computational models inspired by the behavior nervous system of living beings.
This implies that they can be interconnected with other neurons, with the objective of
learning and saving information to make decisions or adapt to new data. Similar to how
biological neurons work it. Convolutional neural networks (CNN) are specialized ANNs
designed to process different types of data using convolution mathematical operation. They
have a known grid-like topology that can be used in time series data (1-D grid) or image
data (2-D grid), that take samples at regular time intervals, or across pixels, respectively.
For a recent comprehensive review of CNNs applied to fruit image processing, see [21,31–33].

As an illustration, consider Figure 7. The input image enters into the CNN, which
is composed of stacks of convolutional and pooling layer pairs. For the feature map
extraction, the convolution layers convert the image using the convolution operation,
similar to applying several digital filters. On the other hand, the pooling layer combines the
neighboring pixels into a single pixel. Therefore, CNN extracts its own parameters directly
from the image as a set of arrays called feature maps, these maps are composed of four main
components: a filter bank called kernels, a convolution layer, a non-linearity activation
function, and a pooling or subsampling layer. Note that this process is a dimensional
reduction of the image. During the training stage, the weights of both layers are estimated.
The feature map extraction is computed, and the input is classified based on this feature
map. We refer the reader to [2,31,34] for a comprehensive explanation of CNNs. Regions
with convolutional neural networks (R-CNN) are used to find and classify diseases and
defects in raspberries, called objects, in a raspberry tray image in the industry. The process
combines rectangular region proposals (images labeled) with convolutional neural network
features in a two-stage detection algorithm. The first stage identifies a subset of regions in
an image that might contain a disease or defect (object) to be classified in the second stage,
see Figure 7. Transfer learning from a network trained from a large collection of images is
used for this purpose. In this way, the Faster R-CNN detector only processes those regions
that are likely to contain the disease or defect (object). This reduces the high computational
cost, and it permits to obtain of model parameters from the labeled data. The network
maps the input data to a specific class label. Thus, the pretrained network has already
learned a rich set of raspberry fruit image features that are applicable to a wide range of
new raspberry tray images. A starting point to solve a new classification or detection of
fruit quality. This is why the training stage is crucial to correctly detect the class labels for
new instances, which is typically done during the testing stage. Exist different architectures
for this proposal such as LeNet, AlexNet, ZFNet, VGGNet, GoogLeNet, ResNet, Inception,
Xception, SqueezeNet, and SuffleNet, and the list continues to evolve.
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Figure 7. Object detection using the Faster R-CNN process. The ROI pool consists of the features and
the proposal regions to be classified in the next stage.

4.7. Performance Metrics

Let a binary classifier mapping in ĉ = X → C for the classes C = {C1, C2}, where
C1 = P is the positive class, and C2 = N is the negative class, and X is the instance space,
a set of all possibles instances. For a test dataset Tt we have the following definitions:

Number of Positives

Pos = ∑
x∈Tt

I[c(x) = P ] (14)

Number of Negatives

Neg = ∑
x∈Tt

I[c(x) = N ] (15)

Number of True Positives

TP = ∑
x∈Tt

I[ĉ(x) = c(x) = P ] (16)

Number of False Positives

FP = ∑
x∈Tt

I[ĉ(x) = P , c(x) = N ] (17)

Number of True Negatives

TN = ∑
x∈Tt

I[ĉ(x) = c(x) = N ] (18)
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Number of False Negatives

FN = ∑
x∈Tt

I[ĉ(x) = N , c(x) = P ] (19)

Recall or True Positive Rate or Sensitivity or Hit Rate

Is the proportion of positives correctly classified, or the estimation of P(ĉ(x) =
P|c(x) = P), it is defined as

TPR =
∑x∈Tt I[ĉ(x) = c(x) = P ]

∑x∈Tt I[c(x) = P ] =
TP
Pos

=
TP

TP + FN
(20)

False Positive Rate or False Alarm Rate

Is the number of misclassified positive or false negative, or the estimation of P(ĉ(x) =
P|c(x) = N ), it is defined as

FPR =
∑x∈Tt I[ĉ(x) = P , c(x) = N ]

∑x∈Tt I[c(x) = N ]
=

FP
Neg

=
FP

FP + TN
(21)

Accuracy

Is the probability of an arbitrary class being classified correctly, or the estimation of
P(ĉ(x) = c(x)], it is defined as

ACC =
1
|Tt| ∑

x∈Tt

I[ĉ(x) = c(x)] =
TP + TN
Pos + Neg

=
TP + TN

TP + TN + FP + FN
(22)

