Supplementary File

Overlapping synthetic peptides as a tool to map protein-protein interactions - FSH as a model system of nonadditive interactions

Tomás A. Santa-ColomaLaboratory of Cellular and Molecular Biology, Institute for Biomedical Research(BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina(UCA), and the National Scientific and Technical Research Council (CONICET), BuenosAires, Argentina.

Table of Contents

Appendix 1- The Gibb equation 2
Appendix 2: $\Delta \mathrm{G}^{\circ}$ additivity. 3
Appendix 3: Buried surface areas (BSA) of the hFSH- β subunit 5
Appendix 4: Values of C and ω in FSH- β 7
Appendix 5: Figure 9A data and R code 8
Appendix 6: Hot-Spots and NS in the FSH::FSHR complex 10
FIGURES 14
Figure S1: Interaction plots for the FSH- β binding regions in the FSH- β ::FSHR complex. 14
Figure S2: FSH- β chain Flexibility. 15
TABLES 16
Table S1. Interface \#1 in PDB 1 fl7 crystal 16
Table S2. Interfaces in PDB 4mqw crystal. 20
Table S3: Predicted $\boldsymbol{\Delta} \boldsymbol{G}^{\circ} \boldsymbol{i}$ values for each FSH- β residue in the FSH- β ::FSHR interaction. 58
References 61

Appendix 1- The Gibb equation

The binding equilibrium for a peptide p 1 (or any ligand) and a receptor R is,

$$
\mathrm{p} 1+\mathrm{R} \leftrightarrow \mathrm{p} 1:: \mathrm{R}
$$

The free energy of this reaction is

$$
\Delta G=\Delta G_{a}^{\circ}+R T \ln \frac{[p 1:: R]}{[p 1][R]}=\Delta G_{a}^{\circ}+R T \ln K_{a}
$$

At equilibrium $\Delta \mathrm{G}=0$; under standard conditions, $25^{\circ} \mathrm{C}$, 1 atm, $1 \mathrm{M}(\mathrm{mol} / \mathrm{L})$ concentrations, the free energy for the equilibrium of association is

$$
\Delta G^{\circ}{ }_{a}=-R T \ln K_{a}
$$

On the other hand, the free energy for the dissociation reaction is

$$
\Delta G_{d}^{\circ}=R T \ln K_{d}
$$

where K_{a} is the equilibrium constant of association and K_{d} is the equilibrium constant of dissociation $\left(K_{a}=1 / K_{d}\right)$.

At physiological conditions ($\mathrm{pH}=7$), the usual nomenclature is

$$
\Delta G^{\prime \circ}{ }_{a}=-R T \ln K_{a}^{\prime}
$$

or

$$
\Delta G^{\prime o}{ }_{d}=R T \ln K^{\prime}{ }_{d}
$$

To simplify terms, we will assume standard conditions and pH and use the equation,

$$
\Delta G^{\circ}=-R T \ln K_{a}
$$

Appendix 2: $\quad \Delta \mathbf{G}^{\circ}$ additivity

According to Gregorio Weber ${ }^{1,2}$, the total free energy of two ligands (in this case the synthetic peptides) corresponding to different anchor sites in the receptor should be,

$$
\begin{aligned}
& \Delta G^{\circ}(p 1, p 2)=\Delta G^{\circ}(p 1)+\Delta G^{\circ}\left(\frac{p 2}{p 1}\right) \\
& \Delta G^{\circ}(p 2, p 1)=\Delta G^{\circ}(p 2)+\Delta G^{\circ}\left(\frac{p 1}{p 2}\right)
\end{aligned}
$$

Where $\mathrm{p} 2 / \mathrm{p} 1$ is the binding of p 2 after binding of p 1 and vice versa, $\mathrm{p} 1 / \mathrm{p} 2$ is the binding of p 1 after binding of p 2 . Since ΔG° is a state function, a property whose value does not depend on the path taken,

$$
\begin{gathered}
\Delta G^{\circ}(p 1)+\Delta G^{\circ}\left(\frac{p 2}{p 1}\right)=\Delta G^{\circ}(p 2)+\Delta G^{\circ}\left(\frac{p 1}{p 2}\right)= \\
\Delta G^{\circ}(p 1)+\Delta G^{\circ}(p 2)+\Delta G^{\circ}{ }_{\text {interactions }}
\end{gathered}
$$

In other words,

$$
\Delta G^{\circ}(p 1, p 2)=\Delta G^{\circ} p 1+\Delta G^{\circ} p 2+\Delta G^{\circ}{ }_{\text {interactions }}
$$

Where $\Delta \mathrm{G}^{\circ}(\mathrm{p} 1, \mathrm{p} 2)$ is the total free energy of the interaction of peptide 1 and peptide 2 with receptor; $\Delta \mathrm{G}^{\circ} \mathrm{p} 1$ and $\Delta \mathrm{G}^{\circ} \mathrm{p} 2$ are the free energies corresponding to the binding of each peptide with the corresponding binding site in the receptor, and $\Delta \mathrm{G}^{\circ}$ coupling/interactions take into account the interactions between the receptor binding sites in the receptor, including entropic and enthalpic terms, interactions with solvent and other interactions. It will be abbreviated $\Delta \mathrm{G}^{\circ}{ }_{\text {int }}$. For a number i of peptides/ligands,

$$
\Delta G^{\circ}=\left(\sum_{i} \Delta G_{i}^{\circ}\right)+\Delta G^{\circ}{ }_{i n t}
$$

For an "ideal" binding with no interactions among the binding sites, without conformational changes, solvent effects, or any other enthalpic or entropic influence, $\Delta \mathrm{G}^{\circ}{ }_{\text {int }}$ $=0$. In the presence of positive cooperativity, $\Delta \mathrm{G}^{\circ}{ }_{\text {int }}<0$; on the other hand, if negative cooperativity is present (antagonism), $\Delta \mathrm{G}^{\circ}{ }_{\text {int }}>0$. Therefore, if the peptides and binding sites behave independently, and no cooperativity or interactions exists, the total free energy is,

$$
\Delta G^{\circ}(p 1, p 2)=\Delta G^{\circ} p 1+\Delta G^{\circ} p 2
$$

For i peptides (or anchor sites),

$$
\Delta G^{\circ}=\sum_{i} \Delta G_{i}^{\circ} \quad \text { Model } 1
$$

Since the free energy of association is $\Delta G_{a}^{\circ}=-R T \ln K a$ then,

$$
\Delta G_{a}^{\circ}=-R T \ln \prod_{i} K a_{i}
$$

Therefore, under ideal conditions, assuming additivity in ΔG_{i}°, the association constant is the product of affinities of each anchor site ${ }^{3}$,

$$
K a(\text { total })=\prod_{i} K a_{i}
$$

Since $\mathrm{Ka}=1 / \mathrm{K}_{\mathrm{d}}$,

$$
K d(\text { total })=\prod_{i} K d_{i} \quad \text { Model } 1
$$

This is an oversimplification, an approximation, valid only if we assume that we do not have cooperativity and no other interactions besides those represented by the term $\sum_{i} \Delta G_{i}^{\circ}$.

Appendix 3: Buried surface areas (BSA) of the hFSH- β subunit.

These BSA values correspond to hFSH- β, indicated in the supplementary Table S2, PISA server interface \#4 to \#9, PDB entry 4mqw.

Total BSA for FSH- $\beta \equiv$ BSA $(33-53)+$ BSA $(81-95)+$ BSA $(96-99)+$ BSA $(103)+$ BSA (105).
a) Interface 7: Z-H (receptor chain $\mathrm{Z}:: \mathrm{FSH}-\beta$ chain H)

BSA $(34-37)=0+26.43+1.59+26.93=54.95 \AA^{2} \quad($ peptide TRDL)
BSA $(49-52)=0+0+0+0=0 \AA^{2}$ (peptide KTCT)
$\mathrm{BSA}(33-53)=54.95+0+13.41+26.73+27.77+10.68+90.14+82.89+29.27$
$+43.25+53.96=433.05 \AA^{2}$
BSA $(81-95)=40.02+36.62+42.46+8.35+36.87=164.32 \AA^{2}$
BSA $(96-99)=31.60+110.92+11.99+86.25=240.76 \AA^{2}$
BSA $(103)=51.23 \AA^{2}$
$\operatorname{BSA}(105)=0.34 \AA^{2}$
BSA $(89-97)=40.02+36.62+42.46+8.35+36.87+31.60+110.92=306.84 \AA^{2}$
BSA FSH- $\beta=433.05+164.32+240.76+51.23+0.34=889.70 \AA^{2}$
b) Interface 8: X-B (receptor chain $\mathrm{X}:: \mathrm{FSH}-\beta$ chain B)

BSA $(34-37)=0+5.2+0.5+22.08=27.78$
BSA $(49-52)=0+0+0+0=0$
BSA $(33-53)=27.78+0+14.39+22.97+28.08+7.96+93.09+83.50+30.73$
$+28.28+72.23=409.01 \AA^{2}$
BSA $(81-95)=41.98+26.94+43.67+6.5+33.59=152.68 \AA^{2}$
BSA $(96-99)=32.48+104.82+10.68+90.05=238.03 \AA^{2}$
BSA $(103)=50.74 \AA^{2}$
BSA $(105)=0.0 \AA^{2}$

BSA $(89-97)=41.98+26.94+43.67+6.5+33.59+32.48+104.82=289.98 \AA^{2}$
BSA FSH $-\beta=409.01+152.68+238.03+50.74=850.46 \AA^{2}$
c) Interface 9: Y-E (receptor chain Y::FSH- β chain E)

BSA $(34-37)=0+4.53+0.25+25.22=30$

BSA $(49-52)=0+0+0+0=0$

BSA $(33-53)=4.53+0.25+25.22+17.23+21.55+29.57+6.86+78.76+77.05$
$+23.83+30.15+56.16=371.16 \AA^{2}$.

BSA $(81-95)=42.49+25.75+43.16+6.38+36.81=154.59 \AA^{2}$.
BSA $(96-99)=30.29+109.30+10.03+86.24=235.86 \AA^{2}$.
$\operatorname{BSA}(103)=52.21 \AA^{2}$.
BSA $(105)=1.20 \AA^{2}$.

BSA $(89-97)=42 \cdot 49+25.75+43.16+6.38+36.81+30.29+109.30=294.18 \AA^{2}$.
BSA FSH $-\beta=371.16+154.59+235.86+52.21+1.20=815.02 \AA^{2}$.

Averages BSA hFSH- β :

$$
\begin{aligned}
& \text { BSA }(34-37)=54.95,27.78,30.00=37.58 \pm 15.09 \AA^{2}(n=3) . \\
& \text { BSA }(49-52)=0,0,0,0=0 \pm 0 \AA^{2}(n=3) . \\
& \text { BSA }(33-53)=433.05,409.01,371.16=404.41 \pm 31.20 \AA^{2}(n=3) . \\
& \text { BSA }(81-95)=164.32,152.68,154.59=157.20 \pm 6.24 \AA^{2}(n=3) . \\
& \text { BSA }(96-99)=240.76,238.03,235.86=238.22 \pm 2.46 \AA^{2}(n=3) . \\
& \text { BSA }(103)=51.23,50.74,52.21=51.40 \pm 0.75 \AA^{2}(n=3) . \\
& \text { BSA }(105)=0.34,0,1.20=0.51 \pm 0.62 \AA^{2}(n=3) . \\
& \text { BSA }(34-47)=433.05,409.01,371.16=404.41 \pm 31.20 \AA^{2}(n=3) ; \equiv \text { to }(33-53) \\
& \text { BSA }(88-106)=456.65,441.45,443.86=447.32 \pm 8.17 \AA^{2}(n=3) \\
& \text { BSA }(34-47)-(88-106)=889.70,850.46,815.02=851.73 \pm 37.36 \AA^{2}(n=3) . \\
& \text { BSA }(89-97)=297.00 \pm 8.78 \AA^{2}(n=3) .
\end{aligned}
$$

BSA hFSH $-\beta=851.73 \pm 37.36 \AA^{2}(n=3)$.
BSA hFSH- $\alpha=1030.6 \pm 53.95 \AA^{2}(n=3)$.
BSA hFSH $(\mathrm{hFSH}-\alpha+\mathrm{FSH}-\beta)=1882.33 \pm 91.29(\mathrm{n}=3)$
Total BSA hFSH::hFSHR (R- $\alpha+$ R- β interfaces $)=3608.06 \pm 166.76 \AA^{2}(\mathrm{n}=3)$.
For the regression in Figure 9, the hFSH and the hFSH- β values were taken as 1882.33 and 851.73 respectively and values of the peptides as above indicated (also in Table 3).

Appendix 4: Values of C and ω in FSH- β

Considering the FSH- β and the two binding regions A, FSH- β-(33-53) and B, FSH-$\beta-(81-95)$, with association constants $K_{A B}=1.1 \times 10^{7} \mathrm{~mol}^{-1} \mathrm{~L}, \mathrm{~K}_{\mathrm{A}}=1 \times 10^{4} \mathrm{~mol}^{-1} \mathrm{~L}$, and $\mathrm{K}_{\mathrm{B}}=0.25 \times 10^{4} \mathrm{~mol}^{-1} \mathrm{~L}$, respectively, at $25^{\circ} \mathrm{C}\left(\mathrm{R}=1.9872 \times 10^{-3} \mathrm{kcal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=298.15\right.$ $\left.\mathrm{K}, \mathrm{RT}=0.5925 \mathrm{kcal} . \mathrm{mol}^{-1}\right)$,

$$
\omega=\frac{K_{A B}}{K_{A} \cdot K_{B}}=\frac{1.1 \times 10^{7} M^{-1}}{1 \times 10^{4} M^{-1} 0.25 \times 10^{4} M^{-1}}=0.11 / 0.25=0.44
$$

$$
\Delta G^{\circ}{ }_{i n t}=-R T \ln \omega=-0.593 \ln 0.44=-0.593 \times(-0.821)=0.487 \mathrm{kcal} / \mathrm{mol}
$$

$$
\Delta G_{A}^{\circ}=-R T \ln \mathrm{~K}_{A}=-0.593 \times \ln \left(1 \times 10^{4}\right)=-0.593 \times 9.210=-5.462 \mathrm{kcal} / \mathrm{mol}
$$

$$
\Delta G_{B}^{\circ}=-R T \ln \mathrm{~K}_{B}=-0.593 \times \ln \left(0.25 \times 10^{4}\right)=-0.593 \times 7.824=-4.640 \mathrm{kcal} / \mathrm{mol}
$$

$$
\Delta G_{A B}^{\circ}=-R T \ln \mathrm{~K}_{A B}=-0.593 \times \ln \left(0.11 \times 10^{8}\right)=-0.593 \times 16.213=-9.615 \mathrm{kcal} / \mathrm{mol}
$$

$$
c=\frac{\Delta G^{\circ}{ }_{A B}}{\Delta G^{\circ}+\Delta G_{B}^{\circ}}=\frac{-9.615}{-5.462-4.640}=\frac{-9.615}{-10.102}=0.952
$$

On the other hand, hFSH- β-(33-53)-(81-95) has a observed $\mathrm{K}_{\mathrm{AB}}=2 \times 10^{4} \mathrm{~mol}^{-1} \mathrm{~L}$, far from the predicted value of $\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{B}}=2.5 \times 10^{7} \mathrm{~mol}^{-1} \mathrm{~L}$ for independent interactions (Model 1). In this case,

$$
\boldsymbol{\omega}=2 \times 10^{4} / 1 \times 10^{4} * 0.25 \times 10^{4}=8 \times 10^{-4}
$$

and

$$
\mathbf{c}=-5.87 /((-5.46)+(-4,64))=-5.87 /-10.1=0.58
$$

Appendix 5: Figure 9A data and R code

Figure 9A data:

Dataset1: values 1-7
Dataset2: values 8-14
Dataset3: values 1-14

	BSA	deltaG	set
$\mathbf{1}$	0	0.00	pre
$\mathbf{2}$	38	-0.28	pre
$\mathbf{3}$	157	-1.14	pre
$\mathbf{4}$	404	-2.93	pre
$\mathbf{5}$	561	-4.07	pre
$\mathbf{6}$	852	-6.18	pre
$\mathbf{7}$	1882	-13.64	pre
$\mathbf{8}$	0	-2.93	obs
$\mathbf{9}$	38	-2.60	obs
$\mathbf{1 0}$	157	-4.64	obs
$\mathbf{1 1}$	404	-5.46	obs
$\mathbf{1 2}$	561	-5.87	obs
$\mathbf{1 3}$	852	-9.61	obs
$\mathbf{1 4}$	1882	-13.64	obs

Figure 9A was built using Rstudio and the following user libraries, system libraries, and RStudio code:

User libraries: ggplot2, plyr, reshape2, scales, readxl.
System libraries: base, datasets, graphics, grDevices, methods, stats, and utils.

RStudio code:

library(readxl)
Dataset1 <- read_excel("C:/R/DataFSH/Dataset1.xlsx")
View(Dataset1) \#BSA and deltaG values 1-7
Dataset2 <- read_excel("C:/R/DataFSH/Dataset2.xlsx")
View(Dataset2) \#BSA and deltaG values 8-14
Dataset3 <- read_excel("C:/R/DataFSH/Dataset5.xlsx")
View(Dataset3) \#BSA and deltaG values 1-14

```
lm2<- lm(deltaG~BSA, data=Dataset2)
anova(lm2)
summary (lm2)
ggplot(Dataset3, aes(BSA, deltaG, shape=set)) +
    geom_point(size=2.5) +
    geom_smooth(method="lm") +
    theme_classic() +
    labs(x = bquote('BSA'~( (\AA^2)), y = "\DeltaG'(kcal/mol)") +
    ggtitle("") +
    scale_y_continuous(breaks = seq(-16, 3, 2)) +
    scale_x_continuous(breaks = seq(0,2250, 250))+
    expand_limits( }\textrm{x}=0,\textrm{y}=2\mathrm{ )
```

Results (corresponding to Figure 9A):
> summary (lm2) \# shows the linear regression analysis for 1 lm 2 using Dataset2
Call: $\operatorname{lm}($ formula $=$ deltaG \sim BSA, data $=$ Dataset 2)
Residuals:

1	2	3	4	5	6	7
0.19689	0.75194	-0.58956	0.03927	0.54981	-1.48009	0.53173

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\mid \mathrm{t})$
(Intercept)	-3.124895	0.441719	-7.074	$0.000873 * * *$
BSA	-0.005870	0.000535	-10.972	$0.000109 * * *$

Signif. codes: 0 '***' $0.001^{\text {'**' }} 0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.8636 on 5 degrees of freedom
Multiple R-squared: 0.9601
Adjusted R-squared: 0.9521
F-statistic: 120.4 on 1 and 5 DF, p-value: 0.0001094
The ANOVA results for $\operatorname{lm} 1$ are not shown since the line is a perfect line with $\mathrm{R}=1$ and values calculated from the gamma value, FSH affinity, and the BSA values (model 2).

Appendix 6: Hot-Spots and NS in the FSH::FSHR complex.

The results correspond to the output of SPOTON, a software for Hot-Spot detection at protein-protein Interfaces. HS, hot spots; NS, null spots. HS indicated in orange and NS in green.
$H S$ and NS in the FSH $:: F S H R$ sequences.

