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Significance of This Study

What is already known about this subject?
• It is well established that diabetes-related metabolic disorders due to hyperglycemia lead to renal com-

plications.
• Various allopathic drugs are available for the treatment of diabetes, and they somehow control glucose 

metabolism. However, these drugs are unable to protect the body from other complicating sequels such 
as renal injury. Hence, it remains unclear whether the diabetes-induced renal damage can be prevented.

What are the new findings?
• The findings of the current study indicated that melatonin plus insulin might be an effective therapeu-

tic combination to prevent diabetes-induced functional renal alterations as demonstrated by changes 
of kidney histoarchitecture, renal cortex biochemistry, serum biochemical indicators of renal function, 
electrolytes, and serum concentration of pro- and anti-inflammatory cytokines.

• Insulin and melatonin might act synergistically through autocrine and paracrine/endocrine pathways 
during the hyperglycemic condition to modulate metabolic physiology. Mitigation of diabetes-induced 
renal damage by melatonin and insulin involves a complex series of biochemical improvements at cel-
lular levels. Melatonin and insulin attenuate the nephrotoxicity of diabetes through its potent antioxi-
dant and glucose metabolizing actions, respectively, as it is believed to reinforce the antioxidant en-
zymes and direct free-radical scavenging at subcellular levels.

How might these results change the focus of research or clinical practice?
• The findings of the present study indicate the potential clinical importance of combined melatonin 

and insulin in alleviating the renal toxicity associated with diabetes. The present study should be fol-
lowed by clinical placebo-controlled trials before its therapeutic significance is established.

DOI: 10.1159/000520280
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Abstract
Introduction: The present study was designed to evaluate 
the therapeutic efficacy of melatonin and insulin coadminis-
tration in diabetes-induced renal injury in rats. Research De-
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sign and Methods: Diabetes was achieved by giving strep-
tozotocin (15 mg/kg) for 6 consecutive days. The diabetic 
condition was confirmed by assessing the blood glucose lev-
el; animals having blood glucose levels above 250 mg were 
considered as diabetic. Following the confirmation, animals 
were randomly divided into different experimental groups, 
viz group I served as the control (CON), group II diabetic (D), 
group III D+melatonin (MEL), group IV D+insulin (INS), group 
V D+MEL+INS, group VI D+glibenclamide (GB), group VII 
CON+MEL, group VIII CON+INS, and group IX CON+GB. Fol-
lowing the completion of the experimental period, animals 
were sacrificed, blood was collected via a retro-orbital punc-
ture, and kidneys were harvested. Diabetic rats exhibited a 
significant increment in blood glucose and biochemical in-
dexes of renal injury (tubular disruption, swollen glomeruli 
with loss of glomerular spaces, and distortion of the endo-
thelial lining) including augmented levels of serum creati-
nine, urea, uric acid, Na+, and K+, and inhibition/suppression 
of the activity of glutathione (GSH) peroxidase, GSH reduc-
tase, glucose-6-phosphate dehydrogenase, and GSH-S-
transferase in the renal cortex. Results: By examining thio-
barbiturate reactive substances, reduced GSH, superoxide 
dismutase activity, and catalase activity in the renal cortex of 
control and diabetic rats, it was documented that treatment 
with melatonin or insulin alone or in combination showed a 
significant ad integrum recovery of GSH-dependent antioxi-
dative enzymatic activities. Melatonin and insulin coadmin-
istration caused greater reductions in circulating tumor ne-
crosis factor-α, tumor growth factor-β1, interleukin (IL)-1β, 
and IL-6 levels in diabetic rats, whereas IL-10 levels increased, 
as compared to each treatment alone. Diabetic rats showed 
a significant increase in the expression of both MT1 and MT2 
melatonin receptor genes. Melatonin or insulin treatment 
alone or in combination resulted in significant restoration of 
the relative expression of both melatonin receptors in the 
renal cortex. Conclusion: The coadministration of exoge-
nous melatonin and insulin abolished many of the deleteri-
ous effects of type 1 diabetes on rat renal function.