4.8. Methodology Summary

Let X ∈ RM×N be he matrix corresponding to an image of the raspberry tray to
be analyzed, and A , F , O ,and P the sets of preprocessing images labeled with two dis-
eases and two defects: albinism, fungal rust, over-ripeness, and peduncle, respectively.
Figures 8–10 show the different methodologies proposed in this paper:

X

Labeled image

A , F , O , P

Statistical
predictors

A SD = [σ2, σ, µ, x̄]
ANN classifier

Healthy/Defective

F SD = [σ2, σ, µ, x̄]

ANN classifier
Healthy/Defective

OSD = [σ2, σ, µ, x̄]

ANN classifier
Healthy/Defective

PSD = [σ2, σ, µ, x̄]

ANN classifier
Healthy/Defective

C1, C2

Figure 8. The methodology used in descriptive statistics for each disease and defect. Statistical
predictors such as variance (σ2), standard deviation (σ), mean (µ), and median (x̂) are the inputs
to be classified using a neural network. The Output is the class raspberry healthy (C1) or the class
raspberry defective (C2).
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X

Labeled image

A , F , O , P

Generalized
extreme value

predictors

A SM = [σ, κ, µ]
ANN classifier

Healthy/Defective

F SM = [σ, κ, µ]

ANN classifier
Healthy/Defective

OSM = [σ, κ, µ]

ANN classifier
Healthy/Defective

PSM = [σ, κ, µ]

ANN classifier
Healthy/Defective

C1, C2

Figure 9. The methodology used in statistical modeling for each disease and defect. Generalized
extreme value parameters are the statistical predictors such as scale (σ), shape (κ), and location (µ).
They are the inputs to be classified using a neural network. The output is the class raspberry healthy
(C1) or the class raspberry defective (C2).

X

Labeled image

A , F , O , P

ROI pool
predictors

A CNN layers CNN classifier
Healthy/Defective

F CNN layers

CNN classifier
Healthy/Defective

OCNN layers

Faster R-CNN
classifier

Healthy/Defective

PCNN layers

Faster R-CNN
classifier

Healthy/Defective

C1, C2

Figure 10. The methodology used in the Faster R-CNN modeling for each disease and defect. The
Faster R-CNN approach extracts its own parameters directly from the image as a set of arrays called
feature maps, these maps are composed of four main components: a filter bank called kernels, a
convolution layer, a non-linearity activation function, and a pooling or subsampling layer. Second, the
proposed regions of the network are estimated. The feature maps and the region proposal together
are the ROI pool predictors, which are used to classify and detect fruit quality for each layer. The
Output is the class raspberry healthy (C1) or the class raspberry defective (C2).

5. Results and Discussion

In this work, we presented a new database of red raspberries in a tray using RGB
images to detect their quality in industrial applications. This database was evaluated using
three well-known methods in order to estimate its classification performance, with promis-
ing results that can be implemented in real-time systems. Two statistical-based learning
methods are coupled with a classical ANN, and the other one uses a Faster R-CNN method.
As a first instance, the classification is based on a binary learning system between a healthy
raspberry vs. a raspberry with a disease or defect. Please note that the defective raspberries
were labeled previously using a bounding box as follows: 786 albinism disease labels,
164 fungus rust disease labels, 115 over-ripeness defect labels, and 244 peduncle defect
labels. This section shows the results and discussion when applying the experimentation
from Section 4 using 90% for the training set, and 10% for testing.
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For the statistical-based learning methods, the bounds found are very interesting.
For descriptive statistics, the bounds based on the median and variance allow us to differen-
tiate between the diseases studied, while the thresholds based on the defects are not very
clear. This may be because their bound values share part of the healthy raspberry values of
the fruit. Similar results occur with statistical modeling using the generalized extreme value
distribution. In general, all the parameters based on their bounds for a binary learning
system allow differentiating between a healthy raspberry vs. a raspberry with disease or
defect. Except for the shape (κ) parameter for the peduncle, and the scale (σ) parameter for
the two defects. These results can be corroborated in the predictor ranking from Section 5.3.
It is important to emphasize that the feature ranking test can vary between the different
classes. This suggests that in the case of using the two most representative features as
predictors, they must be different between classes. These results are in tune with the results
of our previous work [2]. In this work, we found that different network architectures can
be used to detect different raspberry diseases or defects. Another topic of interest in using
statistical methods is the importance of bounds for the features. Because identifying the
learning boundaries helps to ensure the success of model learning, by having a coverage
limit, then it is possible to guarantee both the proper initialization of the population and
the maintenance of the necessary learning time to yield the necessary outcomes. A big
plus of CNNs is that they learn directly from data, eliminating the need for manual feature
extraction, with highly accurate results during the classification and detection stages.