Amino acid residue sequence for chain D (FSH- α).
VQDCPECTLQENPLFSQPGAPILQCMGCCFSRAYPTPLRSkKTMLVQKnvTSESTCCVAKSYnRvTVMGG FKVEnhtachcSTCYYhKS

Amino acid residue sequence for chain $E(F S H-\beta)$.
nSCELTNITIAIEKEECRFCISINTTWCAGYCYTRDLVYKDPARpKIQKTCTFKELVYETVRVPGC AhHADSLYTYPVATQCHCGKCDSDSTDCTVRGLGPSYCSFGE

Amino acid residue sequence for chain Y (FSHR).
ChHRICHCSNRVFLCQESkVTEIPSDLPRNAIELRFVLTKLRVIQKGAFSGFGDLEKIEISQND
 KvLiDiQDnINihtiernsfvglsfesvIlWlNKngigeihnsAfngtelDEiNusbnnnLeel PNDVFHGASGPVILDISRTRIHSLPSYGLEnLKKLRARSTYnLKKLPTLEKLVALMEASLTYPSHCC AFANWDDLVDVTCSPKPDAFNPCE

HS Table

55	LEU
79	GLN
101	ARG
10	
104	LYS
124	TYR
129	ASN
	Y

NS Table:

42	ARG	D
43	SER	D
45	LYS	D
46	THR	D
47	MET	D
48	LEU	D
49	VAL	D
51	LYS	D
65	TYR	D
67	ARG	D
85	SER	D
86	THR	D
87	CYS	D
88	TYR	D
89	TYR	D
91	LYS	D
92	SER	D
40	LYS	E
41	ASP	E
42	PRO	E
43	ALA	E
44	ARG	E
46	LYS	E
87	CYS	E
89	SER	E
90	ASP	E
93	ASP	E

94	CYS	E
95	THR	E
96	VAL	E
97	ARG	E
98	GLY	E
99	LEU	E
103	TYR	E
33	GLN	Y
34	GLU	Y
35	SER	Y
50	GLU	Y
52	ARG	Y
54	VAL	Y
57	LYS	Y
74	LYS	Y
76	GLU	Y
80	ASN	Y
81	ASP	Y
92	SER	Y
98	HIS	Y
99	GLU	Y
103	GLU	Y
105	ALA	Y
106	ASN	Y
123	GLN	Y
126	LEU	Y
130	THR	Y
131	GLY	Y

Overlapping synthetic peptides and nonadditive interactions

145	GLN	Y
146	LYS	Y
148	LEU	Y
150	ASP	Y
152	GLN	Y
153	ASP	Y
155	ILE	Y
156	ASN	Y
174	ILE	Y
176	TRP	Y
178	ASN	Y
179	LYS	Y
196	ASP	Y
197	GLU	Y
199	ASN	Y
221	VAL	Y
222	ILE	Y
242	LYS	Y
243	LYS	Y

FIGURES

Figure S1: Interaction plots for the FSH- β binding regions in the FSH- β ::FSHR complex.
A: interface FSH- β ::FSHR. The ball and stick representation were built by using PyMol v2.5 adding the plugin ' interfaceResides.py '. The labeled residues correspond to the interaction residues; green and light blue figures represent hydrophobic residues from chains E and Y respectively. B: Interaction plot made by using LigPlot+ v.2.2.5, with program DIMPLOT (www.ebi.ac.uk/thorntonsrv/software/LigPlus/).

Figure S2: FSH- $\boldsymbol{\beta}$ chain Flexibility.
Flexibility is indicated as RMSF (\AA) according to the data of the crystal structure 4 mqw . A: FSH- β (chain E). B: FSH- β in FSH- $(\alpha / \beta$) complex (chains E + D). C: FSH $-\beta$ in FSHFSHR complex (chains $\mathrm{E}+\mathrm{D}+\mathrm{Y}$). The values were obtained by using the MD server CABSflex 2.0, a Python package for fast simulations of protein structure flexibility. ${ }^{4} \mathrm{~A}$ progressive reduction of flexibility was obtained from the data corresponding to 50 simulations: FSH $-\beta$ alone $>$ FSH $-\beta$ in $\beta / \alpha>$ FSH $-\beta$ in the complex $\alpha / \beta /$ R.

TABLES

Table S1. Interface \#1 in PDB 1 f17 crystal

19	B:ILE	21		33.46	0.00	0.00	19	A:ALA	23		65.06	0.00	0.00																	
28	B:SER	22		88.49	0.00	0.00	20	A:PRO	24		65.36	0.00	0.00																	
21	B:ILE	23		24.69	0.00	0.00	21	A:ILE	25		6.19	5.52 \|									0.09									
22	B:ASN	24		106.45	0.00	0.00	22	A:LEU	26		58.49	0.61 \|	-0.01																	
23	B:THR	25		7.98	0.00	0.00	23	A:GLN	27	H	58.60	47.95 \|									-0.47									
24	B:ALA	26		23.88	0.00	0.00	24	A:CYS	28	H	13.02	13.02 \|	1								-0.13									
25	B:TRP	27		52.70	52.70 \|	1									0.77	25	A:MET	29		80.60	44.86 \|	1					0.96			
26	B:CYS	28	н	24.69	23.33 \|	1								-0.17	26	A:GLY	30	H	37.74	35.56 \|		1							-0.17	
27	B:ALA	29		47.75	31.06 \|	1						0.50	27	A:CYS	31		34.41	28.06 \|		1						0.72				
28	B:GLY	30	н	47.27	34.22 \|	1							-0.24	28	A:CYS	32	H	35.77	32.17 \|		1						-0.11			
29	B:TYR	31		194.21	84.14 IIIIII	1.12	29	A:PHE	33		161.73	64.02 IIIII	0.90																	
30	B:CYS	32	н	43.32	37.55 \|	1								-0.11	30	A:SER	34	H	61.20	58.67 \|		1								0.03
31	B:TYR	33		177.11	75.21 IIIII	0.48	31	A:ARG	35		126.78	64.71 \|							-0.43											
32	B:THR	34	H	69.70	65.94 \|		1		1				-0.38	32	A:ALA	36	H	68.73	67.50 \|	111							0.28			
33	B:ARG	35		163.42	28.34 \|		0.45	33	A:TYR	37	H	63.67	62.37 \|		1							0.49								
34	B:ASP	36	HS	120.19	98.82 \|		1							-0.22	34	A:PRO	38		108.93	97.33 \|	1								1.43	
35	B:LEU	37		72.95	19.48 \|			0.28	35	A:THR	39		17.59	6.72 IIIII	-0.07															
36	B:VAL	38	н	154.01	150.22 \|	1							1.72	36	A:PRO	40		76.81	69.12 \|		1						1.11			
37	B:TYR	39		177.47	80.89 IIIII	1.11	37	A:LEU	41		130.80	83.68 \|	111			1.26														
38	B:LYS	40	HS	137.35	73.25 \|	1					0.29	38	A:ARG	42	H	211.38	137.30 \|	11				-0.14								
39	B:ASP	41		78.52	9.98 \|		-0.11	39	A:SER	43		42.25	17.86 I\|				0.28													
40	B:PRO	42		126.53	0.00	0.00	40	A:LYS	44		82.79	8.94 \|		-0.04																
41	B:ALA	43		72.57	0.00	0.00	41	A:LYS	45	HS	145.57	55.46 IIII	-0.96																	
42	B:ARG	44		204.84	50.00 III	-0.19	42	A:THR	46		116.80	0.00	0.00																	
43	B:PRO	45		89.48	19.89 \|			0.12	43	A:MET	47		44.03	20.75 IIIII	0.35															
44	B:LYS	46		95.07	10.62 \|		-0.08	44	A:Leu	48		169.26	0.00	0.00																
45	B:ILE	47		106.25	27.94 \|			0.15	45	A:VaL	49		110.41	0.00	0.00															
46	B:GLN	48		57.58	31.44 \|	1				0.38	46	A:GLN	50		126.95	0.00	0.00													
47	B:LYS	49		107.77	3.67 I	-0.04	47	A:LYS	51	H	117.71	73.46 \|	11				-0.25													
48	B:THR	50	H	55.42	47.28 \|	11							-0.05	48	A:ASN	52	H	111.10	39.83 IIII	0.12										
49	B:CYS	51	H	32.55	32.55 \|	1								-0.02	49	A:VaL	53	H	96.58	96.24 \|										1.14
50	B:THR	52		18.18	15.35 I\|I								0.09	50	A:THR	54	H	34.63	31.62 \|	1									0.33	
51	B:PHE	53		35.35	7.31 \|			0.12	51	A:SER	55	H	74.87	74.87 \|										0.01						
52	B:LYS	54		104.29	0.00	0.00	52	A:GLU	56	H	70.86	56.52 \|	11						0.13											
53	B:GLU	55		96.97	0.00	0.00	53	A:SER	57	H	68.83	49.92 \|	1							-0.12										
54	B:LEU	56		56.03	7.60 \|		0.12	54	A:THR	58		39.26	9.02 III	-0.06																
55	B:VAL	57		80.61	0.00	0.00	55	A:CYS	59		42.79	38.31 \|	1							0.62										
56	B:TYR	58		138.57	27.49 \|		-0.16	56	A:CYS	60	H	25.99	25.63 \|										-0.15							
57	B:GLU	59		71.26	0.00	0.00	57	A:VAL	61		19.75	8.84 IIIIII	0.13																	
58	B:THR	60		80.76	0.00	0.00	58	A:ALA	62	H	20.53	3.79 \|		0.01																
59	B:VAL	61		41.80	0.00	0.00	59	A:LYS	63		124.56	0.00	0.00																	
60	B:ARG	62		149.46	0.00	0.00	60	A:SER	64		47.67	0.00	0.00																	
61	B:VAL	63		8.37	0.00	0.00	61	A:TYR	65		106.98	0.00	0.00																	
62	B:PRO	64		62.25	0.00	0.00	62	A:ASN	66		91.32	0.00	0.00																	
63	B:GLY	65		18.84	0.00	0.00	63	A:ARG	67		118.63	0.00	0.00																	
64	B:CYS	66		52.87	0.00	0.00	64	A:VaL	68		53.16	0.00	0.00																	
65	B:ALA	67		88.20	0.00	0.00	65	A:THR	69		84.35	0.00	0.00																	
66	B:HIS	68		160.87	0.00	0.00	66	A:VAL	70		25.74	0.00	0.00																	
67	B:HIS	69		79.72	0.00	0.00	67	A:MET	71		158.85	0.00	0.00																	
68	B:ALA	70		89.10	0.00	0.00	68	A:GLY	72		52.96	0.00	0.00																	
69	B:ASP	71		52.00	0.00	0.00	69	A:Gly	73		61.15	0.00	0.00																	
70	B:SER	72		51.78	0.00	0.00	70	A: PHE	74		101.92	25.28 III	0.40																	
71	B:LEU	73		134.25	0.00	0.00	71	A:LYS	75		115.00	8.09 \|	-0.09																	
72	B:TYR	74		100.92	21.21 III	-0.24	72	A:VaL	76		21.42	20.92 \|	1								0.33									
73	B:THR	75		77.39	0.00	0.00	73	A:GLU	77	HS	62.72	48.61 \|	111					-0.23												
74	B:TYR	76		16.89	2.68 \|		0.04	74	A:ASN	78		27.92	0.00	0.00																
75	B:PRO	77		49.69	40.74 \|	111					0.61	75	A:HIS	79	s	23.16	21.20 \|	1									1.14			
76	B:VAL	78		14.01	0.00	0.00	76	A:THR	80		71.26	0.00	0.00																	
77	B:ALA	79		8.02	0.00	0.00	77	A:ALA	81		31.07	0.00	0.00																	
78	B:THR	80		69.78	0.00	0.00	78	A:CYS	82		24.98	0.00	0.00																	
79	B:GLN	81		99.29	0.00	0.00	79	A:HIS	83		68.66	0.00	0.00																	
80	B:CYS	82		22.23	0.00	0.00	80	A:CYS	84		54.38	0.00	0.00																	
81	B:HIS	83		59.06	0.00	0.00	81	A:SER	85		31.74	1.44 \|	0.02																	
82	B:CYS	84		38.90	0.00	0.00	82	A:THR	86		95.96	36.49 \|	III	0.58																
83	B:GLY	85		13.80	0.00	0.00	83	A:CYS	87		44.98	15.72 IIII	0.46																	

84	B:LYS	86		127.23	0.00	0.00	84	A:TYR	88	H	137.22	28.22 \|			-0.06							
85	B:CYS	87		33.33	6.53 \|		0.10	85	A:TYR	89		190.87	108.19 \|						1.59			
86	B:ASP	88		72.43	0.00	0.00	86	A:HIS	90		137.18	115.08 \|										1.75
87	B:SER	89	H	88.61	21.52 III	-0.25																
88	B:ASP	90		136.24	3.11 \|	0.05																
89	B:SER	91	H	80.36	44.98 \|						-0.16											
90	B:THR	92	H	44.27	43.04 \|										0.53							
91	B:ASP	93	H	120.07	77.87 \|								0.27									
92	B:CYS	94		65.19	16.84 I\|		0.27															
93	B:THR	95	H	73.08	40.28 \|						-0.37											
94	B:VAL	96		157.53	83.13 \|							0.81										
95	B:ARG	97		212.15	17.07 \|	0.08																
96	B:GLY	98	H	45.83	25.76 \|							0.14										
97	B:LEU	99	H	140.39	64.68 \|					0.95												
98	B:GLY	100	H	39.61	29.56 \|									0.15								
99	B:PRO	101		83.27	62.13 \|									0.83								
100	B:SER	102		68.06	0.00	0.00																
101	B:TYR	103		105.97	45.37 \|					-0.06												
102	B:CYS	104		23.53	0.00	0.00																
103	B:SER	105		24.56	17.02 \|							0.13										
104	B:PHE	106		118.65	0.00	0.00																
105	B:GLY	107		29.87	0.98 \|	-0.01																
106	B:GLU	108	S	100.08	54.14 \|							-0.29										
107	B:MET	109	H	218.69	34.29 \|		0.19															

Table S2. Interfaces in PDB 4mqw crystal.

Overlapping synthetic peptides and nonadditive interactions

41		[[NAG]A:202	6	1	362	$\underline{\square}$	Y	$x, y-1, z$	1_545	12	4	13547	79.4	0.8	0.323	0	0	0	ε	
												Average:	81.0	0.9	0.323	0	0	0	ε	
24	42	[NAG$] \mathrm{B}: 202$	9	1	360		B	x, y, z	1_555	8	4	8420	80.3	1.8	0.318	0	0	0	ε	
25	43	- X	11	5	13995	Q	H	-y, $x-y, z+1 / 3$	2_555	8	2	8314	80.3	-1.8	0.235	0	0	0	ε	
26	44	[[NAG]D:201	8	1	360		D	x, y, z	1_555	8	4	7319	78.0	2.3	0.328	2	0	0	ε	
27	45	[NAG$] \mathrm{G}: 201$	9	1	359		G	x,y,z	1_555	9	4	7106	77.8	2.2	0.273	2	0	0	€	
46		[NAG]A:201	8	1	358	¢f		x, y, z	1_555	7	4	7235Average:	71.9	2.5	0.324	2	0	0	ε	
		74.8											2.4	0.298	2	0	0	ε		
28	47		[[NAG]H:201	9	1	361		H	x, y, z	1_555	10	5	8314	77.2	2.4	0.328	0	0	0	ε
29	48	[EDO]B:203	4	1	187	Q	B	x, y, z	1_555	13	6	8420	69.4	1.9	0.845	0	0	0	€	
30	$\underline{49}$	- z	8	2	14142	f	[EDO]B:203	-y, $x-y, z+1 / 3$	2_555	4	1	187	49.2	1.5	0.791	0	0	0	€	
31	$\underline{50}$	[NAG$] \mathrm{G}: 201$	6	1	359	Q	Y	x, y, z	1_555	7	2	13547	47.6	1.2	0.267	2	0	0	¢	
	$\underline{51}$	- [NAG]D:201	4	1	360	$\underline{\square}$	X	x, y, z	1_555	4	2	13995	39.1	1.1	0.350	2	0	0	¢	
												Average:	43.4	1.2	0.308	2	0	0	¢	
32	$\underline{52}$	[EDO]B:204	4	1	185	f	B	x, y, z	1_555	3	2	8420	44.7	1.3	0.938	1	0	0	¢	
33	$\underline{53}$	[[NAG]A:201	5	1	358	Q	Z	x, y, z	1_555	7	2	14142	41.3	0.8	0.263	2	0	0	€	
34	54	[[NAG]A:202	8	1	362	Q	D	$x, y-1, z$	1_545	3	2	7319	38.3	2.1	0.273	0	0	0	¢	
	55	[NAG]D:202	4	1	362	Q	G	$x-1, y, z$	1_455	2	1	7106	16.7	0.9	0.416	0	0	0	¢	
	56	$\bigcirc \mathrm{A}$	2	2	7235	Q	[NAG]G:202	$\mathrm{x}-1, \mathrm{y}-1, \mathrm{z}$	1_445	4	1	363	12.6	0.7	0.378	0	0	0	¢	
												Average:	22.5	1.3	0.356	0	0	0	ε	
35	57	O x	9	4	13995	Q	B	-y, $x-y, z+1 / 3$	2_555	3	2	8420	37.8	0.3	0.599	0	0	0	€	
36	588	- D	4	2	7319	Q	G	$x-1, y, z$	1_455	2	1	7106	27.4	0.9	0.705	0	0	0	¢	
	59	- A	4	2	7235	Q	D	$\mathrm{x}, \mathrm{y}-1, \mathrm{z}$	1_545	1	1	7319	26.9	0.7	0.668	0	0	0	€	
	60	- A	2	1	7235	\bigcirc	G	$x-1, y-1, z$	1_445	3	2	7106	25.6	0.7	0.639	0	0	0	ε	
												Average:	26.6	0.8	0.671	0	0	0	ε	
37	$\underline{61}$	[[NAG]B:202	1	1	360	\underline{f}	[NAG]B:201	x, y, z	1_555	2	1	359	24.1	1.1	0.415	0	0	0	¢	
38	$\underline{62}$	[[NAG]E:202	2	1	365	f	[NAG]E:201	x,y,z	1_555	1	1	357	11.9	0.8	0.439	0	0	0	¢	
39	$\underline{63}$	$\bigcirc \mathrm{Y}$	3	1	13547	Q	H	-y, $x-y, z+1 / 3$	2_555	4	1	8314	8.7	-0.1	0.540	0	0	0	¢	
40	64	[EDO]×401	1	1	186	f	A	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	1_555	2	1	7235	4.7	0.1	0.835	0	0	0	¢	
41	$\underline{65}$	- x	1	1	13995	Q	Y	-y, $x-y, z+1 / 3$	2_555	1	1	13547	2.2	-0.0	0.548	0	0	0	€	

w $-\mathrm{D}=3$

Bank
pdbe.org/pisa
in Europe
Bringing Structure to Biology

Feedback Share

PISA Interface.

Session Map (2) (id=677-61-6P8) Start Interfaces Interface Search

interface \# 4 in PDB 4mqw crystal.

Space symmetry group: P 31. Resolution: $2.90 \AA$ Monomers Assemblies
STRUCTURE OF FOLLICLE-STIMULATING HORMONE IN COMPLEXWITH THE ENTIRE ECTODOMAIN OF ITS RECEPTOR (P31)