© 2021 S. Karger AG, Basel

Introduction

As a complex metabolic disorder, diabetes mellitus is 
an epidemic of foremost public health concern. The in-
creased rate of diabetes in modern society is associated 
with several predisposing factors, including a sedentary 
lifestyle, carbohydrate-rich diet, and obesity [1]. The ex-
cessive glucose concentration in diabetes becomes auto-
oxidized in tissues and leads to auto-oxidative glycosyl-

ation of proteins, oxidative stress, and also causes various 
secondary metabolic complications in different organs in-
cluding the kidney [2]. Diabetic pathogenicity of the kid-
ney includes injury not only of extrarenal small blood ves-
sels but also of blood vessels in the renal cortex, which 
leads to a renal functional disability including reduced 
blood filtration due to mesangial cell expansion, loss of 
products (albumin and glucose), and tubule interstitial fi-
brosis. These pathophysiological complications alter the 
glomerular filtration rate, increase albuminuria, and dis-
rupt blood purification, causing excess urine formation 
and excretion of metabolic products, and a reduced osmo-
lality [3, 4]. Besides, diabetes induces a chronic low-grade 
inflammatory process that in turn reinforces renal micro-
vascular complications [5].

Melatonin, in addition to being the chief hormone of 
the pineal gland associated with the regulation of sleep, 
the circadian system, and seasonal reproduction, is a 
pleiotropic molecule, exhibiting significant antioxidant, 
anti-inflammatory, and immunoregulatory properties 
[6–8]. Melatonin can reduce insulin resistance, dyslipid-
emia, and overweight in obese individuals [9]. It also en-
hances various antioxidative enzymes including glutathi-
one (GSH) peroxidase (GPX), GSH reductase (GR), and 
importantly, the synthesis of GSH [10, 11]. Melatonin 
protects against hepatorenal damage induced by diabetic 
conditions [12–18]. Moreover, due to a low-level inflam-
matory state, diabetic patients are more susceptible to 
SARS-CoV-2 infection, amplifying the cytokine storm 
typically seen in COVID-19 patients [19].

Streptozotocin (STZ) is a diabetogenic drug synthe-
sized by the soil bacteria, Streptomyces achromogenes, 
having a broad spectrum of antibacterial properties. This 
drug resembles glucose, the only difference being the 
presence of methyl groups; hence, it mimics glucose in 
terms of the glucose transporter 2 in the pancreas, target-
ing the insulin synthesizing β-cells and leading to a dia-
betic condition. Herein, diabetic animals were treated 
with melatonin, insulin, or a combination of both to in-
vestigate the possible impact of a single or combined ther-
apeutic potential of melatonin and insulin to potentially 
reverse the histological and biochemical alterations seen 
during diabetic nephropathy in rats. Additionally, dia-
betic rats were treated with glibenclamide, a clinically em-
ployed antidiabetic molecule, to compare the therapeutic 
potential during either the condition alone and/or the 
combination of melatonin and insulin. The results ob-
tained document the significance of melatonin as an ad-
juvant to insulin in preventing diabetic sequelae in insu-
lin-deficient diabetic animals.
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Materials and Methods

Chemicals and Reagents
Chemicals and reagents (analytical grade) were obtained from 

HiMedia limited, Mumbai, India, and Sisco Research limited, Mum-
bai, India. The source of insulin was human insulin (Actrapid, pur-
chased from Novo Nordisk, Bagsværd, A/S-Denmark) prepared 
through DNA recombinant technology as mentioned in its manual.

Biochemical and ELISA Kits
Commercial biochemical kits for serum biochemistry and re-

nal function tests (creatinine, urea, and uric acid) were pur-
chased from ERBA Diagnostics, Germany. Kits for tumor necro-
sis factor (TNF)-α, tumor growth factor (TGF)-β1, interleukin 
(IL)-1β, IL-6, and IL-10 were purchased from Abcam, Cam-
bridge, MA, USA.