5.1. Descriptive Statistics

In this section, descriptive statistical measures were used as predictors, such as the
variance, the standard deviation, the mean, and the median, see Equation (7). Table 2 shows
that diseases and defects can be easily discriminated against according to their average
threshold value and bounds. Remember that the classification is based on a binary learning
system between a healthy raspberry vs. a defective raspberry, as shown in Figure 8.

Table 2. Analysis using descriptive statistics. The table shows the average thresholds and the learning
bounds of each class.

Albinism Fungus-Rust Over-
Ripeness Peduncle Healthy

Variances
28,860.80

[70.92,
97,348.67]

31,056.00
[575.00,

86,887.3]

19,936.33
[1300.33,

55,216.00]

30,292.76
[167.58,

86,548.67]

21,707.87
[4239.33,

44,418.97]

stds 163.01 [8.42,
312.01]

166.53 [23.98,
294.77]

136.39 [36.06,
234.98]

164.37 [12.95,
294.19]

145.71 [65.11,
210.76]

Means 156.82 [39.00,
278.25]

157.53 [60.25,
274.50]

158.08 [86.00,
255.00]

160.99 [32.75,
276.25]

154.91 [86.00,
230.88]

Medians 80.64 [28.50,
242.50]

96.38 [27.00,
233.00]

91.36 [59.00,
203.00]

99.37 [28.50,
241.00]

72.04 [56.00,
169.00]

Table 2 shows that the average threshold for a healthy raspberry is lower for all
predictors, except for the standard deviation for the over-ripeness defect. While for the
bounds, comparisons can be made even though there are some overlaps. Let us take the
median predictor as an example. The median has an average threshold value of 72.04 for a
healthy raspberry, which is lower than the rest of the average threshold values: 80.64 for
albinism disease, 96.38 for fungus rust disease, 91.36 for over-ripeness defect, and 99.37 for
peduncle defect. This suggests that each disease and each defect of a raspberry concerning
a healthy raspberry can be discriminated by an average threshold. Similarly, it happens
with the bounds. A healthy raspberry is between the values of [56, 169]. Then the lower
bound has a value of 56 and the upper bound has a value of 169. By comparing the lower
bounds, we can observe that the 56 value is different for all predictors. A 28.50 value for
albinism disease, a 27 value for fungus rust disease, a 59 value for over-ripeness defect, and
a 28.5 value for peduncle defect. While for the upper bounds, we can observe that the value
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of 169 is lower for all descriptors. A 242.50 value for albinism disease, a 233 value for fungus
rust disease, a 203 value for over-ripeness defect, and a 241 value for peduncle defect. There
is some overlap. In the same way, it happens with the other predictors. Applying this
analysis of all the predictors together, we suggest that these differences between the lower
and upper bounds can achieve good performance on the ML approach. Note that these
predictors are the input for the neural network to classify and detect diseases and defects
in raspberries, see Figure 8. Figure 11 shows the representation of the distribution of
numerical data for each class studied. Observe the large similarity that all the figures have.
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Figure 11. Histograms and generalized extreme value fitting from the raspberry diseases and defects
used in this database. (a) Raspberries with albinism disease. (b) Raspberries with the fungus
rust disease. (c) Raspberries with the over-ripeness defect. (d) Raspberries with peduncle defect.
(e) Healthy raspberry.

5.2. Statistical Modeling

This section shows the results to when applying Equations (1)–(3) related to the
generalized extreme value distribution. Figure 11 shows the different histograms for each
class. Please note how the distribution across the frequency of the numerical data is very
similar and difficult to differentiate. One solution to this is to use statistical modeling
through some probability distribution. Therefore, from the raspberry trays’ images, the
generalized extreme value distribution was estimated for each class, see the red line in
Figure 11. Table 3 shows the three parameters resulting from applying this distribution.
For a binary learning system such as healthy raspberry vs. defective raspberry, see Figure 9;
all average thresholds can be used for this discrimination, despite the fact that they are
very close to each other. With respect to the bounds, the location parameter (µ) and the
shape (κ) parameter can be interesting predictors to detect and discriminate the different,
see Equation (8). While the scale (σ) parameter values are very close between them and
thus difficult to differentiate it.