41	X:LEU	58		0.33	0.00	0.00	41	A:LYS	45	H	161.80	24.42 \|		-0.18														
42	X ARG	59		151.06	0.00	0.00	42	A:THR	46	H	106.13	106.13 \|										0.51						
43	X :VAL	60		52.85	0.00	0.00	43	A:MET	47		40.41	29.39 \|									0.68							
44	X:ILE	61		0.67	0.00	0.00	44	A:LEU	48	H	183.03	119.63 \|								1.71								
45	X:GLN	62		68.32	0.00	0.00	45	A:VAL	49	H	102.57	65.98 \|							0.90									
46	X:LYS	63		128.72	0.00	0.00	46	A:GLN	50		105.04	0.00	0.00															
47	X:GLY	64		32.05	0.00	0.00	47	A:LYS	51	HS	116.64	46.44 \|	I		-0.52													
48	X:ALA	65		22.92	0.00	0.00	48	A:ASN	52		99.46	0.00	0.00															
49	X:PHE	66		0.78	0.00	0.00	49	A:VAL	53		105.04	0.00	0.00															
50	X SER	67		27.75	0.00	0.00	50	A:THR	54		36.23	0.00	0.00															
51	X:GLY	68		42.87	0.00	0.00	51	A:SER	55		81.02	0.00	0.00															
52	X :PHE	69		2.82	0.00	0.00	52	A:GLU	56		75.90	0.00	0.00															
53	X:GLY	70		32.66	0.00	0.00	53	A:SER	57		42.97	0.00	0.00															
54	X:ASP	71		45.91	0.00	0.00	54	A:THR	58		37.27	0.00	0.00															
55	X :LEU	72		0.00	0.00	0.00	55	A:CYS	59		43.46	0.00	0.00															
56	X:GLU	73		58.33	21.09 \|				-0.24	56	A:CYS	60		28.85	0.00	0.00												
57	X:LYS	74	H	63.94	35.94 \|						-0.32	57	A:VAL	61		53.32	0.00	0.00										
58	x :ILE	75		1.22	0.00	0.00	58	A:ALA	62		27.43	0.00	0.00															
59	X:GLU	76		25.86	0.00	0.00	59	A:LYS	63		128.57	20.47 \|		0.08														
60	X :ILE	77		0.17	0.00	0.00	60	A:SER	64		49.94	0.00	0.00															
61	X :SER	78		3.15	0.00	0.00	61	A:TYR	65	H	83.31	14.51 \|		-0.11														
62	X:GLN	79	H	82.45	42.40 \|						-0.00	62	A:ASN	66		92.14	0.00	0.00										
63	X:ASN	80		0.78	0.46 \|						0.00	63	A:ARG	67		170.73	15.28 \|	-0.23										
64	X :ASP	81	HS	58.65	42.15 \|								-0.11	64	A:VAL	68		50.10	0.00	0.00								
65	X:VAL	82		43.99	0.00	0.00	65	A:THR	69		89.82	0.00	0.00															
66	X :LEU	83		0.17	0.00	0.00	66	A:VAL	70		28.57	0.00	0.00															
67	X:GLU	84		61.99	0.00	0.00	67	A:MET	71		144.53	56.11 \|				1.28												
68	X:VAL	85		43.16	0.00	0.00	68	A:GLY	72		87.45	0.00	0.00															
69	X:ILE	86		0.00	0.00	0.00	69	A:GLY	73		54.07	0.00	0.00															
70	X:GLU	87		61.82	0.00	0.00	70	A:PHE	74		89.86	16.25 \|		0.26														
71	X:ALA	88		11.18	0.00	0.00	71	A:LYS	75		179.90	0.00	0.00															
72	X :ASP	89		56.55	0.00	0.00	72	A:VAL	76		21.74	0.98 \|	0.02															
73	X:VAL	90		0.00	0.00	0.00	73	A:GLU	77		70.41	0.00	0.00															
74	X : PHE	91		0.00	0.00	0.00	74	A:ASN	78		40.82	0.00	0.00															
75	X :SER	92		9.18	0.00	0.00	75	A:HIS	79		27.75	0.00	0.00															
76	X :ASN	93		105.91	0.00	0.00	76	A:THR	80		72.14	0.00	0.00															
77	X :LEU	94		1.92	0.00	0.00	77	A:ALA	81		36.08	0.00	0.00															
78	X :PRO	95		78.79	0.00	0.00	78	A:CYS	82		31.31	0.00	0.00															
79	X:LYS	96		106.98	0.00	0.00	79	A:HIS	83		64.63	5.82 \|	-0.22															
80	X :LEU	97		0.00	0.00	0.00	80	A:CYS	84		53.38	0.00	0.00															
81	x :HIS	98		35.96	6.74 \|		0.11	81	A:SER	85	H	37.33	20.49 \|						-0.23									
82	X:GLU	99	H	21.31	20.94 \|										-0.33	82	A:THR	86	H	86.71	56.50 \|							0.30
83	X:ILE	100		0.00	0.00	0.00	83	A:CYS	87		10.78	4.05 IIII	-0.05															
84	x ARG	101		51.99	14.70 III	-0.11	84	A:TYR	88	H	154.81	117.22 \|								0.42								
85	X :ILE	102		0.00	0.00	0.00	85	A:TYR	89		201.54	49.79 III	0.54															
86	X:GLU	103		24.62	0.00	0.00	86	A:HIS	90		95.16	0.00	0.00															
87	X:LYS	104		75.54	35.26 \|	I			0.49	87	A:LYS	91		167.35	76.09 \|					0.36								
88	X:ALA	105		0.00	0.00	0.00	88	A:SER	92		168.49	13.31 \|	-0.02															
89	X:ASN	106	H	98.48	64.23 \|							0.36																
90	X:ASN	107		65.03	0.00	0.00																						
91	X :LEU	108		0.00	0.00	0.00																						
92	X :LEU	109		87.05	0.17 \|	0.00																						
93	X :TYR	110		111.98	0.00	0.00																						
94	X :ILE	111		22.81	0.00	0.00																						
95	X :ASN	112		36.77	0.00	0.00																						
96	X:PRO	113		69.35	0.00	0.00																						
97	X:GLU	114		65.94	0.00	0.00																						
98	X:ALA	115		0.00	0.00	0.00																						
99	X : PHE	116		0.61	0.00	0.00																						
100	X :GLN	117		31.41	0.00	0.00																						
101	X:ASN	118		89.74	0.00	0.00																						
102	X :LEU	119		0.00	0.00	0.00																						
103	X :PRO	120		32.62	0.00	0.00																						
104	X:ASN	121		52.49	0.00	0.00																						
105	X :LEU	122		0.00	0.00	0.00																						

106	X:GLN 123		78.52	17.37 III	-0.09										
107	X:TYR 124		56.32	53.99 \|											0.42
108	X:LEU 125		0.00	0.00	0.00										
109	X:LEU 126		18.40	12.56 \|							0.20				
110	X:ILE 127		0.00	0.00	0.00										
111	X:SER 128		19.44	2.01 \|		0.03									
112	X:ASN 129	H	79.38	74.09 \|										-0.91	
113	X:THR 130		6.42	6.42 \|											-0.02
114	X:GLY 131		5.69	5.69 \|											0.09
115	X:ILE 132		1.84	0.00	0.00										
116	X:LYS 133		103.06	0.00	0.00										
117	X:HIS 134		116.06	0.00	0.00										
118	X:LEU 135		28.08	0.00	0.00										
119	X:PRO 136		6.39	0.00	0.00										
120	X:ASP 137		40.32	0.00	0.00										
121	X:VAL 138		1.04	0.00	0.00										
122	X:HIS 139		76.69	0.00	0.00										
123	X:LYS 140		68.01	0.00	0.00										
124	X:ILE 141		0.00	0.00	0.00										
125	X:HIS 142		74.76	0.00	0.00										
126	X:SER 143		0.00	0.00	0.00										
127	X:LEU 144		113.01	0.00	0.00										
128	X:GLN 145	H	56.52	26.35 \|	I			-0.41							
129	X:LYS 146		124.02	0.00	0.00										
130	X:VAL 147		3.24	0.00	0.00										
131	X:LEU 148		35.97	30.63 \|									0.49		
132	X:LEU 149		0.17	0.00	0.00										
133	X :ASP 150		8.71	8.71 \|											0.08
134	X:ILE 151		0.00	0.00	0.00										
135	X:GLN 152		41.14	21.68 \|						-0.22					
136	X:ASP 153	HS	53.59	38.85 \|									-0.31		
137	X:ASN 154		0.00	0.00	0.00										
138	X:ILE 155		125.97	48.10 \|	I		0.77								
139	X:ASN 156		39.39	7.42 \|		-0.08									
140	X:ILE 157		0.33	0.00	0.00										
141	X:HIS 158		75.11	0.00	0.00										
142	X:THR 159		36.76	0.00	0.00										
143	X:ILE 160		0.00	0.00	0.00										
144	X:GLU 161		85.53	0.00	0.00										
145	X:ARG 162		165.10	0.00	0.00										
146	X:ASN 163		46.44	0.00	0.00										
147	X:SER 164		25.88	0.00	0.00										
148	X:PHE 165		4.42	0.00	0.00										
149	X:VAL 166		50.44	0.00	0.00										
150	X:GLY 167		15.24	0.00	0.00										
151	X:LEU 168		0.52	0.00	0.00										
152	X:SER 169		23.80	0.00	0.00										
153	X :PHE 170		136.08	0.00	0.00										
154	X:GLU 171		66.06	0.00	0.00										
155	X:SER 172		7.94	0.00	0.00										
156	X:VAL 173		5.67	0.00	0.00										
157	X:ILE 174		47.63	15.56 \|				0.25							
158	X:LEU 175		0.00	0.00	0.00										
159	X:TRP 176		70.77	42.86 \|							0.69				
160	X:LEU 177		0.00	0.00	0.00										
161	X:ASN 178		12.65	6.55 \|						-0.07					
162	X:LYS 179		86.60	12.89 \|		-0.48									
163	X:ASN 180		8.95	0.00	0.00										
164	X:GLY 181		8.20	0.00	0.00										
165	X:ILE 182		0.00	0.00	0.00										
166	X:GLN 183		79.83	0.00	0.00										
167	X:GLU 184		100.82	0.00	0.00										
168	X:ILE 185		6.46	0.00	0.00										
169	X:HIS 186		77.74	0.00	0.00										
170	X:ASN 187		70.65	0.00	0.00										

171	X:SER 188	17.73	0.00	0.00
172	X:ALA 189	0.00	0.00	0.00
173	X:PHE 190	0.00	0.00	0.00
174	X:ASN 191	49.38	0.00	0.00
175	X:GLY 192	43.55	0.00	0.00
176	X:THR 193	13.94	0.00	0.00
177	X:GLN 194	82.42	0.00	0.00
178	X:LEU 195	3.13	0.00	0.00
179	X:ASP 196	44.38	0.00	0.00
180	X:GLU 197	33.79	0.00	0.00
181	X:LEU 198	0.74	0.00	0.00
182	X:ASN 199	24.88	6.40 III	-0.07
183	X:LEU 200	0.17	0.00	0.00
184	X:SER 201	3.44	0.00	0.00
185	X:ASP 202	37.50	0.00	0.00
186	X:ASN 203	0.84	0.00	0.00
187	X:ASN 204	83.66	0.00	0.00
188	X:ASN 205	60.70	0.00	0.00
189	X:LEU 206	0.17	0.00	0.00
190	X:GLU 207	70.33	0.00	0.00
191	X:GLU 208	105.96	0.00	0.00
192	X:LEU 209	11.35	0.00	0.00
193	X:PRO 210	23.77	0.00	0.00
194	X:ASN 211	84.55	0.00	0.00
195	X:ASP 212	62.70	0.00	0.00
196	X:VAL 213	0.33	0.00	0.00
197	X:PHE 214	4.64	0.00	0.00
198	X:HIS 215	94.02	0.00	0.00
199	X:GLY 216	41.75	0.00	0.00
200	X:ALA 217	18.58	0.00	0.00
201	X:SER 218	62.10	0.00	0.00
202	X:GLY 219	3.38	0.00	0.00
203	X:PRO 220	0.17	0.00	0.00
204	X:VAL 221	53.88	0.00	0.00
205	X:ILE 222	39.84	0.00	0.00
206	x:LEU 223	0.00	0.00	0.00
207	X:ASP 224	22.05	0.00	0.00
208	X:ILE 225	0.00	0.00	0.00
209	x:SER 226	1.74	0.00	0.00
210	X:ARG 227	98.61	0.00	0.00
211	X:THR 228	6.83	0.00	0.00
212	x:ARG 229	100.35	0.00	0.00
213	X:ILE 230	0.00	0.00	0.00
214	X:HIS 231	91.24	0.00	0.00
215	x:SER 232	51.34	0.00	0.00
216	X:LEU 233	15.38	0.00	0.00
217	X:PRO 234	1.98	0.00	0.00
218	x:SER 235	75.23	0.00	0.00
219	X:TYR 236	79.03	0.00	0.00
220	X:GLY 237	2.01	0.00	0.00
221	X:LEU 238	4.89	0.00	0.00
222	X:GLU 239	85.37	0.00	0.00
223	X:ASN 240	66.91	0.00	0.00
224	x:LEU 241	0.00	0.00	0.00
225	X:LYS 242	88.31	0.00	0.00
226	x:LYS 243	48.45	0.00	0.00
227	X:LEU 244	0.27	0.00	0.00
228	X:ARG 245	75.08	0.00	0.00
229	X:ALA 246	2.16	0.00	0.00
230	X:ARG 247	100.10	0.00	0.00
231	X:SER 248	44.82	0.00	0.00
232	X:THR 249	1.27	0.00	0.00
233	X:TYR 250	132.42	0.00	0.00
234	X:ASN 251	47.21	0.00	0.00
235	X:LEU 252	9.22	0.00	0.00

236	X:LYS 253		133.11	0.00	0.00		
237	X:LYS 254		150.57	0.00	0.00		
238	X:LEU 255		32.64	0.00	0.00		
239	X:PRO 256		23.71	0.00	0.00		
240	X:THR 257		78.49	0.00	0.00		
241	X:LEU 258		51.85	0.00	0.00		
242	x:GLU 259		124.91	0.00	0.00		
243	X:LYS 260		85.06	0.00	0.00		
244	X:LEU 261		0.00	0.00	0.00		
245	X:VAL 262		100.48	0.00	0.00		
246	X:ALA 263		33.58	0.00	0.00		
247	X:LEU 264		8.22	0.00	0.00		
248	X:MET 265		76.48	0.00	0.00		
249	X:GLU 266		45.27	0.00	0.00		
250	X:ALA 267		1.29	0.00	0.00		
251	X:SER 268		20.32	0.00	0.00		
252	X:LEU 269		3.39	0.00	0.00		
253	x :THR 270		27.67	0.00	0.00		
254	x :TYR 271		53.44	0.00	0.00		
255	X:PRO 272		26.30	0.00	0.00		
256	X:SER 273		54.37	0.00	0.00		
257	X:HIS 274		22.75	0.00	0.00		
258	x:CYS 275		8.43	0.00	0.00		
259	X:CYS 276		37.49	0.00	0.00		
260	X:ALA 277		76.03	0.00	0.00		
261	X:PHE 278		9.70	0.00	0.00		
262	X:ALA 279		56.30	0.00	0.00		
263	X:ASN 280		121.34	0.00	0.00		
264	x :TRP 281		54.95	0.00	0.00		
265	x :ARG 282		132.03	0.00	0.00		
266	X:ILE 291		165.39	0.00	0.00		
267	x:CYS 292		58.06	0.00	0.00		
268	X:ASN 293		111.81	24.26 III	0.05		
269	X:LYS 294		142.04	22.00 \|		0.34	
270	X:ASP 334		154.37	0.00	0.00		
271	X:TYS 335	H	285.76	112.36 \|	I		0.26
272	x:ASP 336		98.65	0.00	0.00		
273	X:LEU 337		89.94	14.73 \|		0.24	
274	x:CYS 338		133.42	18.49 \|		-0.19	
275	x :VAL 342		205.83	0.00	0.00		
276	X:ASP 343		58.65	0.00	0.00		
277	X :VAL 344		23.35	0.00	0.00		
278	x :THR 345		92.80	0.00	0.00		
279	x :CYS 346		15.28	0.00	0.00		
280	X :SER 347		31.08	0.00	0.00		
281	X:PRO 348		36.93	0.00	0.00		
282	X:LYS 349		153.42	0.00	0.00		
283	X:PRO 350		47.86	0.00	0.00		
284	x :ASP 351		120.71	0.00	0.00		
285	X:ALA 352		100.21	0.00	0.00		
286	X :PHE 353		129.97	0.00	0.00		
287	X :ASN 354		53.47	0.00	0.00		
288	X :PRO 355		108.21	0.00	0.00		
289	x:CYS 356		109.92	0.00	0.00		

\#\#	Structure 1		HSDC	ASA	BSA	$\underline{\underline{-1}}$	\#\#	Struc	ture 2	HSDC	ASA	BSA	$\underline{\underline{-1}}$						
1	Y:CYS	18		116.02	0.00	0.00	1	D:VAL	4		205.59	0.00	0.00						
2	Y:HIS	19		161.36	0.00	0.00	2	D:GLN	5		177.24	0.00	0.00						
3	Y:HIS	20		15.73	0.00	0.00	3	D:ASP	6		129.63	0.00	0.00						
4	Y:ARG	21		156.33	0.00	0.00	4	D:CYS	7		92.21	0.00	0.00						
5	Y:ILE	22		35.96	0.00	0.00	5	D: PRO	8		97.84	0.00	0.00						
6	Y:CYS	23		2.42	0.00	0.00	6	D:GLU	9		137.54	0.00	0.00						
7	Y:HIS	24		97.25	0.00	0.00	7	D:CYS	10		15.01	0.00	0.00						
8	Y:CYS	25		21.51	0.00	0.00	8	D: THR	11		67.99	0.00	0.00						
9	Y:SER	26		79.07	0.00	0.00	9	D:LEU	12		53.36	0.00	0.00						
10	Y:ASN	27		139.31	0.00	0.00	10	D:GLN	13		92.91	0.00	0.00						
11	Y:ARG	28		99.27	0.00	0.00	11	D:GLU	14		117.47	0.00	0.00						
12	Y:VAL	29		33.72	0.00	0.00	12	D:ASN	15	H	19.84	11.84 \|						-0.15	
13	Y: PHE	30		3.90	0.00	0.00	13	D: PRO	16		124.10	0.00	0.00						
14	Y:LEU	31		36.93	0.00	0.00	14	D:LEU	17		109.94	44.50 \|					0.71		
15	Y:CYS	32		0.16	0.00	0.00	15	D: PHE	18		49.69	18.83 \|				0.30			
16	Y:GLN	33		57.37	0.00	0.00	16	D:SER	19		19.73	0.00	0.00						
17	Y:GLU	34		83.98	0.00	0.00	17	D:GLN	20		107.80	0.00	0.00						
18	Y:SER	35		69.97	5.31 \|	-0.06	18	D: PRO	21		126.81	0.00	0.00						
19	Y:LYS	36		123.23	0.00	0.00	19	D:GLY	22		83.76	0.00	0.00						
20	Y:VAL	37		0.84	0.00	0.00	20	D:ALA	23		54.99	0.00	0.00						
21	Y:THR	38		84.84	0.00	0.00	21	D: PRO	24		54.51	0.00	0.00						
22	Y:GLU	39		123.18	0.00	0.00	22	D:ILE	25		6.19	0.00	0.00						
23	Y:ILE	40		20.95	0.00	0.00	23	D:LEU	26		60.16	0.00	0.00						
24	Y:PRO	41		6.58	0.00	0.00	24	D:GLN	27	H	67.81	19.35 \|			-0.22				
25	Y:SER	42		104.31	0.00	0.00	25	D:CYS	28		13.84	0.00	0.00						
26	Y:ASP	43		72.40	0.00	0.00	26	D:MET	29		70.89	0.00	0.00						
27	Y:LEU	44		3.08	0.00	0.00	27	D:GLY	30		38.18	0.00	0.00						
28	Y:PRO	45		48.31	0.00	0.00	28	D:CYS	31		34.59	0.00	0.00						
29	Y:ARG	46		122.20	0.00	0.00	29	D:CYS	32		33.16	0.00	0.00						
30	Y:ASN	47		72.74	0.00	0.00	30	D: PHE	33		154.98	0.00	0.00						
31	Y:ALA	48		0.00	0.00	0.00	31	D:SER	34		63.15	0.00	0.00						
32	Y:ILE	49		37.50	0.00	0.00	32	D:ARG	35		128.14	0.00	0.00						
33	Y:GLU	50		27.88	0.00	0.00	33	D:ALA	36		72.89	0.00	0.00						
34	Y :LEU	51		0.00	0.00	0.00	34	D: TYR	37		66.19	0.00	0.00						
35	Y:ARG	52		75.47	0.00	0.00	35	D:PRO	38		109.37	0.00	0.00						
36	Y: PHE	53		0.62	0.00	0.00	36	D: THR	39		8.79	0.00	0.00						
37	Y:VAL	54		18.75	0.00	0.00	37	D: PRO	40		67.54	0.00	0.00						
38	Y:LEU	55		81.34	49.35 \|							0.74	38	D:LEU	41		144.60	0.00	0.00
39	Y:THR	56		0.12	0.00	0.00	39	D:ARG	42	HS	165.31	93.85 \|						-0.64	
40	Y:LYS	57		74.45	16.75 I\|		0.04	40	D:SER	43	H	41.44	23.53 \|						0.05
41	Y:LEU	58		1.33	0.00	0.00	41	D:LYS	44		50.13	0.00	0.00						
42	Y:ARG	59		137.80	0.00	0.00	42	D:LYS	45		156.16	32.51 \|			-0.41				

