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a b s t r a c t

Bandt and Pompe introduced Permutation Entropy as a complexity measure and has
been widely used in time series analysis and in many fields of nonlinear dynamics. In
theory these time series come from a process that generates continuous values, and if
equal values exists in a neighborhood, xt∗ = xt , t∗ ̸= t , they can be neglected with
no consequences because their probability of occurrence is insignificant. Since then, this
measure has been modified and extended, in particular in cases when the amount of
equal values in the time series is large due to the observational method, and cannot be
neglected. We test the new Data Driven Method of Imputation that cope with this type of
time series withoutmodifying the essence of the Bandt and Pompe Probability Distribution
Function and compare it with the Modified Permutation Entropy, a complexity measure
that assumes that equal values are not from artifacts of observations but they are typical of
the data generator process. The Data Driven Method of Imputation proves to outperform
the Modified Permutation Entropy.
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1. Introduction

In the seminal article of Bandt and Pompe [1], when introducing Permutation Entropy (PE) it is stated as a condition
for the estimation that the data of the time series is continuous, hence the probability of two equal values is equal to zero.
Despite equal values are common in periodic signals, due to the process of sampling and discretization these equal values
do not occur. In the rare event that ties exists, the suggestion is whether to ignore the patterns with ties, or to add a small
random perturbation. Unfortunately, that condition does not hold for many time series. Discrete time series with repeated
values may occur by two reasons. The first reason is that the time series comes from a discrete data generator process, for
example the Monthly Polio Counts in USA [2] or the Daily Asthma Presentations that are Poisson autoregressive processes
where the marginal probability distribution follows a Poisson member family [3]. The second reason is when the data of the
generator process is continuous but only a coarse version of the actual realization is observed as a consequence of lack of
precision of the data measuring device, for example in Heart Rate Variability or Arterial Pressure Variability time series [4].
This contribution deals with the changes necessary to analyze both kind of data, but emphasizes in the case when the
Bandt and Pompe hypothesis of continuous data holds despite the deficiencies in the observational process. Several papers
suggest modification in the estimation of Permutation Entropy to cope with repeated values. They either do this extending
the symbolic alphabet presented by Bandt and Pompe, [5] or giving new rules to sort data [6]. We test the new strategy,
presented in [7,8], the Data Driven Method of Imputation, to cope with this issue. This methodology uses the information of
the actual time series to deal with patterns with ties. It assumes that this patterns are actually coming from suitable versions
of the original patterns without ties and so they will contribute to the count of these patterns using an a priori probability
distribution derived for the time series at hand. It can be seen as a method of imputation of missing data.

All efforts to understand the statistical properties of PE are important since this complexitymeasurewaswidely applied in
Applied Science. Permutation Entropywas used inmany different applied science for exampleMechanics Engineering [9,10],
Epilepsy [11–13], Anesthesia [14], Cardiology [15,6,16], Finance [17], Climate Change [18]. We refer to [19,20] for a
comprehensive review of the Permutation Entropy application and its evolution through years.

The objective of this contribution is to compare the Data Driven Method of Imputation versus the Modified Permutation
Entropy. The paper reads as follows, Section 2 presents both strategies, Section 3 is devoted to the Numerical Simulation,
Section 4 reviews the performance of both strategies, and finally Section 5 is devoted to Conclusions.

2. Permutation entropy

The Shannon Informational Entropy [21] is defined as:

H = −
1
K

N∑
i=1

pi log(pi), (1)

where N is the number of possible states of the system, K is a constant and pi, i = {1 . . .N} is the probability of the system
being in the state i.

Now, let {Xt}t∈T be a realization of a data generator process in formof a real valued time series of length T , at first assuming
P(xt = xt∗ ) = 0 ∀t ̸= t∗ with t, t∗ ∈ T (i.e there is not equal values in the time series).