Table 1. Experimental design

Group Treatment N

I. CON 0.1 M sodium citrate buffer 6
II. D STZ 15 mg/kg (6 days) 6
III. D+MEL STZ 15 mg/kg (6 days) + melatonin 1 mg/kg (4 weeks) 6
IV. D+INS STZ 15 mg/kg (6 days) + insulin 0.5 mL/kg (4 weeks) 6
V. D+MEL+INS STZ 15 mg/kg(6 days) + melatonin 1 mg/kg + Insulin 0.5 mL/kg (4 weeks) 6
VI. D+GB STZ 15 mg/kg + glibenclamide 0.5 mg/kg (4 weeks) 6
VII. CON+MEL Melatonin 1 mg/kg (4 weeks) 6
VIII. CON+INS Insulin 0.5 mL (20 units)/kg (4 weeks) 6
IX. CON+GB Glibenclamide 0.5 mg/kg (4 weeks) 6

CON, control; DB, diabetic; MEL, melatonin, INS, insulin; GB, glibenclamide; STZ, streptozotocin.

Table 2. Effect of exogenous melatonin and insulin alone or in combination on the weekly blood glucose level and 
serum random sugar level in control and diabetic rats

Groups Weekly changes in the blood glucose level, mg/dL

basal week-1 week-2 week-3 week-4

I. CON 128±112 126±8 II*** 118±5 II*** 120±5 II*** 131±7 II***

II. D 130±13 309±14 315±9 320.33±14 334±21
III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI*

III. D+MEL 119.35±1 378.99±15 262.37±18 243.25±15 225±14
IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI*

IV. D+INS 119.25±13 397.45±17 283.25±6 224.41±18* 170.3±8
III*, V***, VI* III*, VII***, VIII* III*, VII***, VIII* III*, VII***, VIII*

V. D+MEL+INS 114±9 308±11 248±20 235±24 220±13
III*, IV*, VI* III*, IV*, VI* III*, IV*, VI* III*, IV*, VI*

VI. D+GB 123.35±57 394.45±14 274±17 196.46±16 184.2±13
III*, IV*, V*** III*, IV*, V*** III*, IV*, V*** III*, IV*, V***

VII. CON+MEL 113±7 124±16 132±8 129.9±11 128±11
II***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI* III*, IV*, V**, VI* II***, III*, IV*, V**, VI*

VIII. CON+INS 109±11 125±15 135±12 128.2±9 131.8±2
II***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI*

IX. CON+GB 119.95±76 131±18 140.75±11 132.7±21 123.43±4
II***, III*, IV*, V*, VI* III***, III*, IV*, V*, VI* II***, III*, IV*, V*, VI* II***, III*, IV*, V*, VI*

Shown are the means ± SEM (n = 6/group). ANOVA: numerals indicate the group which is significantly different, and asterisks 
designate the p value; for example, 126 (I) is different from 309 (II); 309 (II) is different from 378.99 (III), 397.45 (IV), 308 (V), and 
394.45; (VI) and also 124 (VII), 125 (VIII), and 131 (IX) differs significantly from group 309 (II), 378.99 (III), 397.45 (IV), 308 (V), and 
394.45 (VI). CON, control; DB, diabetic; MEL, melatonin; INS, insulin; GB, glibenclamide. * p ≤ 0.05. ** p ≤ 0.01. *** p ≤ 0.001.
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Animal Care
Male Wistar rats weighing 190 ± 10 g were obtained from the 

Defense Research and Development Establishment (DRDE) 
Gwalior, India. Rats were acclimatized for 2 weeks before the ex-
periments under standard temperature, humidity, and light (12:12 
h light and dark cycling with lights off at 6:00 p.m.) and with food 
and water ad libitum. Fifty-four rats were randomly divided into 9 
groups of 6 rats each, as described in Table 1. STZ and melatonin 
(1 mg/kg) were administered i.p. at 10:30 a.m. and 6:30 p.m., re-
spectively. Insulin (0.5 mL/kg or 20 units) was administered intra-
muscularly at 1:30 p.m. Glibenclamide (0.5 mg/kg) was given p.o. 
in drinking water (Table 1). STZ was acquired from HiMedia; mel-
atonin was acquired from Sigma-Aldrich, Burlington, MA, USA; 
and insulin was purchased from Novo Nordisk, A/S-Denmark.