43	Y:VAL 60		51.82	0.00	0.00	43	D:THR	46	H	105.14	105.14 \|										0.53							
44	Y:ILE 61		0.67	0.00	0.00	44	D:MET	47		45.98	32.45 \|									0.78								
45	Y:GLN 62		62.91	0.00	0.00	45	D:LEU	48	H	189.33	118.41 \|								1.59									
46	Y:LYS 63		141.36	0.00	0.00	46	D:VAL	49	H	102.89	67.22 \|							0.93										
47	Y:GLY 64		26.22	0.00	0.00	47	D:GLN	50		100.02	0.00	0.00																
48	Y:ALA 65		19.89	0.00	0.00	48	D:LYS	51	HS	115.35	43.61 \|				-0.53													
49	Y:PHE 66		0.00	0.00	0.00	49	D:ASN	52		98.11	0.00	0.00																
50	Y:SER 67		29.69	0.00	0.00	50	D:VAL	53		101.43	0.00	0.00																
51	Y:GLY 68		38.46	0.00	0.00	51	D: THR	54		37.52	0.00	0.00																
52	Y:PHE 69		4.69	0.00	0.00	52	D:SER	55		80.36	0.00	0.00																
53	Y:GLY 70		36.03	0.00	0.00	53	D:GLU	56		71.71	0.00	0.00																
54	Y:ASP 71		48.21	0.00	0.00	54	D:SER	57		41.51	0.00	0.00																
55	Y:LEU 72		0.00	0.00	0.00	55	D:THR	58		40.21	0.00	0.00																
56	Y:GLU 73		59.55	0.00	0.00	56	D:CYS	59		45.30	0.00	0.00																
57	Y:LYS 74	H	61.52	31.50 \|						-0.15	57	D:CYS	60		27.37	0.00	0.00											
58	Y:ILE 75		1.63	0.00	0.00	58	D:VAL	61		53.74	0.00	0.00																
59	Y:GLU 76		23.90	0.00	0.00	59	D:ALA	62		28.86	0.00	0.00																
60	Y:ILE 77		0.43	0.00	0.00	60	D:LYS	63		135.71	0.00	0.00																
61	Y:SER 78		2.42	0.00	0.00	61	D:SER	64		47.51	0.00	0.00																
62	Y:GLN 79	H	75.74	38.88 \|						-0.09	62	D:TYR	65		78.06	6.99 \|	-0.08											
63	Y:ASN 80		0.79	0.00	0.00	63	D:ASN	66		83.64	0.00	0.00																
64	Y:ASP 81	HS	63.67	50.18 \|									-0.19	64	D:ARG	67	H	183.45	34.38 \|		-0.77							
65	Y:VAL 82		42.97	0.00	0.00	65	D:VAL	68		51.11	0.00	0.00																
66	Y:LEU 83		0.50	0.00	0.00	66	D: THR	69		80.85	0.00	0.00																
67	Y:GLU 84		67.24	0.00	0.00	67	D:VAL	70		24.78	0.00	0.00																
68	Y:VAL 85		40.18	0.00	0.00	68	D:MET	71		109.33	0.00	0.00																
69	Y:ILE 86		0.61	0.00	0.00	69	D:GLY	72		78.00	0.00	0.00																
70	Y:GLU 87		66.68	0.00	0.00	70	D:GLY	73		62.66	0.00	0.00																
71	Y:ALA 88		11.20	0.00	0.00	71	D: PHE	74		102.98	13.12 \|		0.21															
72	Y:ASP 89		55.28	0.00	0.00	72	D:LYS	75		179.84	0.00	0.00																
73	Y:VAL 90		0.00	0.00	0.00	73	D:VAL	76		21.03	0.00	0.00																
74	Y:PHE 91		0.00	0.00	0.00	74	D:GLU	77		78.70	0.00	0.00																
75	Y:SER 92		4.65	0.00	0.00	75	D:ASN	78		38.23	0.00	0.00																
76	Y:ASN 93		102.22	0.00	0.00	76	D:HIS	79		25.00	0.00	0.00																
77	Y:LEU 94		0.58	0.00	0.00	77	D:THR	80		74.29	0.00	0.00																
78	Y:PRO 95		73.93	0.00	0.00	78	D:ALA	81		32.78	0.00	0.00																
79	Y:LYS 96		106.57	0.00	0.00	79	D:CYS	82		27.08	0.00	0.00																
80	Y:LEU 97		0.00	0.00	0.00	80	D:HIS	83		65.34	5.25 \|	-0.19																
81	Y:HIS 98		38.02	5.61 \|		0.07	81	D:CYS	84		52.58	0.00	0.00															
82	Y:GLU 99	H	28.62	26.59 \|											-0.37	82	D:SER	85	H	35.24	20.44 \|							-0.23
83	Y:ILE 100		0.00	0.00	0.00	83	D:THR	86	H	88.33	58.23 \|							0.31										
84	Y:ARG 101		60.29	14.92 III	-0.10	84	D:CYS	87		9.94	3.93 IIII	-0.04																
85	Y:ILE 102		0.17	0.00	0.00	85	D:TYR	88	H	157.92	119.78 \|									0.34								
86	Y:GLU 103		25.89	0.00	0.00	86	D:TYR	89		196.16	50.75 \|			0.48														
87	Y:LYS 104		80.75	37.03 \|	III	0.49	87	D:HIS	90		97.11	0.16 \|	0.00															
88	Y:ALA 105		0.00	0.00	0.00	88	D:LYS	91	HS	158.24	73.21 \|					-1.25												
89	Y:ASN 106	H	95.27	63.12 \|							0.39	89	D:SER	92		166.95	29.46 \|		-0.07									
90	Y:ASN 107		69.38	0.00	0.00																							
91	Y:LEU 108		0.00	0.00	0.00																							
92	Y:LEU 109		81.15	0.17 \|	0.00																							
93	Y:TYR 110		111.49	0.00	0.00																							
94	Y:ILE 111		25.85	0.00	0.00																							
95	Y:ASN 112		33.82	0.00	0.00																							
96	Y:PRO 113		66.53	0.00	0.00																							
97	Y:GLU 114		66.13	0.00	0.00																							
98	Y:ALA 115		0.00	0.00	0.00																							
99	Y:PHE 116		1.09	0.00	0.00																							
100	Y:GLN 117		34.61	0.00	0.00																							
101	Y:ASN 118		76.63	0.00	0.00																							
102	Y:LEU 119		0.00	0.00	0.00																							
103	Y:PRO 120		36.78	0.00	0.00																							
104	Y:ASN 121		51.50	0.00	0.00																							
105	Y:LEU 122		0.00	0.00	0.00																							
106	Y:GLN 123		71.85	14.49 III	-0.05																							
107	Y:TYR 124		52.14	48.95 \|										0.42														

108	Y:LEU 125		0.00	0.00	0.00											
109	Y:LEU 126		17.73	9.70 \|						0.16						
110	Y:ILE 127		0.00	0.00	0.00											
111	Y:SER 128		19.41	0.00	0.00											
112	Y:ASN 129	H	83.24	76.63 \|										-0.86		
113	Y:THR 130		6.62	6.62 \|											0.03	
114	Y:GLY 131		5.36	5.36 \|											0.09	
115	Y:ILE 132		4.01	0.00	0.00											
116	Y:LYS 133		96.36	0.00	0.00											
117	Y:HIS 134		116.35	0.00	0.00											
118	Y:LEU 135		27.23	0.00	0.00											
119	Y:PRO 136		8.21	0.00	0.00											
120	Y:ASP 137		40.39	0.00	0.00											
121	Y:VAL 138		3.08	0.00	0.00											
122	Y:HIS 139		78.98	0.00	0.00											
123	Y:LYS 140		71.91	0.00	0.00											
124	Y:ILE 141		0.00	0.00	0.00											
125	Y:HIS 142		66.97	0.00	0.00											
126	Y:SER 143		0.00	0.00	0.00											
127	Y:LEU 144		114.14	4.79 \|	-0.05											
128	Y:GLN 145	H	65.96	31.26 \|					-0.45							
129	Y:LYS 146		122.05	0.00	0.00											
130	Y:VAL 147		2.87	0.00	0.00											
131	Y:LEU 148		37.75	32.48 \|										0.52		
132	Y:LEU 149		0.50	0.00	0.00											
133	Y:ASP 150	HS	9.20	9.20 \|												0.07
134	Y:ILE 151		0.00	0.00	0.00											
135	Y:GLN 152		42.10	24.19 \|						-0.20						
136	Y:ASP 153	HS	57.13	43.37 \|									-0.32			
137	Y:ASN 154		0.00	0.00	0.00											
138	Y:ILE 155		127.03	49.94 \|	II	0.80										
139	Y:ASN 156		35.49	6.27 \|		-0.07										
140	Y:ILE 157		0.00	0.00	0.00											
141	Y:HIS 158		73.84	0.00	0.00											
142	Y:THR 159		35.88	0.00	0.00											
143	Y:ILE 160		0.00	0.00	0.00											
144	Y:GLU 161		87.10	0.00	0.00											
145	Y:ARG 162		157.60	0.00	0.00											
146	Y:ASN 163		49.31	0.00	0.00											
147	Y:SER 164		20.64	0.00	0.00											
148	Y:PHE 165		4.64	0.00	0.00											
149	Y:VAL 166		50.10	0.00	0.00											
150	Y:GLY 167		13.03	0.00	0.00											
151	Y:LEU 168		1.08	0.00	0.00											
152	Y:SER 169		22.12	0.00	0.00											
153	Y:PHE 170		139.67	0.00	0.00											
154	Y:GLU 171		66.22	7.59 \|		-0.11										
155	Y:SER 172		9.89	0.00	0.00											
156	Y:VAL 173		4.52	0.00	0.00											
157	Y:ILE 174		47.68	13.89 III	0.22											
158	Y:LEU 175		0.00	0.00	0.00											
159	Y:TRP 176		69.84	43.33 \|							0.69					
160	Y:LEU 177		0.00	0.00	0.00											
161	Y:ASN 178		12.50	9.75 \|								-0.11				
162	Y:LYS 179		88.68	15.32 \|		-0.29										
163	Y:ASN 180		9.57	0.00	0.00											
164	Y:GLY 181		15.18	0.00	0.00											
165	Y:ILE 182		0.00	0.00	0.00											
166	Y:GLN 183		69.64	0.00	0.00											
167	Y:GLU 184		85.97	0.00	0.00											
168	Y:ILE 185		6.16	0.00	0.00											
169	Y:HIS 186		71.48	0.00	0.00											
170	Y:ASN 187		72.36	0.00	0.00											
171	Y:SER 188		23.07	0.00	0.00											
172	Y:ALA 189		0.00	0.00	0.00											

173	Y:PHE 190	0.00	0.00	0.00					
174	Y:ASN 191	40.79	0.00	0.00					
175	Y:GLY 192	43.58	0.00	0.00					
176	Y:THR 193	10.22	0.00	0.00					
177	Y:GLN 194	89.98	0.00	0.00					
178	Y:LEU 195	3.35	0.00	0.00					
179	Y:ASP 196	44.83	0.00	0.00					
180	Y:GLU 197	38.40	0.00	0.00					
181	Y:LEU 198	0.31	0.00	0.00					
182	Y:ASN 199	25.92	10.77 \|						-0.12
183	Y:LEU 200	0.00	0.00	0.00					
184	Y:SER 201	2.46	0.00	0.00					
185	Y:ASP 202	31.09	0.00	0.00					
186	Y:ASN 203	0.34	0.00	0.00					
187	Y:ASN 204	83.39	0.00	0.00					
188	Y:ASN 205	84.41	0.00	0.00					
189	Y:LEU 206	0.00	0.00	0.00					
190	Y:GLU 207	70.26	0.00	0.00					
191	Y:GLU 208	117.57	0.00	0.00					
192	Y:LEU 209	16.19	0.00	0.00					
193	Y:PRO 210	39.50	0.00	0.00					
194	Y:ASN 211	82.90	0.00	0.00					
195	Y:ASP 212	55.27	0.00	0.00					
196	Y:VAL 213	0.00	0.00	0.00					
197	Y:PHE 214	4.09	0.00	0.00					
198	Y:HIS 215	88.48	0.00	0.00					
199	Y:GLY 216	45.36	0.00	0.00					
200	Y:ALA 217	14.23	0.00	0.00					
201	Y:SER 218	61.69	0.00	0.00					
202	Y:GLY 219	2.90	0.00	0.00					
203	Y:PRO 220	0.00	0.00	0.00					
204	Y:VAL 221	48.86	0.00	0.00					
205	Y:ILE 222	35.14	0.00	0.00					
206	Y:LEU 223	0.00	0.00	0.00					
207	Y:ASP 224	21.97	0.00	0.00					
208	Y:ILE 225	0.00	0.00	0.00					
209	Y:SER 226	0.41	0.00	0.00					
210	Y:ARG 227	96.32	0.00	0.00					
211	Y:THR 228	5.61	0.00	0.00					
212	Y:ARG 229	112.51	0.00	0.00					
213	Y:ILE 230	0.33	0.00	0.00					
214	Y:HIS 231	90.17	0.00	0.00					
215	Y:SER 232	38.40	0.00	0.00					
216	Y:LEU 233	7.37	0.00	0.00					
217	Y:PRO 234	2.42	0.00	0.00					
218	Y:SER 235	66.02	0.00	0.00					
219	Y:TYR 236	83.82	0.00	0.00					
220	Y:GLY 237	1.00	0.00	0.00					
221	Y:LEU 238	4.88	0.00	0.00					
222	Y:GLU 239	87.35	0.00	0.00					
223	Y:ASN 240	66.57	0.00	0.00					
224	Y:LEU 241	0.00	0.00	0.00					
225	Y:LYS 242	76.85	0.00	0.00					
226	Y:LYS 243	60.31	0.00	0.00					
227	Y:LEU 244	0.76	0.00	0.00					
228	Y:ARG 245	68.70	0.00	0.00					
229	Y:ALA 246	1.67	0.00	0.00					
230	Y:ARG 247	94.38	0.00	0.00					
231	Y:SER 248	47.42	0.00	0.00					
232	Y:THR 249	1.31	0.00	0.00					
233	Y:TYR 250	129.53	0.00	0.00					
234	Y:ASN 251	38.49	0.00	0.00					
235	Y:LEU 252	3.62	0.00	0.00					
236	Y:LYS 253	131.16	0.00	0.00					
237	Y:LYS 254	128.33	0.00	0.00					

238	Y:LEU	255		18.87	0.00	0.00		
239	Y:PRO	256		16.26	0.00	0.00		
240	Y:THR	257		82.05	0.00	0.00		
241	Y:LEU	258		53.81	0.00	0.00		
242	Y:GLU	259		125.02	0.00	0.00		
243	Y:LYS	260		84.05	0.00	0.00		
244	Y:LEU	261		0.62	0.00	0.00		
245	Y:VAL	262		109.03	0.00	0.00		
246	Y:ALA	263		27.80	0.00	0.00		
247	Y:LEU	264		8.88	0.00	0.00		
248	Y:MET	265		103.47	0.00	0.00		
249	Y:GLU	266		51.50	0.00	0.00		
250	Y:ALA	267		1.21	0.00	0.00		
251	Y:SER	268		18.06	0.00	0.00		
252	Y:LEU	269		3.15	0.00	0.00		
253	Y:THR	270		25.58	0.00	0.00		
254	Y:TYR	271		68.22	0.00	0.00		
255	Y:PRO	272		43.96	0.00	0.00		
256	Y:SER	273		49.02	0.00	0.00		
257	Y :HIS	274		22.67	0.00	0.00		
258	Y:CYS	275		5.12	0.00	0.00		
259	Y:CYS	276		20.11	0.00	0.00		
260	Y:ALA	277		68.64	0.00	0.00		
261	Y: PHE	278		5.23	0.00	0.00		
262	Y:ALA	279		76.36	0.00	0.00		
263	Y:ASN	280		79.69	0.00	0.00		
264	Y:TRP	281		91.13	0.00	0.00		
265	Y:ASP	334		191.42	1.06 \|	0.01		
266	Y:TYS	335	H	273.27	105.50 \|	I		-0.09
267	Y :ASP	336		143.78	3.68 \|	0.06		
268	Y:LEU	337		151.48	12.88 \|	0.21		
269	Y:VAL	342		202.97	0.00	0.00		
270	Y:ASP	343		90.42	0.00	0.00		
271	Y:VAL	344		24.43	0.00	0.00		
272	Y: THR	345		82.06	0.00	0.00		
273	Y:CYS	346		10.46	0.00	0.00		
274	Y:SER	347		27.66	0.00	0.00		
275	Y:PRO	348		41.67	0.00	0.00		
276	Y:LYS	349		126.58	0.00	0.00		
277	Y:PRO	350		42.97	0.00	0.00		
278	Y:ASP	351		125.29	0.00	0.00		
279	Y:ALA	352		82.91	0.00	0.00		
280	Y: PHE	353		199.77	0.00	0.00		
281	Y:ASN	354		53.01	0.00	0.00		
282	Y:PRO	355		122.71	0.00	0.00		
283	Y:CYS	356		52.99	0.00	0.00		
284	Y:GLU	357		146.32	0.00	0.00		

Interfacing residues (not a contact table)								XML	Display level: Residues \quad V														
Inaccessible residues						HSDC	Residues making Hydrogen/Disulphide bond, Salt bridge or Covalent link Interfacing residues																
ASA Accessible Surface Area, $\AA^{2} \quad$ BSA Buried Surface Area, $\AA^{2} \quad \Delta^{\text {i }}$ G Solvation energy effect, $\mathrm{kcal} / \mathrm{mol} \quad\|l\| l \mid$ Buried area percentage, one bar per 10%																							
\#\#	Struct	ture 1	HSDC	ASA	BSA	$\triangle \underline{-G}$	\#\#	Struct	ture 2	HSDC	ASA	BSA	$\underline{\Delta}$										
1	Z:CYS	18		128.01	0.00	0.00	1	G:GLN	5		236.95	0.00	0.00										
2	Z:HIS	19		167.66	0.00	0.00	2	G:ASP	6		129.00	0.00	0.00										
3	Z:HIS	20		14.05	0.00	0.00	3	G:CYS	7		89.39	0.00	0.00										
4	Z:ARG	21		143.54	0.00	0.00	4	G:PRO	8		85.61	0.00	0.00										
5	Z:ILE	22		42.09	0.00	0.00	5	G:GLU	9		145.16	0.00	0.00										
6	Z:CYS	23		2.27	0.00	0.00	6	G:CYS	10		13.49	0.00	0.00										
7	Z:HIS	24		97.00	0.00	0.00	7	G:THR	11		65.57	0.00	0.00										
8	Z:CYS	25		23.23	0.00	0.00	8	G:LEU	12		58.93	0.00	0.00										
9	Z:SER	26		70.63	0.00	0.00	9	G:GLN	13		96.13	0.00	0.00										
10	Z:ASN	27		141.13	0.00	0.00	10	G:GLU	14		110.69	0.00	0.00										
11	Z:ARG	28		101.49	0.00	0.00	11	G:ASN	15		26.02	17.36 \|							-0.22				
12	Z:VAL	29		25.25	0.00	0.00	12	G:PRO	16		124.80	0.00	0.00										
13	Z:PHE	30		5.92	0.00	0.00	13	G:LEU	17		105.71	27.44 \|	I	0.44									
14	Z:LEU	31		38.60	0.00	0.00	14	G:PHE	18		44.31	18.35 \|					0.29						
15	Z:CYS	32		0.00	0.00	0.00	15	G:SER	19		17.04	0.00	0.00										
16	Z:GLN	33		53.76	0.00	0.00	16	G:GLN	20		101.15	0.00	0.00										
17	Z:GLU	34		80.61	0.00	0.00	17	G:PRO	21		127.03	0.00	0.00										
18	Z:SER	35		64.58	4.53 \|	-0.05	18	G:GLY	22		84.34	0.00	0.00										
19	Z:LYS	36		113.02	0.00	0.00	19	G:ALA	23		60.12	0.00	0.00										
20	Z:VAL	37		1.51	0.00	0.00	20	G:PRO	24		50.40	0.00	0.00										
21	Z:THR	38		81.53	0.00	0.00	21	G:ILE	25		8.20	0.00	0.00										
22	Z:GLU	39		122.49	0.00	0.00	22	G:LEU	26		60.29	0.00	0.00										
23	Z:ILE	40		31.49	0.00	0.00	23	G:GLN	27	H	59.00	14.80 \|			-0.16								
24	Z:PRO	41		6.44	0.00	0.00	24	G:CYS	28		11.51	0.00	0.00										
25	Z:SER	42		104.54	0.00	0.00	25	G:MET	29		68.31	0.00	0.00										
26	Z:ASP	43		69.41	0.00	0.00	26	G:GLY	30		37.95	0.00	0.00										
27	Z:LEU	44		3.48	0.00	0.00	27	G:CYS	31		37.57	0.00	0.00										
28	Z:PRO	45		45.83	0.00	0.00	28	G:CYS	32		32.29	0.00	0.00										
29	Z:ARG	46		124.53	0.00	0.00	29	G:PHE	33		149.11	0.00	0.00										
30	Z:ASN	47		75.08	0.00	0.00	30	G:SER	34		66.75	0.00	0.00										
31	Z:ALA	48		0.00	0.00	0.00	31	G:ARG	35		127.72	0.00	0.00										
32	Z:ILE	49		42.18	0.00	0.00	32	G:ALA	36		70.40	0.00	0.00										
33	Z:GLU	50		26.48	0.00	0.00	33	G:TYR	37		66.92	0.00	0.00										
34	Z:LEU	51		0.00	0.00	0.00	34	G:PRO	38		106.50	0.00	0.00										
35	Z:ARG	52		82.33	0.00	0.00	35	G:THR	39		9.23	0.00	0.00										
36	Z:PHE	53		0.16	0.00	0.00	36	G:PRO	40		67.88	0.00	0.00										
37	Z:VAL	54		18.75	0.00	0.00	37	G:LEU	41		149.06	0.00	0.00										
38	Z:LEU	55		76.01	43.37 \|						0.69	38	G:ARG	42	HS	154.18	86.98 \|						-0.57
39	Z:THR	56		0.12	0.00	0.00	39	G:SER	43	H	40.52	24.16 \|						0.09					
40	Z:LYS	57		63.73	11.27 \|		-0.13	40	G:LYS	44		51.54	0.00	0.00									
41	Z:LEU	58		0.00	0.00	0.00	41	G:LYS	45	HS	156.56	30.03 \|		-0.43									
42	Z:ARG	59		137.62	0.00	0.00	42	G:THR	46	H	100.81	100.81 \|										0.44	
43	Z:VAL	60		63.55	0.00	0.00	43	G:MET	47		41.42	29.42 \|									0.76		
44	Z:ILE	61		0.00	0.00	0.00	44	G:LEU	48	H	181.53	118.64 \|								1.71			
45	Z:GLN	62		134.49	0.00	0.00	45	G:VAL	49	H	103.67	67.08 \|								0.93			
46	Z:LYS	63		130.31	0.00	0.00	46	G:GLN	50		106.58	0.00	0.00										
47	Z:GLY	64		21.52	0.00	0.00	47	G:LYS	51	HS	118.57	45.18 \|	I		-0.29								
48	Z:ALA	65		23.40	0.00	0.00	48	G:ASN	52		101.89	0.00	0.00										
49	Z:PHE	66		0.32	0.00	0.00	49	G:VAL	53		102.06	0.00	0.00										
50	Z:SER	67		27.30	0.00	0.00	50	G:THR	54		36.22	0.00	0.00										
51	Z:GLY	68		37.80	0.00	0.00	51	G:SER	55		80.42	0.00	0.00										
52	Z:PHE	69		2.66	0.00	0.00	52	G:GLU	56		75.05	0.00	0.00										
53	Z:GLY	70		33.66	0.00	0.00	53	G:SER	57		42.46	0.00	0.00										
54	Z:ASP	71		43.04	0.00	0.00	54	G:THR	58		34.48	0.00	0.00										
55	Z:LEU	72		0.83	0.00	0.00	55	G:CYS	59		43.81	0.00	0.00										
56	Z:GLU	73		60.31	2.33 \|	-0.04	56	G:CYS	60		29.94	0.00	0.00										
57	Z:LYS	74	H	66.35	36.00 \|						-0.30	57	G:VAL	61		49.58	0.00	0.00					
58	Z:ILE	75		1.94	0.00	0.00	58	G:ALA	62		26.89	0.00	0.00										