Let us take the location parameter predictor (µ) as an example. µ has an average
threshold value of 72.69 for a healthy raspberry, which is different with respect to the rest of
the average threshold values, 58.22 for albinism disease, 56.25 for fungus rust disease, 77.16
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for over-ripeness defect, and 64.32 for peduncle defect. This suggests that each disease and
each defect of a raspberry with respect to a healthy raspberry can be discriminated by an
average threshold. Similarly, it happens with the bounds. A healthy raspberry is between
the values [71.02, 74.36], which is different too, with respect to the rest bounds values,
[57.07, 59.37] for albinism disease, [52.77, 59.73] for fungus rust disease, [74.47, 79.85] for
over-ripeness defect and [61.31, 67.32] for peduncle defect. Note that all values of the lower
and upper bounds are different from each other, except for a small overlap between the
upper bounds of the diseases. Similarly, there is an overlap between the other predictors.
Applying this analysis of all the predictors together, we suggest that these differences
between the lower and upper bounds can achieve good performance on the ML approach.
Please note that these predictors are the input for the neural network to classify and detect
diseases and defects in raspberries, as shown in Figure 9.

Table 3. Analysis using the generalized extreme value distribution. The table shows the average
thresholds and the learning bounds of each class.

Albinism Fungus-Rust Over-
Ripeness Peduncle Healthy

Shape (κ) 0.73
[0.71, 0.75]

0.76
[0.70, 0.82]

0.69
[0.65, 0.73]

0.52
[0.49, 0.55]

0.53
[0.51, 0.55]

Scale (σ) 54.09
[52.77, 55.44]

52.94
[48.97, 57.24]

59.09
[56.45, 61.84]

57.49
[54.20, 60.99]

59.26
[57.61, 60.96]

Location (µ) 58.22
[57.07, 59.37]

56.25
[52.77, 59.73]

77.16
[74.47, 79.85]

64.32
[61.31, 67.32]

72.69
[71.02, 74.36]

5.3. Feature ranking test

Boxplots were estimated from data, with the aim of verifying both the asymmetric
and the outlier values. Figure 12 shows that the boxplots from the data are very symmetric.
The outliers are not representing a problem because they are an outcome of the variability
from data acquisition as seen in the variance of Table 2. Therefore, the chi-square test used
to determine feature ranking can be applied using Equation (9).

Albinism Fungus-Rust Over-ripeness Penducle Healthy

0

100

200

300

400

500

600

700

Figure 12. Boxplots of each class show a generalized symmetry, and no significant outliers.

Figure 13 shows the feature ranking tests, using descriptive statistics with its predictors
such as variance, standard deviation, mean, and median; and Figure 14 shows the feature
ranking tests using statistical modeling, across the generalized extreme value distribution,
respectively, across its predictors such as shape, scale, and location. Please observe these
interesting results that can be corroborated with Tables 2 and 3. Figure 13 shows that the
median has a significant rank for all the diseases and defects studied and therefore can
be used as a strong feature, while Figure 14 shows that the µ parameter, related to the
location, and the κ parameter, related to the shape, are strong features. Please note the
interesting central tendency and location in both figures. These features are determinants
for the learning stages of classification and detection.
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Figure 13. Feature ranking from the raspberries diseases and defects using descriptive statistics.
(a) Albinism. (b) Fungus-Rust. (c) Over-ripeness. (d) Peduncle.
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Figure 14. Feature ranking from the raspberries diseases and defects using statistical modeling.
(a) Albinism. (b) Fungus-Rust. (c) Over-ripeness. (d) Peduncle.

5.4. Classification Performance

In this section, classification performance results using the three well-known metho-
dologies are exposed, see Figures 8–10. Table 4 shows the classification performance metric
under 100 iterations of these three methodologies studied, namely recall, false positive rate,
and accuracy through Equations (20)–(22), respectively. Please note that this classification
performance metric is directly related to the Receiver operating characteristic (ROC) curve,
which is an output performance of the learning system. Remember that the database has
786 albinism disease labels, 164 fungus rust disease labels, 115 over-ripeness defect labels,
and 244 peduncle defect labels.
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Table 4. True positive rate or recall (TPR), false positive rate (FPS), and accuracy (ACC) classification
performance metric for the three methodologies used, such as a descriptive statistical coupled with
an ANN (DS+ANN), statistical modeling coupled with an ANN (SM+ANN), and Faster R-CNN.