If the {Xt}t∈T attain infinitely many values, it is common to replace them by a symbol sequence {(πi)t}t∈T , i = {1, . . . ,N}

with finitely many symbols −N− , and calculate source entropy for the {(πi)}, i = {1, . . . ,N} [1].
Let Xm(t) = (xt , xt+1, . . . , xt+m−1) with 0 ≤ t ≤ T − m + 1 and m ≥ 2 be the embedded vectors of length m of the time

series {Xt}t∈T . Let Sm≥2 the symmetric group of orderm! form by all possible permutation of orderm, πi = (i1 i2 . . . im) ∈ Sm
(ij ̸= ik∀j ̸= k so every element i in πi is unique). We will call an element πi in Sm a symbol. Then Xm(t) can be mapped to
a symbol πi in Sm. This mapping should be defined in a way that preserves the desired relation between the elements xt in
Xm(t); and all Xm(t), t ∈ T that shares this pattern has to mapped to the same element of πi ∈ Sm.

For a given but otherwise arbitrary t , the m number of real values Xm(t) = (xt , xt+1, . . . , xt+m−1) can be rearranged in
increasing order respect to their amplitude. In order to do the mapping to πi = (i1 i2 . . . im) ∈ Sm, (i1 i2 . . . im) must comply
that

xt+i1−1 < xt+i2−1 < · · · < xt+im−1

thus, the time indexes are ordered according to their amplitude. The complete alphabet is all the possible permutations of
these chronological indexes. As an example: X3(1) = (4, 7, 9) and X3(2) = (7, 9, 10) represents the permutation π = 123
since xt+1 < xt+2 < xt+3. X3(3) = (9, 10, 6) and X3(4) = (6, 11, 3) correspond to the permutation π = 312 since
xt+3 < xt+1 < xt+2. This is a chronological index permutation mapping and one simply maps each value xt+i−1 in Xm(t)
ordering its time index i ∈ {1, 2, . . . ,m} according to the increasing amplitude (rank) of each xt+i−1 in Xm(t). In Fig. 1 an
illustrative drawing of this mapping for all alternatives in m = 3 is presented. It can be seen that the indexes of the time
axis are fixed in chronological order, and they are mapped onto the vertical (amplitude) axis. The resultant symbol can be
obtained reading the labels in the vertical axis from bottom to top (in the direction of the increasing amplitude). Thismethod
is used by [1,6,5] among others. A mapping from Xm(t) to πi ∈ Sm is made for ∀t ∈ T + m − 1 according to the strategy
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Fig. 1. All symbols for m = 3 are shown. This order based alphabet simply maps each value xt+i in Xm(t) ordering its index i ∈ {1, 2, . . . ,m} according to
the increasing amplitude (rank) of each xt+i in Xm(t). It can be seen that the indexes of the time axis are fixed in chronological order, and they are mapped
onto the vertical (amplitude) axis. For each pattern X3(t) = (xt , xt+1, xt+2), the resultant symbol πi ∈ S3 can be obtained reading the labels in the vertical
axis from the bottom to the top (in the direction of the increasing amplitude).

suggested below. {Xt}t∈T will led to T − m + 1 symbols (π ) so:

p(πi) =
♯{t ≤ T − m + 1 | (xt , xt+1, . . . , xt+m−1) has type πi}

T − m + 1
(2)

The Probability Distribution Function of the symbols πi is called the Bandt and Pompe Probability Distribution Function
(BP PDF).

The Shannon Informational Entropy (Eq. (1)) evaluated in the BP PDF is then the Permutation Entropy:

H(m) = −
1

log(m!)

m!∑
i=1

p(πi)log(p(πi)). (3)

where 1
log(m!) is a normalization constant.

With the condition P(xt = xt∗ ) = 0 ∀t ̸= t∗ with t, t∗ ∈ T all the embedding vectors Xm(t) hasm unique values (no ties),
but that condition may not comply in several real world time series, so a substantial amount of embedding vectors Xm(t) of
these time series could have tied values and the mapping from these Xm(t) to πi ∈ Sm cannot be made in the way presented
in this Section. For this reason, different methodologies were developed to handle with time series with tied values.