124	Z:ILE 141		0.00	0.00	0.00								
125	Z:HIS 142		67.35	0.00	0.00								
126	Z:SER 143		0.00	0.00	0.00								
127	Z:LEU 144		115.27	0.00	0.00								
128	Z:GLN 145		54.94	19.44 \|					-0.33				
129	Z:LYS 146		122.41	0.00	0.00								
138	Z:VAL 147		2.31	0.00	0.00								
131	Z:LEU 148		39.71	33.14 \|	111						0.53		
132	Z:LEU 149		0.00	0.00	0.00								
133	Z:ASP 150	s	11.20	11.08 \|	1								-0.13
134	Z:ILE 151		0.00	0.00	0.00								
135	Z:GLN 152		39.37	23.76 \|							-0.25		
136	Z:ASP 153	HS	54.76	39.90 \|	1						-0.22		
137	Z:ASN 154		0.00	0.00	0.00								
138	Z:ILE 155		122.94	45.38 \|	I			0.73					
139	Z:ASN 156		37.16	7.15 \|		-0.08							
140	Z:ILE 157		0.00	0.00	0.00								
141	Z:HIS 158		83.18	0.00	0.00								
142	Z:THR 159		27.36	0.00	0.00								
143	Z:ILE 160		0.00	0.00	0.00								
144	Z:GLU 161		84.53	0.00	0.00								
145	Z:ARG 162		157.58	0.00	0.00								
146	Z:ASN 163		49.29	0.00	0.00								
147	Z:SER 164		17.81	0.00	0.00								
148	Z:PHE 165		2.36	0.00	0.00								
149	Z:VAL 166		47.62	0.00	0.00								
150	z:GLY 167		17.16	0.00	0.00								
151	Z:LEU 168		1.73	0.00	0.00								
152	Z:SER 169		19.04	0.00	0.00								
153	Z:PHE 170		134.84	0.00	0.00								
154	Z:GLU 171		66.02	0.00	0.00								
155	Z:SER 172		10.42	0.00	0.00								
156	Z:VAL 173		3.67	0.00	0.00								
157	Z:ILE 174		48.19	15.22 \|	I			0.24					
158	z:LEU 175		0.00	0.00	0.00								
159	Z:TRP 176		71.19	44.26 \|							0.71		
160	Z:LEU 177		0.00	0.00	0.00								
161	Z:ASN 178		11.04	7.86 \|	11						-0.09		
162	Z:LYS 179		94.56	19.14 III	-0.32								
163	Z:ASN 180		11.65	0.00	0.00								
164	Z:GLY 181		9.53	0.00	0.00								
165	Z:ILE 182		0.00	0.00	0.00								
166	Z:GLN 183		74.45	0.00	0.00								
167	z:GLU 184		75.36	0.00	0.00								
168	Z:ILE 185		4.66	0.00	0.00								
169	Z:HIS 186		71.72	0.00	0.00								
170	Z:ASN 187		70.36	0.00	0.00								
171	Z:SER 188		17.69	0.00	0.00								
172	Z:ALA 189		0.00	0.00	0.00								
173	Z:PHE 190		0.31	0.00	0.00								
174	Z:ASN 191		40.07	0.00	0.00								
175	Z:GLY 192		41.50	0.00	0.00								
176	Z:THR 193		12.77	0.00	0.00								
177	Z:GLN 194		77.86	0.00	0.00								
178	z:LEU 195		1.08	0.00	0.00								
179	Z:ASP 196		48.79	0.00	0.00								
180	Z:GLU 197		33.11	0.74 \|	-0.01								
181	Z:LEU 198		0.47	0.00	0.00								
182	Z:ASN 199		24.09	8.15 IIII	-0.09								
183	Z:LEU 200		0.17	0.00	0.00								
184	z:SER 201		4.79	0.00	0.00								
185	Z:ASP 202		39.40	0.00	0.00								
186	Z:ASN 203		0.67	0.00	0.00								
187	Z:ASN 204		74.95	0.00	0.00								
188	Z:ASN 205		83.63	0.00	0.00								

189	Z:LEU 206	0.00	0.00	0.00
190	Z:GLU 207	66.12	0.00	0.00
191	Z:GLU 208	98.42	0.00	0.00
192	Z:LEU 209	14.65	0.00	0.00
193	Z:PRO 210	41.36	0.00	0.00
194	Z:ASN 211	80.33	0.00	0.00
195	Z:ASP 212	58.59	0.00	0.00
196	Z:VAL 213	0.00	0.00	0.00
197	Z:PHE 214	3.83	0.00	0.00
198	Z:HIS 215	87.93	0.00	0.00
199	Z:GLY 216	42.03	0.00	0.00
200	Z:ALA 217	22.99	0.00	0.00
201	Z:SER 218	70.89	0.00	0.00
202	Z:GLY 219	1.64	0.00	0.00
203	Z:PRO 220	0.00	0.00	0.00
204	Z:VAL 221	47.20	0.00	0.00
205	Z:ILE 222	37.84	0.00	0.00
206	Z:LEU 223	0.00	0.00	0.00
207	Z:ASP 224	21.19	0.00	0.00
208	Z:ILE 225	0.00	0.00	0.00
209	Z:SER 226	0.90	0.00	0.00
210	Z:ARG 227	100.60	0.00	0.00
211	Z:THR 228	5.26	0.00	0.00
212	Z:ARG 229	122.40	0.00	0.00
213	Z:ILE 230	0.00	0.00	0.00
214	Z:HIS 231	91.70	0.00	0.00
215	Z:SER 232	55.82	0.00	0.00
216	Z:LEU 233	11.92	0.00	0.00
217	Z:PRO 234	6.70	0.00	0.00
218	Z:SER 235	54.54	0.00	0.00
219	Z:TYR 236	81.31	0.00	0.00
220	Z:GLY 237	5.46	0.00	0.00
221	Z:LEU 238	0.63	0.00	0.00
222	Z:GLU 239	85.67	0.00	0.00
223	Z:ASN 240	62.02	0.00	0.00
224	Z:LEU 241	0.00	0.00	0.00
225	Z:LYS 242	89.66	0.00	0.00
226	Z:LYS 243	55.10	0.00	0.00
227	Z:LEU 244	0.37	0.00	0.00
228	Z:ARG 245	67.43	0.00	0.00
229	Z:ALA 246	2.20	0.00	0.00
230	Z:ARG 247	95.62	0.00	0.00
231	Z:SER 248	44.55	0.00	0.00
232	Z:THR 249	1.67	0.00	0.00
233	Z:TYR 250	124.63	0.00	0.00
234	Z:ASN 251	46.69	0.00	0.00
235	Z:LEU 252	4.38	0.00	0.00
236	Z:LYS 253	131.30	0.00	0.00
237	Z:LYS 254	156.95	0.00	0.00
238	Z:LEU 255	33.55	0.00	0.00
239	Z:PRO 256	17.86	0.00	0.00
240	Z:THR 257	60.77	0.00	0.00
241	Z:LEU 258	1.87	0.00	0.00
242	Z:GLU 259	111.59	0.00	0.00
243	Z:LYS 260	65.88	0.00	0.00
244	Z:LEU 261	0.50	0.00	0.00
245	Z:VAL 262	82.75	0.00	0.00
246	Z:ALA 263	30.04	0.00	0.00
247	Z:LEU 264	0.00	0.00	0.00
248	Z:MET 265	74.67	0.00	0.00
249	Z:GLU 266	55.64	0.00	0.00
250	Z:ALA 267	0.90	0.00	0.00
251	Z:SER 268	25.31	0.00	0.00
252	Z:LEU 269	4.19	0.00	0.00
253	Z:THR 270	27.20	0.00	0.00

254	Z:TYR 271	56.36	0.00
255	Z:PRO 272	41.84	0.00
256	Z:SER 273	50.32	0.00
257	Z:HIS 274	18.27	0.00
258	Z:CYS 275	0.80	0.00
259	Z:CYS 276	28.31	0.00
260	Z:ALA 277	57.24	0.00
261	Z:PHE 278	8.81	0.00
262	Z:ALA 279	45.06	0.00
263	Z:ASN 280	104.34	0.00
264	Z:TRP 281	98.97	0.00
265	Z:ARG 282	157.61	0.00
266	Z:ARG 283	127.10	0.00
267	Z:PRO 290	196.59	0.00
268	Z:ILE 291	155.21	0.00
269	Z:CYS 292	137.93	0.00
270	Z:ASP 334	197.05	0.00
271	Z:TYS 335	H	283.01
272	Z:ASP 336	86.30	10.00
273	Z:LEU 337	114.45	17.42 IIII
274	Z:CYS 338	52.15	0.00
275	Z:ASN 339	123.36	0.45

41	Z:LEU	58		0.00	0.00	0.00	41	H:ASP	41		46.93	10.68 \|			-0.10							
42	Z:ARG	59		137.62	0.00	0.00	42	H:PRO	42		126.34	90.14 \|								0.95		
43	z:VAL	60		63.55	0.00	0.00	43	H:ALA	43	H	94.54	82.89 \|										0.82
44	Z:ILE	61		0.00	0.00	0.00	44	H:ARG	44		64.22	29.27 \|	I			-0.29						
45	Z:GLN	62		134.49	0.00	0.00	45	H:PRO	45		95.65	43.25 \|					0.69					
46	Z:LYS	63		130.31	0.00	0.00	46	H:LYS	46	HS	124.33	53.96 \|					-0.35					
47	Z:GLY	64		21.52	0.00	0.00	47	H:ILE	47		117.62	0.00	0.00									
48	Z:ALA	65		23.40	0.00	0.00	48	H:GLN	48		129.80	0.00	0.00									
49	Z:PHE	66		0.32	0.00	0.00	49	H:LYS	49		110.58	0.00	0.00									
50	Z:SER	67		27.30	0.00	0.00	50	H:THR	50		58.91	0.00	0.00									
51	Z:GLY	68		37.80	0.00	0.00	51	H:CYS	51		26.72	0.00	0.00									
52	Z:PHE	69		2.66	0.00	0.00	52	H:THR	52		17.90	0.00	0.00									
53	Z:GLY	70		33.66	0.00	0.00	53	H:PHE	53		36.69	0.00	0.00									
54	Z:ASP	71		43.04	0.00	0.00	54	H:LYS	54		99.19	0.00	0.00									
55	Z:LEU	72		0.83	0.00	0.00	55	H:GLU	55		87.20	0.00	0.00									
56	z:GLU	73		60.31	0.00	0.00	56	H:LEU	56		55.44	0.00	0.00									
57	Z:LYS	74		66.35	0.84 \|	0.01	57	H:VAL	57		70.53	0.00	0.00									
58	Z:ILE	75		1.94	0.00	0.00	58	H:TYR	58		142.32	0.00	0.00									
59	Z:GLU	76	HS	21.77	17.66 \|									-0.25	59	H:GLU	59		77.38	0.00	0.00	
60	Z:ILE	77		0.00	0.00	0.00	60	H:THR	60		78.61	0.00	0.00									
61	Z:SER	78		4.23	3.61 \|									0.01	61	H:VAL	61		32.79	0.00	0.00	
62	Z:GLN	79		78.72	36.72 \|	I			-0.53	62	H:ARG	62		166.39	0.00	0.00						
63	Z:ASN	80		0.91	0.00	0.00	63	H:VAL	63		3.84	0.00	0.00									
64	Z:ASP	81		71.73	0.00	0.00	64	H:PRO	64		67.37	0.00	0.00									
65	Z:VAL	82		52.34	0.00	0.00	65	H:GLY	65		27.87	0.00	0.00									
66	Z:LEU	83		0.00	0.00	0.00	66	H:CYS	66		47.88	0.00	0.00									
67	z:GLU	84		71.87	0.00	0.00	67	H:ALA	67		100.84	0.00	0.00									
68	z:VAL	85		42.50	0.00	0.00	68	H:HIS	68		175.34	0.00	0.00									
69	Z:ILE	86		0.24	0.00	0.00	69	H:HIS	69		89.54	0.00	0.00									
70	Z:GLU	87		66.16	0.00	0.00	70	H:ALA	70		88.06	0.00	0.00									
71	Z:ALA	88		11.05	0.00	0.00	71	H:ASP	71		78.79	0.00	0.00									
72	Z:ASP	89		57.17	0.00	0.00	72	H:SER	72		48.28	0.00	0.00									
73	Z:VAL	90		0.00	0.00	0.00	73	H:LEU	73		117.20	0.00	0.00									
74	Z:PHE	91		0.00	0.00	0.00	74	H:TYR	74		104.77	0.00	0.00									
75	Z:SER	92		11.95	0.00	0.00	75	H:THR	75		63.86	0.00	0.00									
76	Z:ASN	93		98.56	0.00	0.00	76	H:TYR	76		11.15	0.00	0.00									
77	Z:LEU	94		1.69	0.00	0.00	77	H:PRO	77		46.24	0.00	0.00									
78	Z:PRO	95		76.07	0.00	0.00	78	H:VAL	78		13.06	0.00	0.00									
79	Z:LYS	96		108.83	0.00	0.00	79	H:ALA	79		4.66	0.00	0.00									
80	Z:LEU	97		0.00	0.00	0.00	80	H:THR	80		68.39	0.00	0.00									
81	Z:HIS	98		37.64	0.00	0.00	81	H:GLN	81		78.53	0.00	0.00									
82	Z:GLU	99		24.46	0.77 \|	-0.00	82	H:CYS	82		21.67	0.00	0.00									
83	Z:ILE	100		0.00	0.00	0.00	83	H:HIS	83		55.31	0.00	0.00									
84	Z:ARG	101	H	62.92	48.83 \|								-0.86	84	H:CYS	84		30.69	0.00	0.00		
85	Z:ILE	102		0.00	0.00	0.00	85	H:GLY	85		7.50	0.00	0.00									
86	Z:GLU	103	H	26.39	25.18 \|										-0.31	86	H:LYS	86		149.55	0.00	0.00
87	Z:LYS	104	HS	75.96	43.16 \|						-0.32	87	H:CYS	87		38.06	0.00	0.00				
88	Z:ALA	105		0.00	0.00	0.00	88	H:ASP	88		73.57	0.00	0.00									
89	Z:ASN	106		96.44	0.00	0.00	89	H:SER	89	H	88.38	40.02 IIIII	0.03									
90	Z:ASN	107		63.48	0.00	0.00	90	H:ASP	90	S	140.52	36.62 III	-0.18									
91	Z:LEU	108		0.00	0.00	0.00	91	H:SER	91		77.03	0.00	0.00									
92	Z:LEU	109		80.26	0.00	0.00	92	H:THR	92		43.28	0.00	0.00									
93	Z:TYR	110		119.49	0.00	0.00	93	H:ASP	93	HS	121.94	42.46 \|	I		-0.40							
94	Z:ILE	111		27.72	0.00	0.00	94	H:CYS	94		64.33	8.35 \|		-0.10								
95	Z:ASN	112		32.75	0.00	0.00	95	H:THR	95	H	84.75	36.87 \|	III		-0.03							
96	Z:PRO	113		62.64	0.00	0.00	96	H:VAL	96		123.24	31.60 III	0.50									
97	Z:GLU	114		67.46	0.00	0.00	97	H:ARG	97	HS	200.20	110.92 \|							-0.98			
98	Z:ALA	115		0.00	0.00	0.00	98	H:GLY	98		59.92	11.99 \|			0.11							
99	Z:PHE	116		0.93	0.00	0.00	99	H:LEU	99		140.75	86.25 \|							1.37			
100	z:GLN	117		34.54	0.00	0.00	100	H:GLY	100		43.73	0.00	0.00									
101	Z:ASN	118		79.48	0.00	0.00	101	H:PRO	101		75.93	0.00	0.00									
102	Z:LEU	119		0.00	0.00	0.00	102	H:SER	102		51.67	0.00	0.00									
103	Z:PRO	120		42.31	0.00	0.00	103	H:TYR	103	H	99.55	51.23 \|						-0.01				
104	Z:ASN	121		45.81	0.00	0.00	104	H:CYS	104		14.50	0.00	0.00									
105	Z:LEU	122		0.00	0.00	0.00	105	H:SER	105		66.45	0.341	0.01									

106	Z:GLN 123		76.16	0.00	0.00	106	H:PHE 106	77.61	0.00	0.00						
107	Z:TYR 124		53.33	0.00	0.00	107	H:GLY 107	42.58	0.00	0.00						
108	z:LEU 125		0.00	0.00	0.00	108	H:GLU 108	180.71	0.00	0.00						
109	z:LEU 126		17.91	4.02 III	0.06											
110	z:ILE 127		0.00	0.00	0.00											
111	z:SER 128		19.42	3.06 \|		-0.03										
112	Z:ASN 129		82.74	2.18 \|	-0.02											
113	Z:THR 130		5.78	0.00	0.00											
114	Z:GLY 131		5.52	0.00	0.00											
115	Z:ILE 132		3.01	0.00	0.00											
116	Z:LYS 133		97.78	0.00	0.00											
117	Z:HIS 134		111.54	0.00	0.00											
118	Z:LEU 135		24.85	0.00	0.00											
119	Z:PRO 136		9.57	0.00	0.00											
120	Z:ASP 137		43.61	0.00	0.00											
121	Z:VAL 138		3.38	0.00	0.00											
122	z:HIS 139		75.77	0.00	0.00											
123	z:LYS 140		59.03	0.00	0.00											
124	Z:ILE 141		0.00	0.00	0.00											
125	Z:HIS 142		67.35	0.00	0.00											
126	Z:SER 143		0.00	0.00	0.00											
127	z:LEU 144		115.27	0.00	0.00											
128	Z:GLN 145		54.94	0.00	0.00											
129	Z:LYS 146	H	122.41	38.77 \|	1			-0.57								
130	z:VAL 147		2.31	0.00	0.00											
131	Z:LEU 148		39.71	0.00	0.00											
132	Z:LEU 149		0.00	0.00	0.00											
133	Z:ASP 150		11.20	0.00	0.00											
134	Z:ILE 151		0.00	0.00	0.00											
135	Z:GLN 152		39.37	11.29 \|II	-0.19											
136	Z:ASP 153		54.76	8.23 \|		-0.04										
137	Z:ASN 154		0.00	0.00	0.00											
138	z:ILE 155		122.94	0.00	0.00											
139	Z:ASN 156		37.16	0.00	0.00											
140	Z:ILE 157		0.00	0.00	0.00											
141	Z:HIS 158		83.18	0.00	0.00											
142	Z:THR 159		27.36	0.00	0.00											
143	Z:ILE 160		0.00	0.00	0.00											
144	Z:GLU 161		84.53	0.00	0.00											
145	Z:ARG 162		157.58	0.00	0.00											
146	z:ASN 163		49.29	0.00	0.00											
147	Z:SER 164		17.81	0.00	0.00											
148	Z:PHE 165		2.36	0.00	0.00											
149	z:VAL 166		47.62	0.00	0.00											
150	Z:GLY 167		17.16	0.00	0.00											
151	z:LEU 168		1.73	0.00	0.00											
152	Z:SER 169		19.04	0.00	0.00											
153	Z:PHE 170		134.84	0.00	0.00											
154	Z:GLU 171		66.02	0.00	0.00											
155	Z:SER 172		10.42	0.00	0.00											
156	Z:VAL 173		3.67	0.00	0.00											
157	Z:ILE 174		48.19	25.44 \|	IIIII	0.41										
158	z:LEU 175		0.00	0.00	0.00											
159	Z:TRP 176		71.19	7.67 \|		0.12										
160	z:LEU 177		0.00	0.00	0.00											
161	Z:ASN 178		11.04	0.15 \|	-0.00											
162	Z:LYS 179	HS	94.56	64.36 \|							-0.11					
163	Z:ASN 180		11.65	0.00	0.00											
164	z:GLY 181		9.53	0.00	0.00											
165	Z:ILE 182		0.00	0.00	0.00											
166	Z:GLN 183		74.45	0.00	0.00											
167	z:GLU 184		75.36	0.00	0.00											
168	Z:ILE 185		4.66	0.00	0.00											
169	Z:HIS 186		71.72	0.00	0.00											
170	Z:ASN 187		70.36	0.00	0.00											

