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Abstract

Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the 

regulation of trophoblast functions and placental growth, but the role of G-CSF has not been 

completely established. Based on our previous study showing that G-CSF increases the activity of 

matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 

human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell 

migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced 

morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF 

also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By 

using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, 

Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also 

demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, 

the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results 

indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating 

PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an 

additional regulatory factor that contributes to a successful embryo implantation and to the 

placenta development.
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1. Introduction

Granulocyte colony-stimulating factor (G-CSF) is a well-known haematopoietic cytokine 

that promotes proliferation, differentiation and activation of granulocyte lineage cells 

through binding to cell surface G-CSF receptor (G-CSFR) [1]. Even though the function of 

G-CSF on the regulation and mobilization of neutrophils has been extensively studied [2-4], 

G-CSF-triggered biological actions are not exclusively restricted to haematopoietic tissues. 

Thus, it has been reported that G-CSF induced the migration of endothelial [5,6], glioma [7] 

and tumor cells [8-10]. In addition, G-CSF signaling enhances the survival of 

cardiomyocytes [11] and stimulates neurogenesis [12]. The expression of G-CSFR has also 

been found in placental tissues and trophoblastic cells [13-18], suggesting a possible role of 

G-CSF in the regulation of placental function. In this regard, G-CSF administration seems to 

be a promising therapy in some cases of reproductive failure [19]. Thus, the efficiency of G-

CSF supplementation in the treatment of unexplained recurrent miscarriage suggested 

putative actions of G-CSF on trophoblast function and early pregnancy [20]. In spite of these 

findings, since the identification of the G-CSFR-GCSF axis in placental tissues in the late 

nineties, the G-CSF signaling pathways triggered in trophoblast cells have been scarcely 

studied. In order to improve our knowledge on this topic, we recently reported the presence 

of functional G-CSF receptors that activate different signal transduction pathways, such as 

Jak/STAT, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinases 

(MAPKs), in trophoblastic cell lines [14-15].

Several cytokines and growth factors leading to the activation of different signaling 

pathways have been involved in the regulation of a variety of biological actions in 

trophoblast cells, including proliferation, differentiation, migration and invasion [21-23]. 

Various signaling proteins and transduction pathways such as focal adhesion kinase, 

MAPKs, Rho/Rho-associated-kinase, PI3K, Wnt cascade and TGFβ-dependent SMAD 

factors may participate in the control of these multiple biological responses [21-24]. In 

particular, Erk 1/2 MAPK activation mediated by different hormones or growth factors such 

as human chorionic gonadotropin [25], epithelial growth factor [26], insulin-like growth 

factor-2 [27] or hepatocyte growth factor [28] has been related to the promotion of human 

trophoblast cell motility, whereas the role of p38 signaling in trophoblast cell migration has 

not been definitely demonstrated [23]. In addition, it has been reported that PI3K/Akt 

signaling induced by several growth factors of the fetal-maternal interface effectively 

increases the migration of trophoblast cells [22, 23, 25, 26, 28].

In a previous work we demonstrated that the activation of PI3K/Akt and Erk 1/2 signaling 

pathways by G-CSF led to an increase of matrix metalloproteinase-2 (MMP-2) activity and 

vascular endothelial growth factor (VEGF) secretion in Swan 71 cells [15], a human 

trophoblast cell line derived from a 7-week normal placenta [29]. Based on these findings 

and considering that both MMP-2 [30] and VEGF [31] have been recognized as important 
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factors for placenta development, we hypothesized that G-CSF could effectively cooperate 

with the complex network of cytokines and factors that regulates embryo implantation [21, 

22, 23]. In order to improve our understanding on G-CSF-mediated biological actions in 

trophoblast cells, in this work we examine the ability of G-CSF to induce a rearrangement of 

actin cytoskeleton, modify the expression of β1 integrin and stimulate Swan 71 cell 

migration. The contribution of p38, Erk 1/2 and PI3K pathways on G-CSF-induced cell 

migration was further studied.

2. Materials and methods

2.1. Materials

Recombinant human G-CSF was supplied by BIO SIDUS S.A., Buenos Aires, Argentina. 