In essence there are two strategies of dealing with the issue of ties. One strategy, used by the Data Driven Imputation
Methodology (DDMI), assumes that the process is indeed continuous so the patterns with ties are in fact observations with
missing data deriving fromnon tied values patternswrongly observed. The other onemakes no such assumption and extends
the alphabet in order to ignore the restriction ik ̸= ij ∀i ̸= j for πi = (i1 i2 . . . im) ∈ Sm and lets ik = ij for i ̸= j, leading to
the Modified Permutation Entropy presented in [5].

2.1. Extending the alphabet: modified permutation entropy

If equal values may represent a feature state of the system under study (and are not due to observational artifacts),
mapping equal values in {xt} to equal representation in a symbol π could be considered.

In [5] the Modified Permutation Entropy is presented. First like the original alphabet, the values of Xm(t) can be sorted
in increasing order: xt+i1−1 ≤ xt+i2−1 ≤ · · · ≤ xt+im−1. Normally, if all the values in Xm(t) are different each xt+ik−1 is
represented by ik when it is mapped to πi = (i1 i2 . . . im) .

But now, in the case xt+ij1−1 = xt+ij2−1 and ij1 < ij2, both xt+ij1−1 and xt+ij2−1 are represented by ij1 in the symbol πi. The
corresponding permutation symbol of the pattern Xm(t) is defined as: πi = (i1, i2, . . . , ij1, ij1, . . . , im).

For example, let us take the series:

Xt = (2, 5, 1, 2, 7, 1, 1, 3, 1) , T = 9 (4)

and take the vector X5(1) = (2, 5, 1, 2, 7) this led to the symbol πi = (31125). X3(6) = (1, 1, 3) and X3(7) = (1, 3, 1, 1) map
into the symbol πi = (113) and pii = (1112) respectively. In Fig. 2 all the symbols for m = 3 are shown for this extended
alphabet.

This extended alphabet results in more possible symbols for each length motiv m so it characterizes more system states
than the original Bandt and Pompe method, see Table 1.

This alphabet has more symbols thanm!,
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Fig. 2. The extended alphabet form = 3 used to calculate the Modified Permutation Entropy in [5].

Table 1
Number of symbols πi per length motivm for each alphabet.

m=3 m=4 m=5 m=6

Regular alphabet 6 24 120 720
Extended alphabet 13 73 501 4051

2.2. Imputing values to missing data: a data-driven method of imputation

In [1], they recommend to numerically break equalities by adding small perturbations at random. Other simple technique
that deals with this problem is simply to ignore patterns with ties and eliminate them, along with the information they may
provide. It is shown that inmost situations simple techniques for handlingmissing data (such as the previouslymentioned) in
other research areas produce biased results [22], and there are more sophisticated techniques that give much better results.
With these latter techniques, missing data for a subject are imputed by a value that is predicted using the subject’s other,
known characteristic. In [8] we propose a method that instead of adding a random perturbation that maps pattern with
ties to each suitable symbol with the same probability, this probabilities are originated with a previous known Probability
Distribution Function, and are not necessary uniformly distributed. The PDF proposed as a priori distribution is the one
resulting of computing the p∗(πi)∀i ∈ {1, . . .m!} ignoring the patterns with ties.

In order to estimate the BP PDF with the DDMI methodology there are seven steps to follow:

1. Define the length motivm. That leads to Sm = {π1, . . . , πm!} all them! possible permutations of (1 2 . . . m).
2. Map Xm(t) ∀t ∈ {1, . . . , T − m + 1} to their correspondent πi ∈ Sm. (Section 2).
3. If there is any ties in Xm(t) for any t ∈ {1, . . . , T − m + 1}, eliminate the vector.
4. Calculate the p∗(πi) Eq. (2) for all the non eliminated patterns.
5. Repeat the procedure of mapping every Xm(t) ∀t ∈ {1, . . . , T − m + 1} to their correspondent πi ∈ Sm , but do not

eliminate the vectors Xm(t) with repeated values.
6. For each vector Xm(t) with repeated values do themapping to every compatible πi but with probability p∗(πi) for each

πi.
7. Calculate the new p(πi)

In order to show this methodology we propose the following illustrative example:

Xt = (2, 5, 1, 2, 7, 1, 1, 3, 1, 2, 4, 5, 1, 3, 2, 4, 4, 2, 2, 1, 0)

The DDMI methodology to estimate the BP PDF for this particular time series is illustrated in Fig. 3.