171	Z:SER 188		17.69	0.00	0.00									
172	Z:ALA 189		0.00	0.00	0.00									
173	Z:PHE 190		0.31	0.00	0.00									
174	Z:ASN 191		40.07	0.00	0.00									
175	Z:GLY 192		41.50	0.00	0.00									
176	Z:THR 193		12.77	0.00	0.00									
177	Z:GLN 194		77.86	0.00	0.00									
178	Z:LEU 195		1.08	0.00	0.00									
179	Z:ASP 196		48.79	35.40 \|								-0.03		
180	Z:GLU 197	HS	33.11	19.00 \|						-0.25				
181	Z:LEU 198		0.47	0.00	0.00									
182	Z:ASN 199		24.09	0.00	0.00									
183	Z:LEU 200		0.17	0.00	0.00									
184	Z:SER 201		4.79	0.00	0.00									
185	Z:ASP 202		39.40	9.51 \|			-0.03							
186	Z:ASN 203		0.67	0.00	0.00									
187	Z:ASN 204		74.95	0.00	0.00									
188	Z:ASN 205		83.63	0.00	0.00									
189	Z:LEU 206		0.00	0.00	0.00									
190	Z:GLU 207		66.12	0.00	0.00									
191	Z:GLU 208		98.42	0.00	0.00									
192	Z:LEU 209		14.65	0.00	0.00									
193	Z:PRO 210		41.36	0.00	0.00									
194	Z:ASN 211		80.33	0.00	0.00									
195	Z:ASP 212		58.59	0.00	0.00									
196	Z:VAL 213		0.00	0.00	0.00									
197	Z:PHE 214		3.83	0.00	0.00									
198	Z:HIS 215		87.93	0.00	0.00									
199	Z:GLY 216		42.03	0.00	0.00									
200	Z:ALA 217		22.99	0.00	0.00									
201	Z:SER 218		70.89	0.00	0.00									
202	Z:GLY 219		1.64	0.00	0.00									
203	Z:PRO 220		0.00	0.00	0.00									
204	Z:VAL 221		47.20	26.45 \|						0.42				
205	Z:ILE 222		37.84	31.13 \|										0.50
206	Z:LEU 223		0.00	0.00	0.00									
207	Z:ASP 224		21.19	0.00	0.00									
208	Z:ILE 225		0.00	0.00	0.00									
209	Z:SER 226		0.90	0.00	0.00									
210	Z:ARG 227		100.60	0.00	0.00									
211	Z:THR 228		5.26	0.00	0.00									
212	Z:ARG 229		122.40	0.00	0.00									
213	Z:ILE 230		0.00	0.00	0.00									
214	Z:HIS 231		91.70	0.00	0.00									
215	Z:SER 232		55.82	0.00	0.00									
216	Z:LEU 233		11.92	0.00	0.00									
217	Z:PRO 234		6.70	0.00	0.00									
218	Z:SER 235		54.54	0.00	0.00									
219	Z:TYR 236		81.31	0.00	0.00									
220	Z:GLY 237		5.46	0.00	0.00									
221	Z:LEU 238		0.63	0.00	0.00									
222	Z:GLU 239		85.67	0.00	0.00									
223	Z:ASN 240		62.02	0.00	0.00									
224	Z:LEU 241		0.00	0.00	0.00									
225	Z:LYS 242		89.66	23.25 III	-0.40									
226	Z:LYS 243	H	55.10	32.31 \|						-0.62				
227	Z:LEU 244		0.37	0.00	0.00									
228	Z:ARG 245		67.43	0.00	0.00									
229	Z:ALA 246		2.20	0.00	0.00									
230	Z:ARG 247		95.62	0.00	0.00									
231	Z:SER 248		44.55	0.00	0.00									
232	Z:THR 249		1.67	0.00	0.00									
233	Z:TYR 250		124.63	0.00	0.00									
234	Z:ASN 251		46.69	0.00	0.00									
235	Z:LEU 252		4.38	0.00	0.00									

236	Z:LYS 253		131.30	0.00	0.00						
237	Z:LYS 254		156.95	0.00	0.00						
238	Z:LEU 255		33.55	0.00	0.00						
239	Z:PRO 256		17.86	0.00	0.00						
240	Z:THR 257		60.77	0.00	0.00						
241	Z:LEU 258		1.87	0.00	0.00						
242	Z:GLU 259		111.59	0.00	0.00						
243	Z:LYS 260		65.88	0.00	0.00						
244	Z:LEU 261		0.50	0.00	0.00						
245	Z:VAL 262		82.75	0.00	0.00						
246	Z:ALA 263		30.04	0.00	0.00						
247	Z:LEU 264		0.00	0.00	0.00						
248	Z:MET 265		74.67	6.00 \|	0.10						
249	Z:GLU 266		55.64	0.00	0.00						
250	Z:ALA 267		0.90	0.00	0.00						
251	Z:SER 268		25.31	0.00	0.00						
252	Z:LEU 269		4.19	0.00	0.00						
253	Z:THR 270		27.20	0.00	0.00						
254	Z:TYR 271		56.36	0.00	0.00						
255	Z:PRO 272		41.84	0.00	0.00						
256	Z:SER 273		50.32	0.00	0.00						
257	Z:HIS 274		18.27	0.00	0.00						
258	Z:CYS 275		0.80	0.00	0.00						
259	Z:CYS 276		28.31	0.00	0.00						
260	Z:ALA 277		57.24	0.00	0.00						
261	Z:PHE 278		8.81	0.00	0.00						
262	Z:ALA 279		45.06	0.00	0.00						
263	Z:ASN 280		104.34	0.00	0.00						
264	Z:TRP 281		98.97	0.00	0.00						
265	Z:ARG 282		157.61	0.00	0.00						
266	Z:ARG 283		127.10	0.00	0.00						
267	Z:PRO 290		196.59	0.00	0.00						
268	Z:ILE 291		155.21	0.00	0.00						
269	Z:CYS 292		137.93	0.00	0.00						
270	Z:ASP 334		197.05	30.30 \|		-0.18					
271	Z:TYS 335	H	283.01	152.96 \|							0.34
272	Z:ASP 336		86.30	0.00	0.00						
273	Z:LEU 337		114.45	3.16 \|	0.05						
274	Z:CYS 338		52.15	0.00	0.00						
275	Z:ASN 339		123.36	0.00	0.00						
276	Z:VAL 342		184.80	0.00	0.00						
277	Z:ASP 343		63.88	0.00	0.00						
278	Z:VAL 344		17.80	0.00	0.00						
279	Z:THR 345		91.76	0.00	0.00						
280	Z:CYS 346		11.75	0.00	0.00						
281	Z:SER 347		36.26	0.00	0.00						
282	Z:PRO 348		41.49	0.00	0.00						
283	Z:LYS 349		100.18	0.00	0.00						
284	Z:PRO 350		42.69	0.00	0.00						
285	Z:ASP 351		109.76	0.00	0.00						
286	Z:ALA 352		89.22	0.00	0.00						
287	Z:PHE 353		187.75	0.00	0.00						
288	Z:ASN 354		53.59	0.00	0.00						
289	Z:PRO 355		149.42	0.00	0.00						
290	Z:CYS 356		73.40	0.00	0.00						

PISA Interface.

Session Map (3) ${ }_{\text {(id=672-6G-oCL) }}$

Monomers
Assemblies
STRUCTURE OF FOLLICLE-STIMULATING HORMONE IN COMPLEXWITH THE ENTIRE ECTODOMAIN OF ITS RECEPTOR (P31)

Salt bridges XML
No disulfide bonds found
Hydrogen bonds XML
\#\# - Structure 1 Dist. [A$]$ - Structure 2. $\# \#$-Structure 1. Dist. [A$]$ - Structure 2.
1 X:LYS 146[NZ] 3.73 B:LYS 40[O] 1 X:LYS 179[NZ] 3.70 B:ASP 90[OD1]
2 X:LYS 179[NZ] 2.83 B:SER 89 [0] 2 X:LYS 104[NZ] 2.84 B:ASP 93[OD1]
3 X:LYS 104[NZ] 2.84 B:ASP 93[OD1] 3 X:LYS 104[NZ] 3.36 B:ASP 93[OD2]
4 X:TYS 335[03] 2.79 B:VAL $38[\mathrm{~N}$] 4 X:GLU 197[OE1] 2.76 B:LYS $46[\mathrm{NZ}]$
5 X:TYS 335[01] 3.07 B:TYR $39[\mathrm{~N}$] 5 X:GLU 197[OE2] 3.28 B:LYS $46[\mathrm{NZ}]$
6 X:GLU 197[OE1] 2.76 B:LYS 46[NZ] 6 X:GLU 76[OE1] 3.96 B:ARG 97[NE]
7 X:GLU 103[OE1] 2.69 B:THR 95[OG1] 7 X:GLU 50[OE2] 3.40 B:ARG 97[NH2] 8 X:GLU 50[OE2] 3.40 B:ARG 97[NH2] 8 X:GLU 76[OE1] $3.21 \quad$ B:ARG 97[NH2] 9 X:GLU 76[OE1] 3.21 B:ARG 97[NH2]
10 X:GLU 34[OE1] 2.67 B:TYR 103[OH]
11 X:GLU 34[OE2] 2.72 B:TYR 103[OH]

| 59 | X:GLU | 76 | HS | 25.86 | 20.70 \|||||||||| | -0.27 | 59 | B:GLU | 59 | | 80.17 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | X :ILE | 77 | | 0.17 | 0.00 | 0.00 | 60 | B:THR | 60 | | 81.87 | 0.00 | 0.00 |
| 61 | x :SER | 78 | | 3.15 | 1.36 \||||| | -0.00 | 61 | B:VAL | 61 | | 36.14 | 0.00 | 0.00 |
| 62 | x:GLN | 79 | | 82.45 | 40.05 \||I|| | -0.57 | 62 | B:ARG | 62 | | 140.67 | 0.00 | 0.00 |
| 63 | $x: A S N$ | 80 | | 0.78 | 0.00 | 0.00 | 63 | B:VAL | 63 | | 3.18 | 0.00 | 0.00 |
| 64 | x :ASP | 81 | | 58.65 | 0.00 | 0.00 | 64 | B:PRO | 64 | | 62.18 | 0.00 | 0.00 |
| 65 | x:VAL | 82 | | 43.99 | 0.00 | 0.00 | 65 | B:GLY | 65 | | 21.47 | 0.00 | 0.00 |
| 66 | X:LEU | 83 | | 0.17 | 0.00 | 0.00 | 66 | B:CYS | 66 | | 75.65 | 0.00 | 0.00 |
| 67 | X:GLU | 84 | | 61.99 | 0.00 | 0.00 | 67 | B:ALA | 67 | | 59.55 | 0.00 | 0.00 |
| 68 | x :VAL | 85 | | 43.16 | 0.00 | 0.00 | 68 | B:HIS | 68 | | 188.80 | 0.00 | 0.00 |
| 69 | X:ILE | 86 | | 0.00 | 0.00 | 0.00 | 69 | B:HIS | 69 | | 84.22 | 0.00 | 0.00 |
| 70 | X:GLU | 87 | | 61.82 | 0.00 | 0.00 | 70 | B:ALA | 70 | | 85.28 | 0.00 | 0.00 |
| 71 | X:ALA | 88 | | 11.18 | 0.00 | 0.00 | 71 | B:ASP | 71 | | 71.22 | 0.00 | 0.00 |
| 72 | $x: A S P$ | 89 | | 56.55 | 0.00 | 0.00 | 72 | B:SER | 72 | | 42.84 | 0.00 | 0.00 |
| 73 | x :VAL | 90 | | 0.00 | 0.00 | 0.00 | 73 | B:LEU | 73 | | 100.89 | 0.00 | 0.00 |
| 74 | X:PHE | 91 | | 0.00 | 0.00 | 0.00 | 74 | B:TYR | 74 | | 101.80 | 0.00 | 0.00 |
| 75 | x :SER | 92 | | 9.18 | 0.00 | 0.00 | 75 | B:THR | 75 | | 66.61 | 0.00 | 0.00 |
| 76 | $x: A S N$ | 93 | | 105.91 | 0.00 | 0.00 | 76 | B:TYR | 76 | | 16.56 | 0.00 | 0.00 |
| 77 | $x: L E U$ | 94 | | 1.92 | 0.00 | 0.00 | 77 | B:PRO | 77 | | 42.81 | 0.00 | 0.00 |
| 78 | X:PRO | 95 | | 78.79 | 0.00 | 0.00 | 78 | B:VAL | 78 | | 13.06 | 0.00 | 0.00 |
| 79 | X:LYS | 96 | | 106.98 | 0.00 | 0.00 | 79 | B:ALA | 79 | | 4.54 | 0.00 | 0.00 |
| 80 | X:LEU | 97 | | 0.00 | 0.00 | 0.00 | 80 | B:THR | 80 | | 68.21 | 0.00 | 0.00 |
| 81 | x :HIS | 98 | | 35.96 | 0.00 | 0.00 | 81 | B:GLN | 81 | | 80.34 | 0.00 | 0.00 |
| 82 | X:GLU | 99 | | 21.31 | 0.12 \| | -0.00 | 82 | B:CYS | 82 | | 21.05 | 0.00 | 0.00 |
| 83 | x :ILE | 100 | | 0.00 | 0.00 | 0.00 | 83 | B:HIS | 83 | | 57.35 | 0.00 | 0.00 |
| 84 | x :ARG | 101 | | 51.99 | 37.29 \|||||||| | -0.61 | 84 | B:CYS | 84 | | 33.07 | 0.00 | 0.00 |
| 85 | x :ILE | 102 | | 0.00 | 0.00 | 0.00 | 85 | B:GLY | 85 | | 7.92 | 0.00 | 0.00 |
| 86 | X:GLU | 103 | H | 24.62 | 22.37 \|||||||||| | -0.25 | 86 | B:LYS | 86 | | 147.43 | 0.00 | 0.00 |
| 87 | X:LYS | 104 | HS | 75.54 | 40.28 \|||||| | -0.25 | 87 | B:CYS | 87 | | 36.31 | 0.00 | 0.00 |
| 88 | x :ALA | 105 | | 0.00 | 0.00 | 0.00 | 88 | B:ASP | 88 | | 66.60 | 0.00 | 0.00 |
| 89 | $x: A S N$ | 106 | | 98.48 | 0.00 | 0.00 | 89 | B:SER | 89 | H | 91.60 | 41.98 \||I|| | -0.03 |
| 90 | $x: A S N$ | 107 | | 65.03 | 0.00 | 0.00 | 90 | B:ASP | 90 | S | 138.02 | 26.94 \|| | -0.10 |
| 91 | x:LEU | 108 | | 0.00 | 0.00 | 0.00 | 91 | B:SER | 91 | | 75.73 | 0.00 | 0.00 |
| 92 | x:LEU | 109 | | 87.05 | 0.00 | 0.00 | 92 | B:THR | 92 | | 44.74 | 0.00 | 0.00 |
| 93 | x :TYR | 110 | | 111.98 | 0.00 | 0.00 | 93 | B:ASP | 93 | HS | 117.58 | 43.67 \||II | -0.48 |
| 94 | x :ILE | 111 | | 22.81 | 0.00 | 0.00 | 94 | B:CYS | 94 | | 65.13 | 6.50 \| | -0.07 |
| 95 | $x: A S N$ | 112 | | 36.77 | 0.00 | 0.00 | 95 | B:THR | 95 | H | 85.24 | 33.59 \||I| | -0.03 |
| 96 | X :PRO | 113 | | 69.35 | 0.00 | 0.00 | 96 | B:VAL | 96 | | 122.87 | 32.48 III | 0.52 |
| 97 | X :GLU | 114 | | 65.94 | 0.00 | 0.00 | 97 | B:ARG | 97 | HS | 196.83 | 104.82 \||IIIII | -1.06 |
| 98 | x :ALA | 115 | | 0.00 | 0.00 | 0.00 | 98 | B:GLY | 98 | | 59.80 | 10.68 \|| | 0.13 |
| 99 | X :PHE | 116 | | 0.61 | 0.00 | 0.00 | 99 | B:LEU | 99 | | 147.68 | 90.05 \||||||| | 1.42 |
| 100 | X :GLN | 117 | | 31.41 | 0.00 | 0.00 | 100 | B:GLY | | | 41.30 | 0.00 | 0.00 |
| 101 | $x: A S N$ | 118 | | 89.74 | 0.00 | 0.00 | 101 | B:PRO | 101 | | 84.43 | 0.00 | 0.00 |
| 102 | X:LEU | 119 | | 0.00 | 0.00 | 0.00 | 102 | B:SER | 102 | | 51.35 | 0.00 | 0.00 |
| 103 | $x: P R O$ | 120 | | 32.62 | 0.00 | 0.00 | 103 | B:TYR | 103 | H | 108.70 | 50.74 \||||| | -0.08 |
| 104 | $x: A S N$ | 121 | | 52.49 | 0.00 | 0.00 | 104 | B:CYS | 104 | | 17.93 | 0.00 | 0.00 |
| 105 | $x: L E U$ | 122 | | 0.00 | 0.00 | 0.00 | 105 | B:SER | 105 | | 62.80 | 0.00 | 0.00 |
| 106 | X :GLN | 123 | | 78.52 | 0.00 | 0.00 | 106 | B: PHE | 106 | | 77.72 | 0.00 | 0.00 |
| 107 | x :TYR | 124 | | 56.32 | 0.00 | 0.00 | 107 | B:GLY | 107 | | 32.50 | 0.00 | 0.00 |
| 108 | $x: L E U$ | 125 | | 0.00 | 0.00 | 0.00 | 108 | B:GLU | 108 | | 173.16 | 0.00 | 0.00 |
| 109 | x :LEU | 126 | | 18.40 | 4.01 \||I | 0.06 | 109 | B:MET | 109 | | 189.77 | 0.00 | 0.00 |
| 110 | x :ILE | 127 | | 0.00 | 0.00 | 0.00 | | | | | | | |
| 111 | x :SER | 128 | | 19.44 | 0.86 I | -0.01 | | | | | | | |
| 112 | $x: A S N$ | 129 | | 79.38 | 4.41 \| | -0.04 | | | | | | | |
| 113 | x :THR | 130 | | 6.42 | 0.00 | 0.00 | | | | | | | |
| 114 | X:GLY | 131 | | 5.69 | 0.00 | 0.00 | | | | | | | |
| 115 | x :ILE | 132 | | 1.84 | 0.00 | 0.00 | | | | | | | |
| 116 | x:LYS | 133 | | 103.06 | 0.00 | 0.00 | | | | | | | |
| 117 | x :HIS | 134 | | 116.06 | 0.00 | 0.00 | | | | | | | |
| 118 | x :LEU | 135 | | 28.08 | 0.00 | 0.00 | | | | | | | |
| 119 | $x: P R O$ | 136 | | 6.39 | 0.00 | 0.00 | | | | | | | |
| 120 | $x: A S P$ | 137 | | 40.32 | 0.00 | 0.00 | | | | | | | |
| 121 | X:VAL | 138 | | 1.04 | 0.00 | 0.00 | | | | | | | |
| 122 | x :HIS | 139 | | 76.69 | 0.00 | 0.00 | | | | | | | |
| 123 | X:LYS | 140 | | 68.01 | 0.00 | 0.00 | | | | | | | |