Mouse monoclonal antibody against β1 integrin was from BD Biosciences, NJ, USA. Rabbit 

polyclonal anti-p38, anti-phospho-p38 (Thr180/Tyr182), secondary anti-rabbit and anti-

mouse IgG horseradish peroxidase antibodies and the PI3K inhibitor Ly294002 were from 

Santa Cruz Biotechnology, CA, USA. Rabbit polyclonal antibodies anti-Erk 1/2, anti-p-Erk 

1/2 (Thr202/Tyr204), anti-Akt, anti-p-Akt (Ser473), anti-p70 S6 Kinase and anti-p-p70 S6 

Kinase (Thr421/Ser424) were obtained from Cell Signaling Technology (Beverly, MA, 

USA). MEK-1 inhibitor PD98059 was from Promega, WI, USA, and p38-MAP kinase 

inhibitor SB203580 was from Sigma-Aldrich, MO, USA. Dominant negative p38MAPK 

(DNp38) was a gift from Dr. Roger Davis (University of Massachusetts Medical School, 

Worcester, MA, USA). The dominant negative mutant of the PI3K regulatory subunit p85 

(DNp85) was provided by Dr. William Hahn (Harvard Medical School, Boston, MA, USA), 

and dominant negative constructs of ERK1 (pCEP4-ERK1-K71R) and ERK2 (pCEP4-

ERK2-K52R) were supplied by Dr. Melanie Cobb (University of Texas Southwest Medical 

Center, Dallas, TX).

2.2. Cell line and culture conditions

The human trophoblast cell line, Swan 71, derived by telomerase-mediated transformation of 

a 7-week cytotrophoblast isolate was kindly provided by Dr. Gil Mor (Department of 

Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, 

New Haven, USA) [29]. Swan 71 cells were maintained in Dulbecco's Modified Eagle 

Medium: Nutrient Mixture F-12 (DMEM/F-12) Media (Gibco®, Life Technologies™, 

Argentina) supplemented with 10% FBS, 1 mM sodium pyruvate, 2 mM L-glutamine, 50 

U/ml penicillin and 50 μg/ml streptomycin.

2.3. Immunocytochemistry of actin cytoskeleton

Swan 71 cells grown up on coverslips were incubated 30 min or 9 h in the presence or 

absence of 100 ng/ml of G-CSF. After washing with saline phosphate buffer (PBS), cells 

were fixed for 5 min at room temperature with 4% p-formaldehyde, and then incubated with 

rhodamine-phalloidin (Invitrogen, CA, USA) in complete media containing 0.1% saponin 

for 60 min at room temperature. Coverslips were then washed and mounted on slides using 

Aqua-PolyMount (Polysciences). Stained cells were examined with a Zeiss Axiovert-200M 

fluorescence microscope.
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2.4. Transfection

Cells were transiently transfected with DNp38 (Addgene plasmid 20352), DNp85 (Addgene 

plasmid 10888), DNErk1/2 or the corresponding control vectors using SuperFect 

transfection reagent according to the manufacturer's protocols (Qiagen, Germantown, MD, 

USA). After incubation in the presence or absence of G-CSF, cells were employed for 

Western blot and wound healing migration assays.

2.5. Western blot assays

β1 integrin expression levels—non-confluent monolayers of Swan 71 cells maintained 

24 h in serum-free medium were incubated for 4 and 8 h in the absence or presence of 100 

ng/ml of G-CSF. Cells were detached using cell scraper, washed with cold PBS and lysed for 

30 min at 4°C in 10 μl of cold lysis buffer (1.5% Triton X-100, 50 mM NaCl, 0.5% sodium 

cholate, 0.2% SDS, 2% Nonidet P-40, 1 μg/ml leupeptin, 1 μg/ml aprotinin, 1 μg/ml trypsin 

inhibitor, 1 mM Na3VO4, 1 mM PMSF, 25 mM Tris-HCl, pH 7.5). Lysates were cleared by 

centrifugation for 10 min at 17,000 × g, and the supernatants diluted with sample buffer (40 

μg of protein) were submitted to 8% SDS-PAGE, and then transferred onto PVDF 

membranes. After blocking non-specific binding sites, membranes were incubated overnight 

at 4°C with an antibody anti- β1integrin. After washing, membranes were incubated for 1 h 

at room temperature with anti-mouse IgG (horseradish peroxidase-conjugated goat IgG) 

diluted in 10 mM Tris, 130 mM NaCl, 0.05% Tween-20, pH 7.4, containing 1% BSA. 