Induction and Confirmation of Diabetes
Rats were treated with an i.p. injection of STZ (15 mg/kg for 6 

days) to induce a diabetic condition [14]. Blood glucose levels were 
monitored immediately before and at weekly intervals after the 
STZ injection. Animals with blood glucose levels above 250 mg/dL 
were considered diabetic (Table 2). The doses of melatonin, insu-
lin, and glibenclamide employed were as described in the literature 
[20–22]. Rats were allocated into different experimental groups 
(Fig. 1).

Parameters Evaluated
At the end of the experiment (4 weeks), animals were eutha-

nized under complete anesthesia (anesthetic ether). The renal cor-
tex was fixed in Bouin’s fluid for histological block preparation and 
sectioning. Renal cortex tissue was processed for lipid peroxida-
tion (LPO), GSH, superoxide dismutase (SOD), catalase (CAT), 
and GSH cycle, that is, GPX, GR, and glucose-6-phosphate dehy-

drogenase (G6PDH). GSH-S-transferase (GST) activity was also 
measured. The blood was centrifuged, and the serum was stored at 
−20°C for analysis of renal function tests (creatinine, urea, and uric 
acid) and electrolytes (Na+ and K+).

Assessment of Oxidative Stress
The LPO level in the renal cortical samples was evaluated by the 

method of Ohkawa et al. [23]. The production of the pink-colored 
complex thiobarbituric acid reactive oxygen species between malo-
naldehyde and thiobarbituric acid was estimated. Reduced GSH 
was measured by its reaction with 5-5′-dithiobis(2-nitrobenzoic 
acid) (known as DTNB or Ellman’s reagent) to generate a yellow-
colored product [24]. SOD activity was evaluated after centrifuga-
tion of the whole reaction mixture to split into a butanol layer con-
taining a chromogen, and absorbance was recorded at 560 nm [25]. 
CAT activity was assessed by measuring the rate of decomposition 
of hydrogen peroxide/min [26]. G6PDH and GPX activities were 
assessed following the method of Ells and Kirkman and Paglia and 
Valentine, respectively [27, 28]. GR activity was calculated in the 
renal cortical samples by following a reduction in absorbance at 340 
nm due to the oxidation of NADPH [29]. GST was determined by 
a colorimetric method [30]. The glycogen content was measured in 
renal cortical samples by allowing the reaction mixture to cool and 
then boiled and again cooled, absorbance being recorded at 625 nm 
[31]. The total protein content in the renal cortical samples was es-
timated by the method of Lowry et al. [32].

Assessment of Serum Renal Biochemical Markers
The serum was used for the assessment of creatinine, urea, uric 

acid, and electrolytes (Na+ and K+) levels by using analytic kits ac-
cording to the instructions provided by the manufacturer (ERBA 
diagnostics Mannheim GmbH, Mallaustr, Mannheim, Germany).

Control

Diabetic Diabetic+Melatonin Diabetic+Insulin Diabetic+Melatonin+Insulin Diabetic+Glibenclamide

Control+Melatonin Control+Insulin Control Male rats were confirmed diabetic by
measuring blood glucose level
(above 250 mg/dL)

Further, these diabetic rats were
divided into following sub-groups
and were given different
therapeutic treatments

30
Streptozotocin injection

(15 mg/kg) given for 6 days

24
(Vehicle control groups)

Divided into three groups

Total no. of rats
54

Fig. 1. Representation of the experimental design and allocation of rats into different experimental groups. CON, 
control; DB, diabetic; MEL, melatonin; INS, insulin; GB, glibenclamide; STZ, streptozotocin.
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Evaluation of Circulating Cytokines
Serum cytokines (TNF-α, TGF-β1, IL-1β, IL-6, and IL-10) were 

measured by using ELISA assay kits, according to the protocol pro-
vided by the manufacturer (Abcam, Cambridge, MA, USA).

Receptor Assay
RT-qPCR-iScriptTM First standard cDNA synthesis kit (Bio-

Rad) RT-qPCR was done for the expression assay of melatonin 
receptors (MT1 and MT2) by first extracting the total mRNA, fol-
lowed by cDNA synthesis. The primers were purchased from Im-
perial Life Sciences (P) Limited, Gurugram, India.