3. Numerical simulation

In this Section both methodologies, the Modified Permutation Entropy (MPE) and the Data Driven Method of Imputation
(DDMI) are evaluated using data from simulated chaotic processes. In order to get a reproducible set of time series, all maps
presented in [23]were simulated using the initial conditions presented therein. All those series presented none, or negligible
amount, patterns Xm(t) with ties. These time series will be referred as the original time series. After that, each original time
series was truncated up to two decimal resolution, leading to a coarse version of those original time series. Due to that finite
resolution, this coarse versions have an amount of patterns with tied values that cannot be considered negligible.

This yields to quantify how well each strategy estimates the actual PE −H(m)− for the different chaotic processes using
the PE estimation −Ĥ(m)− obtained for each methodology.

3.1. Experimental design

The simulation consists in 44 time series generated by different chaotic processes in every dimension, previously analyzed
by Rosso and coworkers in [23]. They are 11 noninvertible maps (logistic map, sine map, tent map, linear congruential
generator, cubic map, Ricker’s population model, Gauss map, Cusp map, Pinchers map, Spence map, sinecircle map), 9
dissipative maps (Henon map, Lozi map, delayed logistic map, Tinkerbell map, Burgers’ map; Holmes cubic map, dissipative
standard map, Ikeda map, Sinai map, discrete predator–prey map) and 5 conservative maps (Chirikov standard map, Henon
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Fig. 3. The above plot shows the complete time series Xt = (2, 5, 1, 2, 7, 1, 1, 3, 1, 2, 4, 5, 1, 3, 2, 4, 4, 2, 2, 1, 0), the middle plot computed the Bandt
Pompe’s Probability Distribution Function (PDF) eliminating patterns with repeated values for m = 3 (p∗(πi), i ∈ {1, . . . , 6}), using the remaining 12
complete cases. The third plot shows the resulting PDF with all 19 cases, imputing to the patterns with ties a suitable symbol. But the probability of
choosing that symbol is according to the previously calculated PDF using Complete Cases methodology.

area-preserving quadraticmap, Arnold’s catmap, Gingerbreadmanmap, chaotic webmap, Lorenz three dimensional chaotic
map). We use the initial conditions used in [24] and refer to this book for a comprehensive analysis of those maps. Eachmap
was simulated for a length of 106 and then starting in the position 105 take the following T valueswith T = 105 the time span.
They were produced with IEEE 754 double precision floating point numbers. All those series presented none, or a negligible
amount, patterns Xm(t) with ties, and for each series the PE,H(m), was calculated for lengthmotivm = {3, 4, 5, 6}. For those
initial condition, as the series is deterministic, the H(m), m = {3, 4, 5, 6} are the original PE of the processes. Next, these
series are truncatedup to a twodecimal resolution, so the amount of patternsXm(t)with ties are not negligible anymore. Both
strategies enunciated in Sections 2.1 and 2.2, along with the computation of the PE eliminating patterns with ties are used
separately for each truncated series to compute the p(πi), and their respective estimation of the PE Ĥ(m), m = {3, 4, 5, 6}.

4. Results

Fig. 4 shows, for each simulatedmap, the difference between the estimated PE for the coarse versions Ĥ(m) versus the PE
of the original time series H(m) for m = 6 and T = 105. This difference measures how much each methodology drifts apart
from the real PE, so we define the Error as the Bias of the estimation:

Error = Ĥ(m) − H(m) (5)