124	X:ILE 141		0.00	0.00	0.00						
125	X:HIS 142		74.76	0.00	0.00						
126	X:SER 143		0.00	0.00	0.00						
127	X:LEU 144		113.01	0.00	0.00						
128	X:GLN 145		56.52	0.00	0.00						
129	X:LYS 146	H	124.02	43.27 IIII	-0.28						
130	X:VAL 147		3.24	0.00	0.00						
131	X:LEU 148		35.97	0.00	0.00						
132	X:LEU 149		0.17	0.00	0.00						
133	x :ASP 150		8.71	0.00	0.00						
134	X :ILE 151		0.00	0.00	0.00						
135	X:GLN 152		41.14	12.27 III	-0.21						
136	X :ASP 153		53.59	6.17 \|		-0.07					
137	x:ASN 154		0.00	0.00	0.00						
138	X :ILE 155		125.97	0.00	0.00						
139	x :ASN 156		39.39	0.00	0.00						
140	X:ILE 157		0.33	0.00	0.00						
141	X:HIS 158		75.11	0.00	0.00						
142	X:THR 159		36.76	0.00	0.00						
143	X:ILE 160		0.00	0.00	0.00						
144	X:GLU 161		85.53	0.00	0.00						
145	X:ARG 162		165.10	0.00	0.00						
146	X :ASN 163		46.44	0.00	0.00						
147	X:SER 164		25.88	0.00	0.00						
148	X :PHE 165		4.42	0.00	0.00						
149	X:VAL 166		50.44	0.00	0.00						
150	X:GLY 167		15.24	0.00	0.00						
151	X:LEU 168		0.52	0.00	0.00						
152	X:SER 169		23.80	0.00	0.00						
153	x :PHE 170		136.08	0.00	0.00						
154	X :GLU 171		66.06	0.00	0.00						
155	X :SER 172		7.94	0.00	0.00						
156	X:VAL 173		5.67	0.00	0.00						
157	X:ILE 174		47.63	30.93 \|	1					0.49	
158	x:LEU 175		0.00	0.00	0.00						
159	x:TRP 176		70.77	10.33 \|		0.17					
160	X:LEU 177		0.00	0.00	0.00						
161	X:ASN 178		12.65	1.16 \|	-0.01						
162	X:LYS 179	HS	86.60	58.57 \|	1						-0.54
163	X:ASN 180		8.95	0.00	0.00						
164	X:GLY 181		8.28	0.00	0.00						
165	X:ILE 182		0.00	0.00	0.00						
166	X:GLN 183		79.83	0.00	0.00						
167	X:GLU 184		100.82	0.00	0.00						
168	X:ILE 185		6.46	0.00	0.00						
169	X:HIS 186		77.74	0.00	0.00						
170	X:ASN 187		70.65	0.00	0.00						
171	X:SER 188		17.73	0.00	0.00						
172	X:ALA 189		0.00	0.00	0.00						
173	X:PHE 190		0.00	0.00	0.00						
174	X:ASN 191		49.38	0.00	0.00						
175	X:GLY 192		43.55	0.00	0.00						
176	X:THR 193		13.94	0.00	0.00						
177	X:GLN 194		82.42	0.00	0.00						
178	X:LEU 195		3.13	0.00	0.00						
179	X:ASP 196		44.38	34.64 \|	1						-0.04
180	X:GLU 197	HS	33.79	16.71 \|	1			-0.18			
181	X:LEU 198		0.74	0.00	0.00						
182	X:ASN 199		24.88	0.00	0.00						
183	x:LEU 200		0.17	0.00	0.00						
184	x:SER 201		3.44	0.00	0.00						
185	x:ASP 202		37.50	4.19 \|		0.01					
186	X:ASN 203		0.84	0.00	0.00						
187	X:ASN 204		83.66	0.00	0.00						
188	X:ASN 205		60.70	0.00	0.00						

189	X:LEU 206	0.17	0.00	0.00							
190	X:GLU 207	70.33	0.00	0.00							
191	X:GLU 208	105.96	0.00	0.00							
192	X:LEU 209	11.35	0.00	0.00							
193	X:PRO 210	23.77	0.00	0.00							
194	X:ASN 211	84.55	0.00	0.00							
195	X:ASP 212	62.70	0.00	0.00							
196	X:VAL 213	0.33	0.00	0.00							
197	X :PHE 214	4.64	0.00	0.00							
198	X:HIS 215	94.02	0.00	0.00							
199	X:GLY 216	41.75	0.00	0.00							
200	X:ALA 217	18.58	0.00	0.00							
201	X:SER 218	62.10	0.00	0.00							
202	X:GLY 219	3.38	0.00	0.00							
203	X:PRO 220	0.17	0.00	0.00							
204	X:VAL 221	53.88	29.80 \|						0.48		
205	X:ILE 222	39.84	29.62 \|								0.47
206	X:LEU 223	0.00	0.00	0.00							
207	X:ASP 224	22.05	0.00	0.00							
208	X:ILE 225	0.00	0.00	0.00							
209	X:SER 226	1.74	0.00	0.00							
210	X:ARG 227	98.61	0.00	0.00							
211	X:THR 228	6.83	0.00	0.00							
212	X:ARG 229	100.35	0.00	0.00							
213	X:ILE 230	0.00	0.00	0.00							
214	X:HIS 231	91.24	0.00	0.00							
215	X:SER 232	51.34	0.00	0.00							
216	X:LEU 233	15.30	0.00	0.00							
217	X:PRO 234	1.90	0.00	0.00							
218	X:SER 235	75.23	0.00	0.00							
219	X:TYR 236	79.03	0.00	0.00							
220	X:GLY 237	2.01	0.00	0.00							
221	X:LEU 238	4.89	0.00	0.00							
222	X:GLU 239	85.37	0.00	0.00							
223	X:ASN 240	66.91	0.00	0.00							
224	X:LEU 241	0.00	0.00	0.00							
225	X:LYS 242	88.31	18.53 III	-0.48							
226	X:LYS 243	48.45	24.36 \|	III		-0.02					
227	X:LEU 244	0.27	0.00	0.00							
228	X:ARG 245	75.08	0.00	0.00							
229	X:ALA 246	2.16	0.00	0.00							
230	X:ARG 247	100.10	0.00	0.00							
231	X:SER 248	44.82	0.00	0.00							
232	X:THR 249	1.27	0.00	0.00							
233	X:TYR 250	132.42	0.00	0.00							
234	X:ASN 251	47.21	0.00	0.00							
235	X:LEU 252	9.22	0.00	0.00							
236	X:LYS 253	133.11	0.00	0.00							
237	X:LYS 254	150.57	0.00	0.00							
238	X:LEU 255	32.64	0.00	0.00							
239	X:PRO 256	23.71	0.00	0.00							
240	X:THR 257	78.49	0.00	0.00							
241	X:LEU 258	51.85	0.00	0.00							
242	X:GLU 259	124.91	0.00	0.00							
243	X:LYS 260	85.06	0.00	0.00							
244	X:LEU 261	0.00	0.00	0.00							
245	X:VAL 262	100.48	0.00	0.00							
246	X:ALA 263	33.58	0.00	0.00							
247	X:LEU 264	8.22	0.00	0.00							
248	X:MET 265	76.48	6.19 \|	0.10							
249	X:GLU 266	45.27	0.00	0.00							
250	X:ALA 267	1.29	0.00	0.00							
251	X:SER 268	20.32	0.00	0.00							
252	X:LEU 269	3.39	0.00	0.00							
253	X:THR 270	27.67	0.00	0.00							

Overlapping synthetic peptides and nonadditive interactions

254	X:TYR 271	53.44	0.00
255	X:PRO 272	26.30	0.00
256	X:SER 273	54.37	0.00
257	X:HIS 274	22.75	0.00
258	X:CYS 275	8.43	0.00
259	X:CYS 276	37.49	0.00
260	X:ALA 277	76.03	0.00
261	X:PHE 278	9.70	0.00
262	X:ALA 279	56.30	0.00
263	X:ASN 280	121.34	0.00
264	X:TRP 281	132.95	0.00
265	X:ARG 282	165.39	0.00
266	X:ILE 291	58.06	0.00
267	X:CYS 292	111.81	0.00
268	X:ASN 293	142.04	0.00
269	X:LYS 294	154.37	6.84

PISA Interface.

Session Map ${ }^{(3)}$ (id=672-6G-oCL) Start Interfaces Interface Search Monomers Assemblies
STRUCTURE OF FOLLICLE-STIMULATING HORMONE IN COMPLEXWITH THE ENTIRE ECTODOMAIN OF ITS RECEPTOR (P31)

Hydrogen bonds			XML		Salt bridges		XML	No disulfide bonds found
\#\#	-Structure 1.	Dist.[A]	Structure 2.	\#\#	Structure 1	Dist. [AL]	Structure 2.	No covalent bonds found
1	Y:LYS 146[NZ]	3.49	E:LYS 40[0]	1	Y:LYS 179[NZ]	3.76	E:ASP 90[OD1]	
2	Y:LYS 104[NZ]	2.78	E:ASP 93[OD1]	2	Y:LYS 104[NZ]	2.78	E:ASP 93[OD1]	
3	Y:ARG 101[NH1]	3.82	E:THR 95[OG1]	3	Y:LYS 104[NZ]	3.16	E:ASP 93[OD2]	
4	Y:TYS 335[01]	3.42	E:VAL 38[N$]$	4	Y:GLU 197[OE1]	3.88	E:LYS 46[NZ]	
5	Y:TYS 335[03]	2.98	E:VAL 38[N$]$	5	Y:GLU 76[OE1]	3.60	E:ARG 97[NE]	
6	Y:TYS 335[03]	3.24	E:TYR 39[N]	6	Y:GLU 50[OE2]	3.35	E:ARG 97[$\mathrm{NH2}$]	
7	Y:GLU 103[OE1]	2.71	E:THR 95[OG1]	7	Y:GLU 76[OE1]	2.81	E:ARG 97[NH2]	
8	Y:GLU 50[OE2]	3.35	E:ARG 97[$\mathrm{NH2}$]					
9	Y:GLU 76[OE1]	2.81	E:ARG 97[$\mathrm{NH2}$]					
10	Y:GLU 34[OE2]	2.72	E:TYR 103[OH]					
11	Y:GLU 34[OE1]	2.71	E:TYR 103[OH]					

\#\#	Structure 1		HSDC	ASA	BSA	$\underline{\underline{-1}} \underline{\underline{G}}$	\#\#	Struct	ture 2	HSDC	ASA	BSA	$\underline{\Delta} \underline{\underline{G}}$								
1	Y:CYS	18		116.02	0.00	0.00	1	E:ASN	1		151.77	0.00	0.00								
2	Y:HIS	19		161.36	0.00	0.00	2	E:SER	2		61.70	0.00	0.00								
3	Y:HIS	20		15.73	0.00	0.00	3	E:CYS	3		15.73	0.00	0.00								
4	Y:ARG	21		156.33	0.00	0.00	4	E:GLU	4		111.81	0.00	0.00								
5	Y:ILE	22		35.96	0.00	0.00	5	E:LEU	5		82.85	0.00	0.00								
6	Y:CYS	23		2.42	0.00	0.00	6	E:THR	6		48.90	0.00	0.00								
7	Y:HIS	24		97.25	0.00	0.00	7	E:ASN	7		129.12	0.00	0.00								
8	Y:CYS	25		21.51	0.00	0.00	8	E:ILE	8		37.03	0.00	0.00								
9	Y:SER	26		79.07	0.00	0.00	9	E:THR	9		60.65	0.00	0.00								
10	Y:ASN	27		139.31	0.00	0.00	10	E:ILE	10		26.06	0.00	0.00								
11	Y:ARG	28		99.27	0.00	0.00	11	E:ALA	11		21.77	0.00	0.00								
12	Y:VAL	29		33.72	0.00	0.00	12	E:ILE	12		6.66	0.00	0.00								
13	Y:PHE	30		3.90	0.00	0.00	13	E:GLU	13		71.80	0.00	0.00								
14	Y:LEU	31		36.93	0.00	0.00	14	E:LYS	14		5.94	0.00	0.00								
15	Y:CYS	32		0.16	0.00	0.00	15	E:GLU	15		134.78	0.00	0.00								
16	Y:GLN	33		57.37	18.58 \|				-0.22	16	E:GLU	16		79.46	0.00	0.00					
17	Y:GLU	34	H	83.98	23.56 \|			-0.27	17	E:CYS	17		16.53	0.00	0.00						
18	Y:SER	35		69.97	0.00	0.00	18	E:ARG	18		174.21	0.00	0.00								
19	Y:LYS	36		123.23	0.00	0.00	19	E:PHE	19		67.17	0.00	0.00								
20	Y:VAL	37		0.84	0.00	0.00	20	E:CYS	20		32.01	0.00	0.00								
21	Y:THR	38		84.84	0.00	0.00	21	E:ILE	21		33.86	0.00	0.00								
22	Y:GLU	39		123.18	0.00	0.00	22	E:SER	22		83.86	0.00	0.00								
23	Y:ILE	40		20.95	0.00	0.00	23	E:ILE	23		30.77	0.00	0.00								
24	Y:PRO	41		6.58	0.00	0.00	24	E:ASN	24		119.72	0.00	0.00								
25	Y:SER	42		104.31	0.00	0.00	25	E:THR	25		9.89	0.00	0.00								
26	Y:ASP	43		72.40	0.00	0.00	26	E:THR	26		47.52	0.00	0.00								
27	Y:LEU	44		3.08	0.00	0.00	27	E:TRP	27		52.15	0.00	0.00								
28	Y:PRO	45		48.31	0.00	0.00	28	E:CYS	28		26.94	0.00	0.00								
29	Y:ARG	46		122.20	0.00	0.00	29	E:ALA	29		46.57	0.00	0.00								
30	Y:ASN	47		72.74	0.00	0.00	30	E:GLY	30		42.96	0.00	0.00								
31	Y:ALA	48		0.00	0.00	0.00	31	E:TYR	31		176.73	0.00	0.00								
32	Y:ILE	49		37.50	0.00	0.00	32	E:CYS	32		32.15	0.00	0.00								
33	Y:GLU	50	HS	27.88	7.37 \|			-0.08	33	E:TYR	33		137.15	0.00	0.00						
34	Y:LEU	51		0.00	0.00	0.00	34	E:THR	34		71.75	0.00	0.00								
35	Y:ARG	52		75.47	35.68 \|					-0.74	35	E:ARG	35		168.96	4.53 \|	0.07				
36	Y:PHE	53		0.62	0.00	0.00	36	E:ASP	36		122.04	0.25	-0.00								
37	Y:VAL	54		18.75	7.02 \|				0.11	37	E:LEU	37		50.64	25.22 \|					0.40	
38	Y:LEU	55		81.34	31.99 \|				0.51	38	E:VAL	38	H	154.26	17.23 \|		0.17				
39	Y:THR	56		0.12	0.00	0.00	39	E:TYR	39	H	167.72	21.55 \|		0.26							
40	Y:LYS	57		74.45	0.00	0.00	40	E:LYS	40	H	121.47	29.57 \|			0.17						
41	Y:LEU	58		1.33	0.00	0.00	41	E:ASP	41		50.15	6.86 \|		-0.09							
42	Y:ARG	59		137.80	0.00	0.00	42	E:PRO	42		117.84	78.76 \|								0.93	
43	Y:VAL	60		51.82	0.00	0.00	43	E:ALA	43		93.31	77.05 \|									0.82
44	Y:ILE	61		0.67	0.00	0.00	44	E:ARG	44		56.87	23.83 \|					-0.06				
45	Y:GLN	62		62.91	0.00	0.00	45	E:PRO	45		96.24	30.15 \|				0.48					
46	Y:LYS	63		141.36	0.00	0.00	46	E:LYS	46	S	124.31	56.16 \|					0.27				
47	Y:GLY	64		26.22	0.00	0.00	47	E:ILE	47		119.76	0.00	0.00								
48	Y:ALA	65		19.89	0.00	0.00	48	E:GLN	48		131.28	0.00	0.00								
49	Y:PHE	66		0.00	0.00	0.00	49	E:LYS	49		114.58	0.00	0.00								
50	Y:SER	67		29.69	0.00	0.00	50	E:THR	50		56.13	0.00	0.00								
51	Y:GLY	68		38.46	0.00	0.00	51	E:CYS	51		29.21	0.00	0.00								
52	Y:PHE	69		4.69	0.00	0.00	52	E:THR	52		17.26	0.00	0.00								
53	Y:GLY	70		36.03	0.00	0.00	53	E:PHE	53		39.28	0.00	0.00								
54	Y:ASP	71		48.21	0.00	0.00	54	E:LYS	54		101.66	0.00	0.00								
55	Y:LEU	72		0.00	0.00	0.00	55	E:GLU	55		82.18	0.00	0.00								
56	Y:GLU	73		59.55	0.00	0.00	56	E:LEU	56		52.69	0.00	0.00								
57	Y:LYS	74		61.52	0.51 \|	0.01	57	E:VAL	57		75.24	0.00	0.00								
58	Y:ILE	75		1.63	0.00	0.00	58	E:TYR	58		143.25	0.00	0.00								

59	Y:GLU	76	HS	23.90	18.03 \|									-0.25	59	E:GLU	59		82.28	0.00	0.00	
60	Y Y:ILE	77		0.43	0.00	0.00	60	E:THR	60		85.68	0.00	0.00									
61	Y:SER	78		2.42	2.18 \|									-0.02	61	E:VAL	61		36.80	0.00	0.00	
62	Y:GLN	79		75.74	36.86 \|					-0.54	62	E:ARG	62		167.14	0.00	0.00					
63	$Y: A S N$	80		0.79	0.00	0.00	63	E:VAL	63		2.67	0.00	0.00									
64	Y:ASP	81		63.67	0.00	0.00	64	E:PRO	64		67.76	0.00	0.00									
65	Y:VAL	82		42.97	0.00	0.00	65	E:GLY	65		23.31	0.00	0.00									
66	Y:LEU	83		0.50	0.00	0.00	66	E:CYS	66		65.04	0.00	0.00									
67	Y:GLU	84		67.24	0.00	0.00	67	E:ALA	67		77.16	0.00	0.00									
68	Y VAL	85		40.18	0.00	0.00	68	E:HIS	68		186.32	0.00	0.00									
69	Y:ILE	86		0.61	0.00	0.00	69	E:HIS	69		91.84	0.00	0.00									
70	Y:GLU	87		66.68	0.00	0.00	70	E:ALA	70		87.86	0.00	0.00									
71	Y:ALA	88		11.20	0.00	0.00	71	E:ASP	71		84.95	0.00	0.00									
72	Y :ASP	89		55.28	0.00	0.00	72	E:SER	72		43.49	0.00	0.00									
73	Y:VAL	90		0.00	0.00	0.00	73	E:LEU	73		114.44	0.00	0.00									
74	Y:PHE	91		0.00	0.00	0.00	74	E:TYR	74		101.42	0.00	0.00									
75	Y:SER	92		4.65	0.00	0.00	75	E:THR	75		64.66	0.00	0.00									
76	Y:ASN	93		102.22	0.00	0.00	76	E:TYR	76		14.80	0.00	0.00									
77	Y:LEU	94		0.58	0.00	0.00	77	E:PRO	77		42.65	0.00	0.00									
78	Y:PRO	95		73.93	0.00	0.00	78	E:VAL	78		12.06	0.00	0.00									
79	Y:LYS	96		106.57	0.00	0.00	79	E:ALA	79		4.53	0.00	0.00									
80	Y:LEU	97		0.00	0.00	0.00	80	E:THR	80		62.83	0.00	0.00									
81	Y :HIS	98		38.02	0.00	0.00	81	E:GLN	81		75.72	0.00	0.00									
82	Y:GLU	99		28.62	0.00	0.00	82	E:CYS	82		22.91	0.00	0.00									
83	Y YILE	100		0.00	0.00	0.00	83	E:HIS	83		61.34	0.00	0.00									
84	Y:ARG	101	H	60.29	45.37 \|									-0.81	84	E:CYS	84		31.24	0.00	0.00	
85	Y Y:ILE	102		0.17	0.00	0.00	85	E:GLY	85		6.66	0.00	0.00									
86	Y:GLU	103	H	25.89	23.48 \|										-0.29	86	E:LYS	86		128.81	0.00	0.00
87	Y:LYS	104	HS	80.75	43.73 \|						-0.31	87	E:CYS	87		38.49	0.00	0.00				
88	Y:ALA	105		0.00	0.00	0.00	88	E:ASP	88		42.81	0.00	0.00									
89	$Y: A S N$	106		95.27	0.00	0.00	89	E:SER	89		88.28	42.49 \|					0.11					
90	$Y: A S N$	107		69.38	0.00	0.00	90	E:ASP	90	S	136.81	25.75 \|		-0.01								
91	Y:LEU	108		0.00	0.00	0.00	91	E:SER	91		77.36	0.00	0.00									
92	Y:LEU	109		81.15	0.00	0.00	92	E:THR	92		43.72	0.00	0.00									
93	Y:TYR	110		111.49	0.00	0.00	93	E:ASP	93	HS	119.38	43.16 IIII	-0.49									
94	Y YILE	111		25.85	0.00	0.00	94	E:CYS	94		68.73	6.38 \|	-0.07									
95	Y:ASN	112		33.82	0.00	0.00	95	E:THR	95	H	82.20	36.81 \|					0.01					
96	Y:PRO	113		66.53	0.00	0.00	96	E:VAL	96		123.76	30.29 III	0.48									
97	Y:GLU	114		66.13	0.00	0.00	97	E:ARG	97	HS	199.51	109.30 \|							-1.19			
98	Y:ALA	115		0.00	0.00	0.00	98	E:GLY	98		59.76	10.03 \|		0.14								
99	$Y:$ PHE	116		1.09	0.00	0.00	99	E:LEU	99		143.22	86.24 \|								1.31		
100	Y:GLN	117		34.61	0.00	0.00	100	E:GLY	100		42.19	0.00	0.00									
101	Y:ASN	118		76.63	0.00	0.00	101	E:PRO	101		77.40	0.00	0.00									
102	Y:LEU	119		0.00	0.00	0.00	102	E:SER	102		50.65	0.00	0.00									
103	Y:PRO	120		36.78	0.00	0.00	103	E:TYR	103	H	90.30	52.21 \|						-0.03				
104	$Y: A S N$	121		51.50	0.00	0.00	104	E:CYS	104		8.55	0.00	0.00									
105	Y:LEU	122		0.00	0.00	0.00	105	E:SER	105		64.24	1.20 \|	0.01									
106	Y:GLN	123		71.85	0.00	0.00	106	E:PHE	106		61.46	0.00	0.00									
107	Y:TYR	124		52.14	0.00	0.00	107	E:GLY	107		48.76	0.00	0.00									
108	Y:LEU	125		0.00	0.00	0.00	108	E:GLU	108		165.02	0.00	0.00									
109	Y:LEU	126		17.73	3.35 \|		0.05															
110	Y :ILE	127		0.00	0.00	0.00																
111	Y Y:SER	128		19.41	0.86 \|	-0.01																
112	Y:ASN	129		83.24	3.37 \|	-0.03																
113	Y:THR	130		6.62	0.00	0.00																
114	Y:GLY	131		5.36	0.00	0.00																
115	Y YILE	132		4.01	0.00	0.00																
116	Y:LYS	133		96.36	0.00	0.00																
117	Y Y HIS	134		116.35	0.00	0.00																
118	Y:LEU	135		27.23	0.00	0.00																
119	$Y: P R O$	136		8.21	0.00	0.00																
120	Y:ASP	137		40.39	0.00	0.00																
121	Y:VAL	138		3.08	0.00	0.00																
122	Y:HIS	139		78.98	0.00	0.00																
123	Y:LYS	140		71.91	0.00	0.00																