List of Primers

Gene 
product

Forward Reverse

MT1 5′-CGTTGGTGCTGATGTCG-3′ 5′-AGTTTGGGTTTGCGGTC-3′
MT2 5′-CAATGCTGCGAGGCG-3′ 5′-GGCGGTGGTGACGATG-3′
β-Actin 5′-GGAAATAGGGGTTAGCAC-3′ 5′-CTCATGTGCGCCTACTTA-3′

RNA Isolation
Total RNA was isolated from the frozen tissue samples. Tissue 

samples were slowly crushed with the help of a mortar and pestle. 
One milliliter of RiboZol (TRIzol) was added and homogenized for 
5 min. The tissue samples were homogenized in RiboZol and 
transferred to a fresh microtube and left for 5 min at room tem-
perature. The pellet was washed, air-dried, and dissolved in 50 µL 
of DEPC water, and 5 separate aliquots were prepared and kept at 
−80°C for further processing. cDNA synthesis was done by using 
Thermo kit K1632.

Histological Preparation
The kidney cortex was washed in normal saline and fixed in 

Bouin’s fluid. Renal cortical samples of all experimental groups 
were dehydrated using different graded series of ethanol. Samples 
were cleared using xylene and embedded in paraffin wax. Renal 
cortical sections of 4–5 µm thickness were cut using a rotary mi-
crotome (Leica RM2125 RT 5), stained with hematoxylin and eo-
sin, and observed under a light microscope (Magnus, Mumbai, 
India).

Table 3. Effect of exogenous melatonin and insulin alone or in combination on renal functional tests of control and diabetic rats

Group Renal function tests, mg/dL Electrolytes, nmol/L

creatinine urea uric acid Na+ K+

I. CON 0.65±0.10 22±2.14 3.82±0.27 117.67±3.49 2.17±0.24
II*** II*** II*** II*** II***

II. D 1.82±0.43 41.84±2.90 5.92±0.15 137.16±3.29 4.95±0.26
III**, IV*, V***, VI* III**, IV*, V***, VI* III**, IV*, V***, VI* III**, IV*, V***, VI* III**, IV*, V***, VI*

III. D+MEL 0.8±0.15 26.34±3.06 4.14±0.35 125.34±2.66 3.08±0.42
V*, VII***, VIII* II*, V*, VII***, VIII* V*, VII***, VIII* V*, VII***, VIII* V*, VII***, VIII*

IV. D+INS 0.78±0.17 25.84±3 3.95±0.25 126.16±2.92 3.34±0.38
III*, V***, VI* III*, V***, VI* III*, V***, VI* III*, V***, VI* III*, V***, VI*

V. D+MEL+INS 0.64±0.10 23.34±2.58 3.89±0.32 121.84±2.87 2.87±0.28
III*, IV*, VI* III*, IV*, VI* III*, IV*, VI* III*, IV*, VI* III*, IV*, VI*

VI. D+GB 0.89±0.10 26.33±3.20 4.05±0.38 125.83±2.10 3.62±0.28
III*, IV*, V*** III*, IV*, V*** III*, IV*, V*** III*, IV*, V*** III*, IV*, V***

VII. CON+MEL 0.63±0.14 22.33±1.54 3.86±0.39 118.84±2.14 2.85±0.17
II***, III*, IV*, V**, VI* III***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI* III***, III*, IV*, V**, VI* II***, III*, IV*, V**, VI*

VIII. CON+INS 0.51±0.16 22.66±1.49 3.6±0.47 118±2.23 3±0.34
III***, III*, IV* II***, III*, IV* II***, III*, IV* II***, III*, IV* II***, III*, IV*
V**, VI* V**, VI* V**, VI* V**, VI* V**, VI*

IX. CON+GB 0.64±0.09 22.34±3.00 3.76±0.18 120±2.96 2.89±0.12
II***, III*, IV* III***, III*, IV* II***, III*, IV* II***, III*, IV* II***, III*, IV*
V**, VI* V**, VI* V**, VI* V**, VI* V**, VI*