Immunoreactive proteins were visualized using the Pierce® ECL Plus Western blotting 

substrate (Thermo Scientific, Rockford, IL, USA) according to the manufacturer's 

instructions. For quantification of band intensity, Western blots were scanned using a 

densitometer (Gel Pro Analyzer 4.0).

MAPK activation—to measure p38 and JNK phosphorylation, monolayers of Swan 71 

cells maintained 24 h in serum-free medium were treated with or without 100 ng/ml of G-

CSF for different times. Cells were then solubilized for 30 min at 4°C in 10 μl of lysis buffer 

(0.5% Triton X-100, 1 μg/ml leupeptin, 1 μg/ml aprotinin, 1 μg/ml trypsin inhibitor, 10 mM 

Na4P2O7, 10 mM NaF, 150 mM NaCl, 1 mM Na3VO4, 1 mM PMSF, 1 mM EDTA, 50 mM 

Tris, pH 7.4), and 40 μg of proteins were submitted to 10% SDS-PAGE, followed by transfer 

onto PVDF membranes. After blocking non-specific binding sites, membranes were treated 

as described previously.

2.6. Flow cytometry assays

After 24 h of incubation in serum-free culture medium, Swan 71 cells were incubated for 

different times in the presence or absence of 100 ng/ml of G-CSF. After harvesting and 

washing with PBS, 1 × 106 cells were fixed in 1% p-formaldehyde and permeabilized with 

0.1% Tween-PBS for 20 minutes. Cells were then labelled with anti- β1 integrin antibody 

for 1 h and then with the corresponding anti- FITC conjugated secondary antibody. Data 

were acquired using a BD Accuri TM C6 flow cytometer (BD Biosciences, CA, USA), 

analyzed using the BD Accuri C6 software and expressed as the percentage of positive cells 

relative to the total cell number (20,000 events) evaluated.
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2.7. Cell migration assays

Transwell cell migration assays—Swan 71 cells trypsinized and resuspended in 

complete culture medium were applied on 8-μm pore transwell inserts (Corning Inc.) coated 

with 10 μg/ml fibronectin on the upper and bottom side of the insert membrane. After 4 h, 

inserts were first incubated overnight in wells containing medium with 0.1% FBS, and then 

in wells containing serum-free medium in the upper chamber and serum-free medium with 

or without 100 ng/ml of G-CSF in the lower chamber. In addition, medium containing 10% 

FBS in the lower chamber was used as positive control. Cells were allowed to migrate for 9 

h before fixation in 4% p-formaldehyde. Cells on fixed membranes were stained with DAPI 

and visualized by epifluorescence microscopy. Total nuclei were counted per membrane in 

order to obtain cell inputs, and then the upper side of the membrane was swabbed with a Q-

tip and rinsed with PBS. Cells on the bottom side of the membrane were visualized and 

scored as migrants if their nuclei passed through the membrane pores.

“Wound-healing” migration assay—Swan 71 cells were plated on 96-well dishes and 

grown to 90% confluence in 100 μl of complete culture medium. After 24 h of incubation in 

serum-deprived culture medium, cell monolayers were scratched using a p10 pipette tip and 

then treated with 100 ng/ml of G-CSF. Cells were allowed to migrate for 16 h and 

photographs were taken with an inverted microscope at 0 and 16 h. In some experiments, 

cells were transfected with DNp38, DNp85 or DNErk 1/2 or with the corresponding empty 

vector, as described previously. In other experiments, cells were pre-incubated for 1 h with 2 

μM SB203580 (SB), 1 μM Ly294002 (Ly) or 1 μM PD98059 (PD). No effect on Swan 71 

cell proliferation was observed at these concentrations of inhibitors (data not shown).