This Figure shows that MPE consistently underestimates the PE, and it is outperformed by the DDMI, that is generally
more accurate that simply eliminating the patterns with ties with the loss of information that this represents. This behavior
is repeated for length motivs m = 3, 4, 5, 6. All these Errors were grouped by each methodology (Complete stands for
eliminating patterns with ties), and the results are shown for each lengthmotivm in Fig. 5. As the lengthmotiv increases the
probability of finding repeated values in a pattern Xm(t) also increases, and so the estimating error. For every length motiv
m the DDMI estimation is better that the MPE, and the variability of the Error of the DDMI is considerably lower than the
MPE. The improvement in the estimation made by DDMI over the methodology of eliminating this patterns with ties can be
seen as the gain of the information given by this methodology.
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Fig. 4. For each simulated map, the difference between the estimated PE for the coarse versions Ĥ(m) versus the PE of the original time series H(m) for
m = 6 and T = 105 . This difference, Ĥ(m) − H(m), measures how much each methodology drifts apart from the real PE, so it can be seen as the Error of
eachmethodology. TheModified Permutation Entropy, in blue squares, consistently underestimates the PE (the vertical orange line), and it is outperformed
by the Data Driven Method of Imputation, the red circles, that is generally more accurate that simply eliminating the patterns with ties, plotted as green
triangles, with the loss of information that this represents. For length motivm = 3, 4, 5 similar results are achieved.

Another interesting property to notice is how well each methodology performs for different amounts of patterns Xm(t)
with ties. In Fig. 6 the performance measured by the Error (Eq. (5)) for each methodology and for different levels of repeated
ratio (i.e patterns Xm(t) with ties over all the patterns Xm(t)) is shown for length motiv m = 6. As might be expected, the
error increases with the repeated ratio, but the DDMI is always better than the MPE. It should be noted that for the highest
level of repeated ratio, at least 20% of the information is lost by eliminating this patterns and the DDMI retrieves some of
this information lost improving the estimation.

5. Discussion and conclusions

When quantifying complexity for a given time series {Xt}t∈T entropy measures are an excellent choice, but common
techniques neglect any effects stemming from the temporal order of the values xt in {Xt}t∈T . In order to take account this
causal information, the time series can be encoded into a sequences of symbols as proposed by Bandt & Pompe in [1]. In
this original approach, it was assumed that xt in {Xt}t∈T has a continuous probability distribution function ∀t ∈ T , thus
equal values appear with probability 0. In a variety of time series stemming of real life processes, e.g. Heart Rate Variability
(HRV) series, equal values in a pattern Xt (m) appear often and cannot be neglected without consequences. This increment
in the frequency of patterns with equal values may occur by two major reasons: either the realization is not from a process
with a continuous probability distribution function, so the repeated values represent the dynamic of the process, or indeed
the assumptions of the process are complied but repeated values appear with high frequency due to a limited resolution
in the data collection process. In order to deal with this issue, [5] proposed the Modified Permutation Entropy, that uses an
extended alphabet that would take account of the repeated values on the symbolic representation πi = (i1, i2, . . . , im) by
ignoring the restriction ij ̸= ik ∀j ̸= k (see Section 2.1). Various points should be considered in relation to this methodology.

One major drawback of this methodology is that with the use of any measure of entropy, the equilibrium state of the
system should represent themaximumvalue of entropy. Usually a completely random sequence represents total uncertainty
and thus, it is the equilibrium state. If we take a random integer sequence, all the probabilities p(πi) in Eq. (3) must be equal,
i.e. a discrete uniform distribution. The MPE does not achieve this premise since there are states more likely to happen
because of the structure of the extended alphabet (See Tables 2 and 3).

In addition, if the repeated values of the time series {Xt} under study are supposed to be due to low resolution, the
augmented number of states of the extended alphabet (see Table 1) does not represent the states of the process. Even more,
if the repeated ratio is not large enough, this methodology will greatly underestimate the real Permutation Entropy of the
process because there will muchmore states with little representation, not because of the nature of the process but because
of the fictitious states incorporated by the extension of the alphabet.
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Fig. 5. The Errors Ĥ(m) − H(m) were grouped by each methodology (Eliminating stands for eliminating patterns with ties), and the results are shown for
each length motiv m and for T = 105 . As the length motiv increases the probability of finding repeated values in a pattern Xm(t) increases, and so the
estimating error. For every length motivm the DDMI is better that the MPE, and the variability of the Error of the DDMI is considerably lower than theMPE.
The improvement in the estimation made by DDMI over the methodology of eliminating this patterns with ties can be seen as the gain of the information
given by this methodology.