Albinism Fungus-Rust Over-Ripeness Peduncle

TPR FPR ACC TPR FPR ACC TPR FPR ACC TPR FPR ACC

DS +
ANN 0.03 0.25 0.90 0.06 0.75 0.87 0.26 0.44 0.61 0.10 0.75 0.86

SM +
ANN 0.01 0.81 0.97 0.12 0.81 0.86 0.26 0.56 0.67 0.06 0.75 0.88

Faster
R-CNN ≈0 ≈0 0.98 0.02 0.10 0.92 0.05 0.05 0.75 0.00 0.00 1.00

These results are very interesting. Please note that all the classifiers have difficulty
in detecting the over-ripeness defect, this can be due to two reasons. The first is because
the color of the raspberry is preserved, but darker, and the second is the over-ripeness is
the defect with the least number of labels. Faster R-CNN is the best methodology with
respect to the statistical-based learning methods coupled with an ANN. However, they also
perform very well for all the defective raspberries studied. Faster R-CNN is very sensitive
(TPR) with high fall-out response (FPR), which makes it have excellent detection accuracy.
Second, the statistical-based learning methods are very sensitive (TPR) too, but with low
fall-out response (FPR), nevertheless, they have good accuracy. This suggests that they
may need a regularization parameter to help tune the FPR. Faster R-CNN detects fungus
rust disease fairly well, even though the number of tags is low, while albinism disease
and peduncle defect achieved a high detection performance, 98% and 100%, respectively.
This is consistent with the results of our previous work [2]. The performance detection
using the statistical-based models coupled with an ANN are very similar, they are all
around 80%, except for the over-ripeness defect. For an illustration, Table 5 shows some
recent works on fruit-based quality detection. CNN-based methods are currently at the
forefront of developments to detect diseases or defects in different fruit. However, there
are still works with other types of techniques, without using neural networks, for example,
in [35] the classification was estimated directly using the segmentation technique in olives
yielding a reasonable detection rate. Note that the detection accuracy rate is high in all
studies, suggesting that there is a concern to improve the quality detection of diverse fruit
in agribusiness.

Because Table 5 shows different studies, with different techniques, for different fruit,
with different amounts of images in their datasets, a comparative analysis should be made
regarding fruit-based quality detection. Remarkable that CNN-based methods are cur-
rently at the forefront of developments in fruit quality detection. These methods generally
outperform conventional feature-based extraction methods, but the computational cost
can be sufficiently high. Therefore, feature-based extraction methods must not be de-
tracted from them. They continue to prove themselves invaluable in several applications.
Furthermore, the computational cost is usually pretty low. The performance detection
rate of this work regarding those exposed in Table 5 shows excellent results in the de-
tection of the quality of the fruit, both for the statistical-based learning methods and for
the Faster R-CNN. These results suggest that we are accomplishing the parameters and
standards of the industry to discriminate between a healthy raspberry and a raspberry with
a disease or defect. Finally, this work showed that fruit-based quality detection works are
highly diverse.
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Table 5. Summary of some works related to studies on fruit-based quality detection. Note that CNNs
predominate in DL approaches.

Fruits Detection
Method

Study
Objective Image Dataset

Performance
Detection

Rate
Ref.

Raspberry Faster R-CNN Diseases
Defects 286 91.20% [This work]

Raspberry
Statistical

modeling +
ANN

Diseases
Defects 286 84.50% [This work]

Raspberry
Descriptive
statistical +

ANN

Diseases
Defects 286 81.00% [This work]

Kiwi YOLOv4 Fruit in
orchard 6890 91.60% Gao et al. [36]

Citrus YOLOv5 Yield 1800 93.32% Huang
et al. [37]

Cucumber YOLOv5 Identification 438 85.19% Wang
et al. [38]

Citrus CNN +
ResNet50

Disease and
ripeness 1896 99.50% Momeny

et al. [39]

Green grape
and mangoes

CNN +
ResNet50

Co-occurrence
pattern and

deep features
1700 97.2% Nemade

et al. [40]

Pineapple YOLOv3
Localization in

natural
environments

1050 97.55% Liu et al. [41]

Strawberry YOLOv3 Maturity
stages 3875 90.00% Zhou et al. [42]

Apple YOLOv3 Yield 3800 84.00% Janowski
et al. [43]

Coconut Faster-R-CNN Maturity
stages 140 89.40% Parvathi

et al. [44]