2.8. Statistical analysis

GraphPad Prism 5.00 software was used for data analysis. Results of normally distributed 

data represent mean ± SE. Comparisons were performed using one way analysis of variance 

(ANOVA) followed by Bonferroni or Tukey post-hoc tests where appropriate. Student's t-test 

was used when the values of two groups were analyzed. Some part of the biological data 

analyzed within this work did not follow a normal distribution (failed normality tests). Given 

their non-parametric nature, data distributions were shown as box plots depicting the 

median, 25–75 (bottom and top of box, respectively) and 10–90 (whiskers) percentiles. 

When appropriate, statistical significance was evaluated using the non-parametric Wilcoxon 

test. Values were considered significantly different when p<0.05.

3. Results

3.1. Effect of G-CSF on actin cytoskeleton organization in Swan 71 cells

Based on our previous findings showing the ability of G-CSF to increase the expression of 

MMP-2 and VEGF in Swan 71 cells [15], we inquired whether the cytokine would 

contribute to trophoblast cell migration and consequently embryo implantation by promoting 

cell motility. Since actin cytoskeleton rearrangement is required for cell migration [32,33], 

we examined actin morphology after rhodamine-phalloidin staining of Swan 71 cells 

incubated 30 min or 9 h in the presence or absence of 100 ng/ml of G-CSF. As shown in Fig. 

1, no change in actin organization was observed in cells treated for 30 min with G-CSF, 
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whereas a significant increase in the amount of cells with migratory phenotype - 

characterized by the presence of lamellipodium at the leading edge and tail retraction - was 

detected after 9 h of G-CSF exposure.

3.2. G-CSF induces expression of human β1 integrin in Swan 71 cells

The switching in the expression pattern of integrins during placentation characterizes the 

transition to an invasive phenotype of extravillous trophoblast. In human placenta, the 

invasive trophoblasts of the first trimester reduce the expression of α6β4 integrin while 

increase the expression of α5β1, αvβ1, αvβ3 and α1β1 integrins along the invasive 

pathway [34,35]. Since an increase in β1 integrin expression levels occurs when cells shift 

towards a more invasive phenotype, we decided to examine whether G-CSF regulates the 

level of β1 integrin in Swan 71 cells. After incubating cells with 100 ng/ml of G-CSF for 

different times, a significant increase in the population of β1-positive cells was observed 

(Fig. 2A). Thus, the percentage of positive cells for β1 integrin varied from 25.8% to 32.7% 

and 36.9% after 4h and 8h of incubation, respectively. Similarly, a considerable raise in the 

expression levels of β1 integrin was detected after 4 h and 8 h of G-CSF treatment (Fig. 2B). 

No change was revealed at longer incubations times (12 h and 16 h, data not shown).

3.3. G-CSF promotes migration of Swan 71 cells

The ability of G-CSF to induce Swan 71 cell migration was next studied using both 

Transwell and wound healing assays. After applying cells on Transwell chambers, cells were 

incubated 9 h in serum-free medium in the presence or absence of 100 ng/ml of G-CSF or 

10% FBS as positive control. G-CSF induced an increase of about 15% in the total amount 

of migrated cells, whereas an enhancement of 35% was obtained when cells were incubated 

in the presence of serum (Fig. 3A). In addition, after performing an scrape in a monolayer of 

Swan 71 cells, G-CSF (100 ng/ml) induced cell migration (wound closure ~15%) after 16 h 

of incubation in serum-free medium, while a more substantial closure (~60%) was obtained 

in the presence of serum (Fig. 3B). It should be mentioned that G-CSF treatment have no 

effect on Swan 71 cell proliferation under any of the experimental conditions herein 

employed, as previously reported [15].

3.4. MAPK pathways activated by G-CSF in Swan 71 cells

It has been reported that G-CSF stimulates the activation of MAPK pathways, including Erk 

1/2, p38 and JNK pathways in haematopoietic cells [36,37]. The biological outcomes of 

MAPK activation involve cell proliferation, differentiation, survival, migration and invasion 

[37]. In a previous work, we demonstrated that G-CSF activates Erk 1/2 MAPK pathway in 