Fig. 6. The performance for each methodology, measured by the error Ĥ(m) − H(m), for different levels of repeated ratio (i.e patterns Xm(t) with ties over
all the patterns Xm(t)) is shown for length motiv m = 6. As might be expected, the error increases with the repeated ratio, but the DDMI is always better
than the MPE. It should be noted that for the highest level of repeated ratio, at least 20% of the information is lost eliminating this patterns and the DDMI
retrieves some of this information lost improving the estimation.

As shown recently by Amigó et al. [25,26], in the case of deterministic one-dimensional maps not all the possible ordinal
patterns can be effectively materialized into orbits, which in a sense makes these patterns ‘‘forbidden’’ Indeed, the existence
of these forbidden ordinal patterns becomes a persistent dynamical property. That is, for a fixed pattern length (length
motiv) m the number of forbidden patterns present in the time series (unobserved patterns) is independent of the series
length T [27] and has a strong relation with the Permutation Entropy. In fact, the methodology used in [5] increases the
number of forbidden patterns, but they are fictitious states and do not represent this persistent dynamics. The Modified
Permutation Entropy proves not to be a fine tool in order to estimate the Permutation Entropy of the original series, at least
if one assume that the repeated values are due to observational problems, sowhen dealingwith Bandt & Pompe Permutation
Entropy, values with ties should be treated as missing values. Eliminating all the patterns with ties is a good estimator of
H(m) (although much of the information is lost) as long as the length of the time series is much larger than the amount of
deleted cases. So even though those cases are not negligible, its elimination does not affect the estimation. For all the stated
above, the Data DrivenMethod of Imputation has all the good properties of the original Permutation Entropy, because it uses
the information contained in the time series in analysis preserving its autocorrelation structure and the number of forbidden
patterns, and also retrieves some of the information lost because of artifacts in the observation process.
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Table 2
All the possible outcomes for a random sequence of an alphabet of length 3 and their probabilities p(Xt (3))
for t ∈ T with T large enough (as each symbol has the same probability of occurrence every vector of length
3 has the same probability) for m = 3 and their correspondent symbolization in the extended alphabet.
Xt (3) p(Xt (3)) Extended alphabet symbol

x1 x2 x3
1 1 1 1

27 111

1 1 2 1
27 113

1 1 3 1
27 113

1 2 1 1
27 131

1 2 2 1
27 122

1 2 3 1
27 123

1 3 1 1
27 131

1 3 2 1
27 132

1 3 3 1
27 122

2 1 1 1
27 311

2 1 2 1
27 212

2 1 3 1
27 213

2 2 1 1
27 221

2 2 2 1
27 111

2 2 3 1
27 113

2 3 1 1
27 231

2 3 2 1
27 131

2 3 3 1
27 122

3 1 1 1
27 311

3 1 2 1
27 312

3 1 3 1
27 212

3 2 1 1
27 321

3 2 2 1
27 311

3 2 3 1
27 212

3 3 1 1
27 221

3 3 2 1
27 221

3 3 3 1
27 111

Table 3
All the probabilities for the symbols for the extended alphabet for the random integer sequence showed in
2. An entropymeasure should bemaximum for a completely random sequence and all the probabilities p(πi)
in Eq. (3) must be equal. Modified Permutation Entropy proposed by [5] does not comply with important
premise.
Extended alphabet symbol Frequency p(πi)

π1 = 111 3 1
9

π2 = 113 3 1
9

π3 = 122 3 1
9

π4 = 123 1 1
27

π5 = 131 3 1
9

π6 = 132 1 1
27

π7 = 212 3 1
9

π8 = 213 1 1
27

π9 = 221 3 1
9

π10 = 231 1 1
27

π11 = 311 3 1
9

π12 = 312 1 1
27

π13 = 321 1 1
27
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