Shown are the means ± SEM (n = 6/group). ANOVA: numerals indicate the group which is significantly different, and asterisks designate 
the p value; for example, 0.65 (I) is different from 1.82 (II); 1.82 (II) is different from 0.8 (III), 0.78 (IV), 0.64 (V), and 0.63 (VI); and also 0.63 (VII), 
0.51 (VIII), and 0.64 (IX) differ significantly from groups 1.82 (II), 0.8 (III), 0.78 (IV), 0.64 (V), and 0.63 (VI). CON, control; DB, diabetic; MEL, 
melatonin; INS, insulin; GB, glibenclamide. * p ≤ 0.05. ** p ≤ 0.01. *** p ≤ 0.001.
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Statistical Analysis
Results were expressed as mean ± SEM. Comparisons between 

experimental groups were carried out by a one-way ANOVA fol-
lowed by Tukey’s multiple comparison tests. SPSS (IBM 20.0 ver-
sion software) was used for calculations.

Results

As shown in Tables 2 and 3, the diabetic rats displayed 
a considerable increment in the glucose level in the blood 
along with biochemical indexes of renal injury, that is, 
augmented creatinine, urea, uric acid, and Na+ and K+ 
levels in the serum. In every case, melatonin or insulin 
administration partly counteracted the effects observed, 
while the coadministration of melatonin plus insulin was 
consistently more protective toward the diabetes-induced 
renal cortical injury than individual administration of 
melatonin or insulin. Treatment of melatonin or insulin 
given to the control rats did not reveal any major altera-
tion in the serum variables examined (Tables 2, 3).

Assessment of the renal cortex for histopathology in the 
different experimental groups of rats is represented in Fig-
ure 1a, b and summarized in Table  4. The diabetic rats 
showed degeneration of the tubular structure, swallowing in 
glomeruli with loss of glomerular spaces, and distortion of 

the endothelial lining. This contrasted with the normal cel-
lular glomeruli, regular and uniform glomerular space, pre-
served lining of the endothelium, well-structured Bowman’s 
capsule, and proper tubular alignment seen in controls. The 
combined administration of melatonin and insulin to dia-
betic rats achieved ad integrum repair of renal histoarchi-
tecture (Fig. 2a, b; Table 4). Diabetic rats showed a signifi-
cant reduction in body weight. The combined treatment of 
exogenous melatonin and insulin given to the diabetic rats 
resulted in significant restoration in body weight (Fig. 3).

Glucose which remains unmetabolized gets oxidized 
during the diabetic condition and leads to free radical 
production as well as a subsequently increased rate of 
LPO in the renal cortex. Table 5 summarizes the impact 
of exogenously administered melatonin and insulin alone 
or co-treatment on thiobarbiturate reactive substances, 
reduced GSH, SOD, CAT, and protein content in the re-
nal cortex of control as well as in diabetic rats. The coad-
ministration of insulin and melatonin reduces diabetes-
induced renal cortical oxidative stress bioindicators more 
effectively than either treatment alone (Table  5). Al-
though the individual administration of melatonin or in-
sulin did not affect the total protein or glycogen content, 
the co-treatment of melatonin and insulin showed a note-
worthy increment in the total cellular protein and glyco-
gen content nearly to the control values (Table 5; Fig. 4). 

Table 4. Histopathological alterations (−) no damage, (+) slight damage, (++) moderate damage, and (+++) severe damage in the renal 
cortex of control and diabetic rats are shown

Histological remarks I. CON II. D III. D+MEL IV. D+INS V. D+MEL+INS VI. D+GB VII. CON+MEL VIII. CON+INS IX. CON+GB

Regeneration of tubules − +++ − + – – − − –
Rate of glomerular damage − +++ ++ ++ – + − – –
Vacuolation − +++ − ++ – – − − –
Glomerular space status − +++ ++ – − – − + –

CON, control; DB, diabetic; MEL, melatonin; INS, insulin; GB, glibenclamide.