Swan 71 cells to regulate MMP-2 activity and VEGF secretion [15], but the possible 

activation of other additional MAPK cascades was not explored. To determine whether p38 

or JNK MAPK pathways are also activated by G-CSF in Swan 71 cells, phosphorylation 

kinetics of phospho-p38 (p-p38) and phospho-JNK 1/2 (p-JNK1, p-JNK2) were determined 

by Western blot analyses in serum-deprived cells. As shown in Suppl. Fig. 1, levels of p-p38 

increased after 30-45 min of stimulation with 100 ng/ml of G-CSF, whereas no variation was 

detected in JNK 1/2 phosphorylation of G-CSF-treated cells with respect to cells incubated 

in the absence of cytokine. Based on these findings, the possible contribution of both p38 

and Erk 1/2 activation in G-CSF-stimulated cell migration was next studied.
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3.5. Involvement of p38, Erk 1/2 and PI3K on G-CSF-induced migration of Swan 71 cells

To evaluate the role of MAPKs activation in G-CSF-induced Swan 71 cell migration, we 

first employed selective pharmacological inhibitors in wound healing migration assays. 

Since we have previously shown that G-CSF activates PI3K pathway in Swan 71 cells [15], 

an inhibitor of PI3K was also included. The efficiency of each inhibitor to block the 

corresponding pathway was determined in previous works [14,15]. As shown in Fig. 4A, 

pre-treatment of Swan 71 cells with 2 μM SB, 1 μM PD or 1 μM Ly effectively reversed the 

enhancement of cell migration induced by G-CSF. No effect on cell survival was observed at 

these inhibitor concentrations, indicating that the decrease of cell motility was not 

attributable to a cytotoxic effect (Suppl. Fig. 2). We then confirmed these results by blocking 

p38, Erk 1/2 and PI3K pathways with the corresponding dominant-negative mutants: a p38 

construct, in which the phosphorylated motifs Thr 180 and Tyr 182 were mutated to Ala and 

Phe, respectively; Erk 1/2 mutants, in which mutations of Lys 71 (Erk1) and Lys 52 (Erk2) 

to Arg impair the catalytic efficiency of the kinases; and the p85 delta-iSH2 mutant of the 

p85 regulatory subunit of PI3K, lacking the binding site for the p110 catalytic subunit. The 

effectiveness of each construct to inhibit the related pathways was assessed by Western blot 

assays. Thus, as shown in Suppl. Fig. 3, the corresponding DN mutants significantly reduced 

p-p38, phospho-p70 S6 kinase (p70S6K phosphorylation at Thr421/Ser424 is dependent on 

MEK/Erk pathway) [38,39] and phospho-Akt (p-Akt) expression levels in G-CSF-stimulated 

cells. When wound-healing assays were performed with DN transfected cells, it was 

demonstrated that G-CSF-induced cell migration was effectively reduced in cells transfected 

with DNp38, DNErk 1/2 and DNp85 constructs compared to cells transfected with the 

corresponding control vectors (Fig. 4B). It should be mentioned that, in this case, G-CSF 

migratory effect on transfected cells was observed after 24 h instead of 16 h (see Fig. 3B). 

Taken together, these results demonstrate that the activation of p38, Erk 1/2 and PI3K 

pathways is required for promoting Swan 71 cell migration induced by G-CSF.

To elucidate whether PI3K behaves as an upstream regulator of Erk 1/2 and p38 pathways, 

G-CSF-induced phosphorylation of Erk 1/2 and p38 was examined in Swan 71 cells pre-

treated with Ly or in cells transfected with the DNp85 mutant. As shown in Fig. 5A and C, 

the incubation of cells with Ly diminished p-Erk 1/2 and p-p38 levels in G-CSF-stimulated 

cells. In addition, G-CSF effect on Erk 1/2 and p38 phosphorylation was also reversed in 

DNp85 transfected cells (Fig. 5B and D), indicating that PI3K is required for both p38 and 

Erk 1/2 activation. We also examined the participation of PI3K and MAPK signaling in the 

increase of β1 integrin expression levels induced by G-CSF. Results showed in Fig. 6A 

revealed that pre-incubation of Swan 71 cells with SB, PD or Ly significantly reversed the 

effect of G-CSF on β1 integrin expression. It was subsequently demonstrated that cell 

transfection with the DNp85 construct completely suppressed the increment of β1 integrin 

(Fig. 6B). Thus, results obtained indicate that the activation of p38, Erk 1/2 and PI3K 

pathways contribute to regulate the expression levels of β1 integrin.