124	Y:ILE 141		0.00	0.00	0.00						
125	Y:HIS 142		66.97	0.00	0.00						
126	Y:SER 143		0.00	0.00	0.00						
127	Y:LEU 144		114.14	0.00	0.00						
128	Y:GLN 145		65.96	0.00	0.00						
129	Y:LYS 146	H	122.05	36.11 \|II	-0.93						
130	Y:VAL 147		2.87	0.00	0.00						
131	Y:LEU 148		37.75	0.00	0.00						
132	Y:LEU 149		0.50	0.00	0.00						
133	Y:ASP 150		9.20	0.00	0.00						
134	Y:ILE 151		0.00	0.00	0.00						
135	Y:GLN 152		42.10	13.25 \|	I		-0.22				
136	Y:ASP 153		57.13	8.51 \|		-0.08					
137	Y:ASN 154		0.00	0.00	0.00						
138	Y:ILE 155		127.03	0.00	0.00						
139	Y:ASN 156		35.49	0.00	0.00						
140	Y:ILE 157		0.00	0.00	0.00						
141	Y:HIS 158		73.84	0.00	0.00						
142	Y:THR 159		35.88	0.00	0.00						
143	Y:ILE 160		0.00	0.00	0.00						
144	Y:GLU 161		87.10	0.00	0.00						
145	Y:ARG 162		157.60	0.00	0.00						
146	Y:ASN 163		49.31	0.00	0.00						
147	Y:SER 164		20.64	0.00	0.00						
148	Y:PHE 165		4.64	0.00	0.00						
149	Y:VAL 166		50.10	0.00	0.00						
150	Y:GLY 167		13.03	0.00	0.00						
151	Y:LEU 168		1.08	0.00	0.00						
152	Y:SER 169		22.12	0.00	0.00						
153	Y:PHE 170		139.67	0.00	0.00						
154	Y:GLU 171		66.22	0.00	0.00						
155	Y:SER 172		9.89	0.00	0.00						
156	Y:VAL 173		4.52	0.00	0.00						
157	Y:ILE 174		47.68	22.41 \|	II		0.36				
158	Y:LEU 175		0.00	0.00	0.00						
159	Y:TRP 176		69.84	7.36 \|		0.12					
160	Y:LEU 177		0.00	0.00	0.00						
161	Y:ASN 178		12.50	0.58 ।	-0.01						
162	Y:LYS 179	s	88.68	60.05 I\|IIIII	-0.42						
163	Y:ASN 180		9.57	0.00	0.00						
164	Y:GLY 181		15.18	0.00	0.00						
165	Y:ILE 182		0.00	0.00	0.00						
166	Y:GLN 183		69.64	0.00	0.00						
167	Y:GLU 184		85.97	0.00	0.00						
168	Y:ILE 185		6.16	0.00	0.00						
169	Y:HIS 186		71.48	0.00	0.00						
170	Y:ASN 187		72.36	0.00	0.00						
171	Y:SER 188		23.07	0.00	0.00						
172	Y:ALA 189		0.00	0.00	0.00						
173	Y:PHE 190		0.00	0.00	0.00						
174	Y:ASN 191		40.79	0.00	0.00						
175	Y:GLY 192		43.58	0.00	0.00						
176	Y:THR 193		10.22	0.00	0.00						
177	Y:GLN 194		89.98	0.00	0.00						
178	Y:LEU 195		3.35	0.00	0.00						
179	Y:ASP 196		44.83	28.86 \|	I						0.03
180	Y:GLU 197	s	38.40	17.60 IIII	-0.16						
181	Y:LEU 198		0.31	0.00	0.00						
182	Y:ASN 199		25.92	0.00	0.00						
183	Y:LEU 200		0.00	0.00	0.00						
184	Y:SER 201		2.46	0.00	0.00						
185	Y:ASP 202		31.09	3.91 \|		-0.05					
186	Y:ASN 203		0.34	0.00	0.00						
187	Y:ASN 284		83.39	0.00	0.00						
188	Y:ASN 205		84.41	0.00	0.00						

189	Y:LEU 206	0.00	0.00	0.00								
190	Y:GLU 207	70.26	0.00	0.00								
191	Y:GLU 208	117.57	0.00	0.00								
192	Y:LEU 209	16.19	0.00	0.00								
193	Y:PRO 210	39.50	0.00	0.00								
194	Y:ASN 211	82.90	0.00	0.00								
195	Y:ASP 212	55.27	0.00	0.00								
196	Y:VAL 213	0.00	0.00	0.00								
197	Y:PHE 214	4.09	0.00	0.00								
198	Y:HIS 215	88.48	0.00	0.00								
199	Y:GLY 216	45.36	0.00	0.00								
200	Y:ALA 217	14.23	0.00	0.00								
201	Y:SER 218	61.69	0.00	0.00								
202	Y:GLY 219	2.90	0.00	0.00								
203	Y:PRO 220	0.00	0.00	0.00								
204	Y:VAL 221	48.86	30.12 \|		1				0.48			
205	Y:ILE 222	35.14	33.30 \|	1								0.53
206	Y:LEU 223	0.00	0.00	0.00								
207	Y:ASP 224	21.97	0.00	0.00								
208	Y:ILE 225	0.00	0.00	0.00								
209	Y:SER 226	0.41	0.00	0.00								
210	Y:ARG 227	96.32	0.00	0.00								
211	Y :THR 228	5.61	0.00	0.00								
212	Y:ARG 229	112.51	0.00	0.00								
213	Y:ILE 230	0.33	0.00	0.00								
214	Y:HIS 231	90.17	0.00	0.00								
215	Y:SER 232	38.40	0.00	0.00								
216	Y:LEU 233	7.37	0.00	0.00								
217	Y:PRO 234	2.42	0.00	0.00								
218	Y:SER 235	66.02	0.00	0.00								
219	Y:TYR 236	83.82	0.00	0.00								
220	Y:GLY 237	1.00	0.00	0.00								
221	Y:LEU 238	4.88	0.00	0.00								
222	Y:GLU 239	87.35	0.00	0.00								
223	Y:ASN 240	66.57	0.00	0.00								
224	Y:LEU 241	0.00	0.00	0.00								
225	Y:LYS 242	76.85	20.78 III	-0.25								
226	Y:LYS 243	60.31	31.94 \|						0.18			
227	Y:LEU 244	0.76	0.00	0.00								
228	Y:ARG 245	68.70	1.60 \|	-0.06								
229	Y:ALA 246	1.67	0.00	0.00								
230	Y:ARG 247	94.38	0.00	0.00								
231	Y:SER 248	47.42	0.00	0.00								
232	Y :THR 249	1.31	0.00	0.00								
233	Y:TYR 250	129.53	0.00	0.00								
234	Y:ASN 251	38.49	0.00	0.00								
235	Y:LEU 252	3.62	0.00	0.00								
236	Y:LYS 253	131.16	0.00	0.00								
237	Y:LYS 254	128.33	0.00	0.00								
238	Y:LEU 255	18.87	0.00	0.00								
239	Y:PRO 256	16.26	0.00	0.00								
240	Y:THR 257	82.05	0.00	0.00								
241	Y:LEU 258	53.81	0.00	0.00								
242	Y:GLU 259	125.02	0.00	0.00								
243	Y:LYS 260	84.05	0.00	0.00								
244	Y:LEU 261	0.62	0.00	0.00								
245	Y:VAL 262	109.03	0.00	0.00								
246	Y:ALA 263	27.80	0.00	0.00								
247	Y:LEU 264	8.88	0.00	0.00								
248	Y:MET 265	103.47	1.91 \|	0.08								
249	Y:GLU 266	51.50	0.00	0.00								
250	Y:ALA 267	1.21	0.00	0.00								
251	Y:SER 268	18.06	0.00	0.00								
252	Y:LEU 269	3.15	0.00	0.00								
253	Y:THR 270	25.58	0.00	0.00								

254	Y:TYR 271		68.22	0.00	0.00					
255	Y:PRO 272		43.96	0.00	0.00					
256	Y:SER 273		49.02	0.00	0.00					
257	Y:HIS 274		22.67	0.00	0.00					
258	Y:CYS 275		5.12	0.00	0.00					
259	Y:CYS 276		20.11	0.00	0.00					
260	Y:ALA 277		68.64	0.00	0.00					
261	Y:PHE 278		5.23	0.00	0.00					
262	Y:ALA 279		76.36	0.00	0.00					
263	Y:ASN 280		79.69	0.00	0.00					
264	Y:TRP 281		91.13	0.00	0.00					
265	Y:ASP 334		191.42	6.92 \|	-0.08					
266	Y:TYS 335	H	273.27	148.20 \|						0.15
267	Y:ASP 336		143.78	0.00	0.00					
268	Y:LEU 337		151.48	0.00	0.00					
269	Y:VAL 342		202.97	0.00	0.00					
270	Y:ASP 343		90.42	0.00	0.00					
271	Y:VAL 344		24.43	0.00	0.00					
272	Y:THR 345		82.06	0.00	0.00					
273	Y:CYS 346		10.46	0.00	0.00					
274	Y:SER 347		27.66	0.00	0.00					
275	Y:PRO 348		41.67	0.00	0.00					
276	Y:LYS 349		126.58	0.00	0.00					
277	Y:PRO 350		42.97	0.00	0.00					
278	Y:ASP 351		125.29	0.00	0.00					
279	Y:ALA 352		82.91	0.00	0.00					
280	Y:PHE 353		199.77	0.00	0.00					
281	Y:ASN 354		53.01	0.00	0.00					
282	Y:PRO 355		122.71	0.00	0.00					
283	Y:CYS 356		52.99	0.00	0.00					
284	Y:GLU 357		146.32	0.00	0.00					

PDBe PISA v1. 52 [20/10/2014]

\&PDBe

Table S3: Predicted $\Delta G^{\circ}{ }_{i}$ values for each FSH- β residue in the FSH- $\boldsymbol{\beta}$::FSHR interaction. Only the additive terms $\Delta G^{\circ}{ }_{i}$ are shown. The values were calculated by using the equation [12]. $\Delta G^{\circ}{ }_{i}=\Delta G^{\circ}-\Delta G^{\circ}{ }_{n a} . \Delta G^{\circ}{ }_{i}$ values were plotted in Figure 9B.

Residue	BSA\#7 Chain H	BSA\#8 Chain B	BSA\#9 Chain E	Media	SD	$\Delta \mathrm{Gi}$	$\Delta \mathrm{Gi} \mathrm{SD}$
ASN 1	0	0	0	0	0	0	0
SER 2	0	0	0	0	0	0	0
CYS 3	0	0	0	0	0	0	0
GLU 4	0	0	0	0	0	0	0
LEU 5	0	0	0	0	0	0	0
THR 6	0	0	0	0	0	0	0
ASN 7	0	0	0	0	0	0	0
ILE 8	0	0	0	0	0	0	0
THR 9	0	0	0	0	0	0	0
ILE 10	0	0	0	0	0	0	0
ALA 11	0	0	0	0	0	0	0
ILE 12	0	0	0	0	0	0	0
GLU 13	0	0	0	0	0	0	0
LYS 14	0	0	0	0	0	0	0
GLU 15	0	0	0	0	0	0	0
GLU 16	0	0	0	0	0	0	0
CYS 17	0	0	0	0	0	0	0
ARG 18	0	0	0	0	0	0	0
PHE 19	0	0	0	0	0	0	0
CYS 20	0	0	0	0	0	0	0
ILE 21	0	0	0	0	0	0	0
SER 22	0	0	0	0	0	0	0
ILE 23	0	0	0	0	0	0	0
ASN 24	0	0	0	0	0	0	0
THR 25	0	0	0	0	0	0	0
THR 26	0	0	0	0	0	0	0
TRP 27	0	0	0	0	0	0	0
CYS 28	0	0	0	0	0	0	0
ALA 29	0	0	0	0	0	0	0
GLY 30	0	0	0	0	0	0	0
TYR 31	0	0	0	0	0	0	0
CYS 32	0	0	0	0	0	0	0
TYR 33	0	0	0	0	0	0	0
THR 34	0	0	0	0	0	0	0
ARG 35	26.4274	5.19531	4.52626	12.04966	12.45598	-0.07073	-0.07311
ASP 36	1.59406	0.495477	0.245811	0.778449	0.717286	-0.00457	-0.00421
LEU 37	26.9296	22.0761	25.218	24.74123	2.461625	-0.14522	-0.01445
VAL 38	13.4099	14.3852	17.2322	15.0091	1.98606	-0.0881	-0.01166

Overlapping synthetic peptides and nonadditive interactions

TYR 39	26.7336	22.966	21.5544	23.75133	2.677422	-0.13941	-0.01572
LYS 40	27.7733	28.0754	29.5747	28.47447	0.964729	-0.16714	-0.00566
ASP 41	10.6805	7.96472	6.86229	8.502503	1.965093	-0.04991	-0.01153
PRO 42	90.1435	93.0863	78.7632	87.331	7.564418	-0.51261	-0.0444
ALA 43	82.893	83.499	77.0466	81.1462	3.563264	-0.4763	-0.02092
ARG 44	29.2696	30.7315	23.8312	27.9441	3.636103	-0.16402	-0.02134
PRO 45	43.247	28.2789	30.1546	33.8935	8.154479	-0.19894	-0.04786
LYS 46	53.9647	72.2339	56.1649	60.78783	9.973442	-0.35681	-0.05854
ILE 47	0	0	0	0	0	0	0
GLN 48	0	0	0	0	0	0	0
LYS 49	0	0	0	0	0	0	0
THR 50	0	0	0	0	0	0	0
CYS 51	0	0	0	0	0	0	0
THR 52	0	0	0	0	0	0	0
PHE 53	0	0	0	0	0	0	0
LYS 54	0	0	0	0	0	0	0
GLU 55	0	0	0	0	0	0	0
LEU 56	0	0	0	0	0	0	0
VAL 57	0	0	0	0	0	0	0
TYR 58	0	0	0	0	0	0	0
GLU 59	0	0	0	0	0	0	0
THR 60	0	0	0	0	0	0	0
VAL 61	0	0	0	0	0	0	0
ARG 62	0	0	0	0	0	0	0
VAL 63	0	0	0	0	0	0	0
PRO 64	0	0	0	0	0	0	0
GLY 65	0	0	0	0	0	0	0
CYS 66	0	0	0	0	0	0	0
ALA 67	0	0	0	0	0	0	0
HIS 68	0	0	0	0	0	0	0
HIS 69	0	0	0	0	0	0	0
ALA 70	0	0	0	0	0	0	0
ASP 71	0	0	0	0	0	0	0
SER 72	0	0	0	0	0	0	0
LEU 73	0	0	0	0	0	0	0
TYR 74	0	0	0	0	0	0	0
THR 75	0	0	0	0	0	0	0
TYR 76	0	0	0	0	0	0	0
PRO 77	0	0	0	0	0	0	0
VAL 78	0	0	0	0	0	0	0
ALA 79	0	0	0	0	0	0	0
THR 80	0	0	0	0	0	0	0
GLN 81	0	0	0	0	0	0	0
CYS 82	0	0	0	0	0	0	0
HIS 83	0	0	0	0	0	0	0

Overlapping synthetic peptides and nonadditive interactions

CYS 84	0	0	0	0	0	0	0
GLY 85	0	0	0	0	0	0	0
LYS 86	0	0	0	0	0	0	0
CYS 87	0	0	0	0	0	0	0
ASP 88	0	0	0	0	0	0	0
SER 89	40.0227	41.9822	42.4924	41.4991	1.3038	-0.24359	-0.00765
ASP 90	36.6246	26.9406	25.7465	29.77057	5.965719	-0.17474	-0.03502
SER 91	0	0	0	0	0	0	0
THR 92	0	0	0	0	0	0	0
ASP 93	42.4564	43.6669	43.1599	43.0944	0.607902	-0.25295	-0.00357
CYS 94	8.34642	6.50421	6.38069	7.077107	1.100991	-0.04154	-0.00646
THR 95	36.8722	33.5917	36.8131	35.759	1.877169	-0.20989	-0.01102
VAL 96	31.5954	32.4799	30.2882	31.4545	1.102623	-0.18463	-0.00647
ARG 97	110.918	104.817	109.302	108.3457	3.16093	-0.63596	-0.01855
GLY 98	11.9929	10.6833	10.0336	10.90327	0.998	-0.064	-0.00586
LEU 99	86.2462	90.0467	86.244	87.5123	2.194855	-0.51367	-0.01288
GLY 100	0	0	0	0	0	0	0
PRO 101	0	0	0	0	0	0)
SER 102	0	0	0	0	0	0	0
TYR 103	51.2272	50.739	52.2106	51.39227	0.749558	-0.30166	-0.0044
CYS 104	0	0	0	0	0	0	0
SER 105	0.33585	0	1.20342	0.51309	0.620979	-0.00301	-0.00364
PHE 106	0	0	0	0	0	0	0
GLY 107	0	0	0	0	0	0	0
GLU 108	0	0	0	0	0	0	0
MET 109	0	0	0	0	0	0	0

$\overline{\text { Total } \Delta \mathrm{G}^{\circ}{ }_{i} \text { of }-2.37 \pm-0.18 \mathrm{kcal} \mathrm{mol}^{-1} \text { for region FSH- } \beta-(34-47) \text { and }-2.63 \pm-0.05 \mathrm{kcal} \mathrm{mol}^{-}}$ ${ }^{1}$ for region FSH- β-(88-106). To calculate $\Delta \mathrm{G}^{\circ}, \Delta \mathrm{G}^{\circ}{ }_{\mathrm{na}}=-3.13 \mathrm{kcal} \mathrm{mol}^{-1}$ should be added. The contribution to $\Delta \mathrm{G}^{\circ}$ of each binding regions is similar, with a little higher contribution of region FSH- $\beta-(88-106)$.

References

1. Weber, G., Energetics of ligand binding to proteins. Adv. Protein Chem. 1975, 29, 183.
2. Weber, G., Ligand binding and internal equilibria in proteins. Biochemistry 1972, 11, 864-78.
3. Santa-Coloma, T. A.; Crabb, J. W.; Reichert, L. E., Jr., A synthetic peptide encompassing two discontinuous regions of hFSH-beta subunit mimics the receptor binding surface of the hormone. Mol. Cell. Endocrinol. 1991, 78, 197-204.
4. Kurcinski, M.; Oleniecki, T.; Ciemny, M. P.; Kuriata, A.; Kolinski, A.; Kmiecik, S., CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 2018, 35, 694-695.