Apple Mask R-CNN Varieties 19528 88.00% Chu et al. [45]

Multi RNN Post-harvest 400 98.93% Dhiman1
et al. [46]

Olive Segmentation +
Decision trees Defects 80 81.22% Cano-Marchal

et al. [35]

Strawberry FCNN Instance
segmentation 3100 93.40% Perez-Borrero

et al. [47]

Grapes Mask R-CNN Segmentation 300 91.00% Santos et al. [3]

Apple Faster R-CNN Augmentated
methods 800 87.00% Gao et al. [5]

Blueberry Mask R-CNN Yield 724 90.40% Ni et al. [48]

6. Conclusions

This work presented a new database of red raspberries in a tray using RGB ima-
ges to detect their quality in industrial applications, as shown in Table 1. The images
were acquired with a high-resolution camera in an ambient controlled space, with a
lighting system consisting of LED lights, which diffusely emit the illumination to avoid
light hits (white spots) and shadows (black areas) on the fruit, as well as halogen lights.
This allows excellent image characteristics to test image signal processing algorithms and
ML approaches without a preprocessing stage. This database contains two typical diseases
and two typical defects that can be in the recently harvested fresh fruit that enter the
industry’s selection and quality control process. This database was evaluated using three
well-known methods, as follows:
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The first two are related to feature extraction from statistical-based learning methods
coupled with a conventional ANN as a classifier and a detector. Please note that these
methods have not been used before as image classifiers for fruit quality detection. For
descriptive statistics, all predictors were used. However, the median and the variance
were the most representative predictors to discriminate between a healthy raspberry and
a raspberry with some disease or defect, as shown in Figure 13. The same occurs with
statistical modeling based on the generalized distribution of extreme values. All predictors
were used, but the shape and the location parameters were the most significant predictors,
as shown in Figure 14. Remember that these predictors are the input of the ANN whose
function is to classify the raspberry. The generalized extreme value distribution achieved an
84.50% detection rate on average, while the descriptive statistical method achieved an 81%
detection rate on average in the raspberry quality detection. The last method uses directly
Faster R-CNN as feature extraction, classifier, and detector, achieving a 91.2% detection
rate on average. These results are shown in the first three rows of Table 5. Please note that
they are within detection rate standards.

It is interesting to emphasize that the statistical-based learning methods are quite
simple, but nevertheless, they can be a potential ally in decision-making regarding raspberry
diseases and defects. These results show promising results, which can shed new light on
fruit quality standards’ methodology in the industry.

6.1. Advantages

The main advantages are that the database is easy to use, and the user can work with
or without feature extraction methods, as well as different architectures using CNNs. For
a new class, the database can be retrained, but only for that class. The pretrained CCNs
permit transfer learning, allowing a reduction of the number of images and time required
for training. The network is fine-tuned by making small adjustments to the weights, so
that the feature maps learned for the original training are slightly adjusted to support the
new class. Furthermore, the user can try different preprocessing techniques before using a
classification learning system. Finally, this methodology can be expanded to other fruit.

6.2. Limitations

The main limitation is related to the angle and rotation of the raspberry in a tray during
image capture. Remember that a small random sample is selected to define a complete
batch during the quality control process in the industry, see Figure 1. Although the expert
in quality control of the industry distributes the fruit in the tray in the most orderly way
possible, avoiding overlaps between them. It is too hard to be 100% sure with a single layer.
The trays cannot be shaken, and the fruit cannot be turned manually because it is a very
delicate fruit. This limitation must be resolved at some point.

The other limitation is related to the training time using CNNs. In the case of training
the entire database, this can be time-consuming due to the numerous parameters within
the layers. For example, the ResNet algorithm can take around two weeks to fully train
from scratch, while traditional feature extraction algorithms take a few seconds to a few
hours to train an algorithm.

6.3. Future Work

Perspectives for future works are to increase the database with new diseases and
defects classes. We also plan to improve classification and detection methods, identify
different diseases and defects in fruit and overcoming limitations, increase the performance
detection rate accuracy and reduce computation time. We will work together with industry
quality experts to improve data estimation, detailing similarities and errors to streamline
the process and improve fruit quality grading and detection accuracy. In addition, we
will incorporate image signal preprocessing stages such as image segmentation, perform a
multispectral analysis of red raspberries to estimate their best wavelength band of them.
Regularization parameter estimation for the statistical-based learning methods at the
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classification stage is necessary to improve detection. Finally, the methodology should be
expanded to other types of fruit in the industry.
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