4. Discussion

In a previous work we demonstrated that G-CSF increases the activity of MMP-2 and VEGF 

secretion in Swan 71 cells, a 7-week human trophoblast cell line exhibiting a phenotype 
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similar to extravillous trophoblasts [29]. These cells would maintain characteristics of 

primary trophoblast from the first trimester in contrast to cells derived from choriocarcinoma 

and some other trophoblast cell lines generated by SV40 transformation. Since extravillous 

trophoblasts generated from anchoring villi during the first weeks of pregnancy acquire the 

ability to migrate into stromal areas of the maternal decidua [21-23], we hypothesized that 

G-CSF, as other growth factors identified in the fetal-maternal interface, might contribute to 

facilitate cell motility. In this context, we showed that G-CSF induced morphological 

changes of actin cytoskeleton, increased the expression levels of β1 integrin and promoted 

trophoblast cell migration. Integrins are α/β heterodimeric membrane receptors that connect 

extracellular matrix ligands to the actin cytoskeleton, controlling cytoskeletal remodelling 

and various cellular responses including migration, differentiation, and proliferation [40, 

41]. The up-regulation of the expression levels of β1 integrin herein reported is consistent 

with the change in the integrin profile occurring during trophoblast differentiation. Thus, 

when cytotrophoblast residing at the villous basement membrane differentiate into 

extravillous trophoblasts, the expression of α6β4 integrin is suppressed and higher levels of 

different integrins containing β1 subunit are found [34,35]. It has also been reported that the 

stimulation of trophoblast cell migration/invasion by different cytokines and chemokines 

might be mainly modulated by an increase in the expression levels of integrins, including 

β1, and MMPs [42, 43]. Based on these findings, we conclude that G-CSF promoted the 

acquisition of a more migratory/invasive phenotype by increasing the expression of β1 

integrin. In addition, acting as different cytokines and growth factors that facilitate 

trophoblast cell migration [23,42-45], we showed that G-CSF promoted cell motility and 

induced actin cytoskeleton morphological changes, such as lamellipodial protrusions and tail 

retraction, in accordance with a migratory phenotype [46,47]. Although G-CSF behaves as a 

potent migratory stimulus for haematopoietic cells [48], just a moderate effect was observed 

in Swan 71 cells. In this regard, it should be considered that a wide range of G-CSF 

migratory potencies has been reported in non-haematopoietic tissues, being slight responses 

(up to 1.4-fold increase) induced in glioma cells [7] and head and neck squamous cell 

carcinomas [8], and more pronounced effects (up to 6-fold increase) observed in rat oval 

cells [49] and gastric and colon cancer cells [50]. In spite of the differences observed in the 

G-CSF-migratory potency, this cytokine might be considered as a promoting factor for cell 

migration, while other G-CSF-mediated biological effects, such as the proliferative and 

survival responses, seem to be more restricted to some cell types.

We next examined the signaling pathways involved in G-CSF-induced cell migration and 

demonstrated that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 

motility. Thus, pre-treatment of Swan 71 cells with specific pharmacological inhibitors or 

dominant negative mutants of the corresponding signal transduction pathways notably 

blocked the increment of cell migration induced by G-CSF. It was also probed that PI3K 

behaved as an upstream regulator of Erk 1/2 and p38 MAPK. The involvement of Erk 1/2 

[25-28] and PI3K [22,23,25,26,28] pathways in the promotion of trophoblast cell migration 

induced by various growth factors has been previously reported, but the participation of G-

CSF had not been assessed. Besides, the influence of p38 signaling in trophoblast cell 

migration remained uncertain up to now [23]. Thus, this is the first report showing that G-

CSF stimulates, through activation of PI3K, Erk 1/2 and p38 cascades, the migration of 
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trophoblast cells. In addition, we also found that PI3K mediates the increase of β1 integrin 

expression induced by G-CSF, being the increment of β1 integrin completely inhibited both 

in cells pre-incubated with Ly as well as in cells transfected with the DNp85 construct. 

Furthermore, after incubating Swan 71 cells in the presence of PD or SB, we next 

demonstrated that Erk 1/2 and p38 signaling pathways, both downstream PI3K, are also 

involved in the regulation of β1 integrin levels. In this regard, it is interesting to mention that 

besides the role played by MAPKs after interaction of integrins with extracellular matrix 

molecules, MAPKs signalling triggered by growth factors also might regulate integrin 

expression. Thus, the role of Erk as an “inside out” signal leading to the up-regulation of 

integrin levels and cell migration has been previously reported in human osteoblastic cells 

[51].

In summary, our results suggest that G-CSF contributes to Swan 71 cell motility and 

increases the expression level of β1 integrin cell receptor through activation of PI3K, Erk 1/2 

and p38 signaling pathways. A model illustrating the pathways involved in G-CSF-induced 

cell motility is showed in Figure 7. Based on our results, we consider that G-CSF should be 

included within the network of cytokines, hormones and growth factors expressed in the 

fetal-maternal interface as an additional regulatory factor that plays a role in the processes of 

embryo implantation and placenta growth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PI3K phosphatidylinositol 3-kinase

PMSF phenylmethanesulfonyl fluoride

PVDF polyvinylidene difluoride
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Highlights

• The possible contribution of G-CSF to human trophoblast migration was 

studied.

• G-CSF up-regulated the expression levels of β1 integrin.

• G-CSF promoted Swan 71 cell migration by activating PI3K, Erk 1/2 and p38 

pathways.

• PI3K behaves as an upstream regulator of Erk 1/2 and p38 MAPK.

• A model showing the signaling pathways involved in G-CSF-induced 

trophoblast migration is proposed
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Fig. 1. 
Effect of G-CSF on actin cytoskeleton organization in Swan 71 cells. Swan 71 cells grown 

up on coverslips were incubated 30 min or 9 h in the presence or absence of 100 ng/ml of G-

CSF. After washing with PBS, cells were fixed with 4% p-formaldehyde and then incubated 

with rhodamine-phalloidin. Stained cells were examined with a fluorescence microscope. 

The percentage of cells with migratory phenotype (presence of lamellipodium, L, and tail, 

T) from four independent experiments are shown in the lower panel represented in a Box 

and Whiskers graph. Non-parametric Wilcoxon test, **p<0.01. Magnification 400x, scale 

bar: 20 μm.
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Fig. 2. 
β1 integrin expression after treatment of Swan 71 cells with G-CSF. Non-confluent 

monolayers of Swan 71 cells maintained 24 h in serum-free medium were incubated for 4 

and 8 h in the absence or presence of 100 ng/ml of G-CSF. (A) After washing with PBS, 

cells were fixed with 1% paraformaldehyde and β1 integrin expression was analyzed by flow 

cytometry under the conditions described in Material and methods. Dot plots of one 

representative experiment are shown. Results are expressed as the media ± SE of three 

independent experiments (right panel). Statistical analyses were performed by one-way 

ANOVA followed by Bonferroni post-hoc tests. * p<0.05, significantly different from non-

stimulated cells. (B) Cell lysates were subjected to SDS-PAGE under the conditions 

described in Material and methods. Western blot assays were performed with an anti-β1 

integrin or anti-actin antibody. Results from one representative experiment are shown (left 

panels). Data quantification was performed by densitometric analysis (right panel). 

Statistical analyses were performed by one-way ANOVA followed by Bonferroni post-hoc 

tests. * p<0.05, ** p<0.01, (n=5), significantly different from non-stimulated cells.
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Fig. 3. 
G-CSF-induced migration of Swan 71 cells. (A) Swan 71 cells seeded in the upper chamber 

were allowed to migrate toward the lower chamber containing 100 ng/ml of G-CSF or 10% 

FBS. After swabbing non-migrated cells in the upper chamber, the migrated cells (filter 

lower face) were stained with DAPI and counted by microscopy. Fields from a representative 

experiment of DAPI-stained cells are shown (left panel). Scale bar: 50 μm. Box and 

Whiskers graph from results of five independent experiments are shown in the right panel. 

Non-parametric Wilcoxon test, *p<0.05, **p<0.01. (B) Monolayers of Swan 71 cells 

maintained 24 h in serum-free medium were scratched and incubated with or without 100 

ng/ml of G-CSF or FBS during 16 h. Pictures were taken at 0 and 16 h with a camera 

coupled to a microscopy. Fields from one representative experiment are shown (left panel). 

The area of the wound was analyzed using Image J. Results are expressed as the media ± SE 

of the percentage of wound closure relative to control, n=9 (right panel). Statistical analyses 

were performed by one-way ANOVA followed by Bonferroni post-hoc tests. *p<0.05, 

***p<0.001.
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Fig. 4. 
Effect of p38, Erk 1/2 and PI3K pharmacological inhibitors and dominant negatives mutants 

on G-CSF-induced cell migration. (A) Monolayers of Swan 71 were pre-treated for 1 h at 

37 °C with or without SB (2 μM), PD (1 μM) or Ly (1 μM). After scratching the monolayers, 

cells were incubated for 16 h in serum-free medium containing 100 ng/ml of G-CSF. 

Pictures were taken at 0 and 16 h. Fields from one representative experiment are shown (left 

panel). The area of the wound was analyzed using Image J. Results are expressed as the 

media ± SE of the percentage of wound closure relative to control, n=6 (right panel). 

Statistical analyses were performed by one-way ANOVA followed by Bonferroni post-hoc 

tests. *p<0.05, **p<0.01, ***p<0.001. (B) Monolayers of Swan 71 were transiently 

transfected either with DNp38, DNErk 1/2 and DNp85 constructs or the corresponding 

control vectors. After scratching the monolayers, cells were incubated for 24 h in serum-free 

medium containing 100 ng/ml of G-CSF. Pictures were taken at 0 and 24 h. Control vector 

corresponds to results obtained after incubating cells with DNp38 control vector (pcDNA3). 

Similar results were obtained with DNp85 and DNErk 1/2 control vectors. Fields from one 
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representative experiment are shown (left panel). The area of the wound was analyzed using 

Image J. Results are expressed as the media ± SE of the percentage of wound closure 

relative to control, n=6 (right panel). Statistical analyses were performed by one-way 

ANOVA followed by Bonferroni post-hoc tests. *p<0.05, **p<0.01.
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Fig. 5. 
Effect of Ly and DNp85 mutant on G-CSF-induced Erk 1/2 and p38 phosphorylation. 

Monolayers of Swan 71 cells maintained 24 h in serum-free medium were pre-treated for 1 h 

at 37 °C with or without 1 μM Ly and then exposed for 15 min (A) or 45 min (C) to 100 

ng/ml of G-CSF. Alternatively, Swan 71 cells were transfected with the DNp85 construct 

and then stimulated for 15 min (B) or 45 min (D) with 100 ng/ml of G-CSF. Western blot 

assays were performed with anti-p-Erk 1/2 and anti-Erk 1/2 (A and B), anti-p-p38 and anti-

p38 (C and D). Results from one representative experiment are shown (top panels). Data 

quantification was performed by densitometric analysis (lower panels). Statistical analyses 

were performed by one-way ANOVA followed by Bonferroni post-hoc tests (A and C) or 

Student's t-test (B and D). *** p<0.001, ** p<0.01, *p<0.05, n=3.
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Fig. 6. 
Effect of p38, Erk 1/2 and PI3K pharmacological inhibitors and DNp85 mutant on G-CSF-

induced β1 integrin expression. Monolayers of Swan 71 cells maintained 24 h in serum-free 

medium were (A) pre-treated for 1 h at 37 °C with or without SB (2 μM), PD (1 μM) or Ly 

(1 μM) or (B) transfected with DNp85 mutant or the corresponding control vector. Cells 

were then incubated for 4 h in the presence or absence of 100 ng/ml of G-CSF. Western blot 

assays were performed with anti-β1 integrin or anti-actin antibodies. Results from one 

representative experiment are shown (upper panel). Data quantification was performed by 

densitometric analysis (lower panel). Statistical analyses were performed by one-way 

ANOVA followed by Tukey's Multiple Comparison Test (A) or Student's t-test (B). * 

p<0.05, n=3.
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Fig. 7. 
Schematic representation of the signaling pathways involved in the migration induced by G-

CSF in human trophoblast Swan 71 cells. After binding of G-CSF to G-CSF receptor, 

activation of PI3K/Akt pathway is followed by phosphorylation of p38 and Erk 1/2 MAPKs, 

leading to an increase of β1integrin expression and cell migration.
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