Fig. 2. a, b Histomicrograph of the kidney cortex showing the ef-
fect of melatonin and insulin alone or in combination. I. CON 
showing normal glomeruli and basement membrane, normal glo-
merular space, and normal tubular epithelium. II. D: STZ-induced 
diabetes caused thickening of the basement membrane, reduced 
glomerular space, glomerular damage, degeneration of tubular ep-
ithelium, and congestion of blood vessels. III. D+MEL treatment 
shows reduced thickening of the basement membrane and re-
stored damage in glomeruli. IV. D+INS: insulin administration 
recovered cellular damage, maintained the normal cellularity of 
glomeruli, normal glomerular space, and normal blood vessels in 
STZ-treated rats. V. D+MEL+INS: combined administration of 

melatonin and insulin to diabetic rats demonstrated almost total 
restoration from toxic manifestations as shown by healthy Bow-
man’s capsule, normal glomeruli, and tubules. VI. D+GB: a stan-
dard antidiabetic drug restored the STZ-induced cellular damage 
in glomeruli. VII. CON+MEL: melatonin treatment of the control 
maintained the normal cellularity of glomeruli, normal glomerular 
space, and normal blood vessels. VIII. CON+INS: insulin admin-
istration did not modify normal cellular architecture; magnifica-
tion ×10 and ×40. IX. CON+GB: glibenclamide administration did 
not modify the normal architecture of the kidney; magnification 
×10 and ×40. CON, control; DB, diabetic; MEL, melatonin, INS, 
insulin; GB, glibenclamide; STZ, streptozotocin.

(For figure see next page.)
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I-Control II-Diabetic III-Diabetic + Melatonin

IV-Control + Melatonin V-Diabetic + Insulin VI-Control + Insulin

VII-Diabetic + Melatonin + Insulin  VII-Diabetic + Glibenclamide VIII-Control + Glibenclamide

I-Control II-Diabetic III-Diabetic + Melatonin

IV-Control + Melatonin V-Diabetic + Insulin VI-Control + Insulin

VII-Diabetic + Melatonin + Insulin  VII-Diabetic + Glibenclamide VIII-Control + Glibenclamide

a

b

2
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Diabetic rats exhibited a significant inhibition/suppres-
sion of GPX, GR, G6PDH, and GST in the renal cortex 
(Table 6). Administration of melatonin and insulin (alone 
or in combination) showed ad integrum recovery in 
GSH-dependent antioxidative enzymatic activities.

Table 7 summarizes the impact of melatonin and insulin 
treatment on circulating serum cytokines in diabetic rats. 
A considerable elevation occurred in TNF-α, TGF-β1, IL-
1β, and IL-6 blood levels in diabetic rats in comparison to 
the normal controls, whereas IL-10 levels decreased. Mela-
tonin and insulin coadministration showed a significantly 
higher reduction in circulating TNF-α, TGF-β1, IL-1β, and 
IL-6 and a significantly higher augmentation in serum IL-
10, as compared to each treatment alone (Table 7). Figure 
3 depicts the expression of MT1 and MT2 melatonin recep-
tor RNA in the kidney cortex. In diabetic rats, a consider-
able amplification in expression was observed for both re-
ceptor subtypes, and melatonin and insulin treatment 
alone or in combination counteracted the effect (Fig. 5). 
Treatment of control rats with insulin or glibenclamide 
maintained the expression of MT2 receptor. The finding of 
overexpression of MT1 following the insulin and gliben-
clamide treatment (CON+INS and CON+GB groups) sug-
gests that because of the low circulating levels of melatonin, 
the melatonin receptor was overexpressed possibly to com-
pensate for the low melatonin levels.

Discussion

The current study focused on the efficacy of the co-
treatment with melatonin and insulin to improve deterio-
rated renal function in a rat model of type 1 diabetes mel-
litus. In agreement with previous studies [33], the dia-
betic condition induces nephrotoxicity, as shown by the 
significant increase of urea, uric acid, and creatinine in 
the serum. Hyperuricemia and creatinine are indices of 
renal dysfunction and more precise markers of kidney 
function than urea alone. In an organism, the fundamen-
tal end product of protein catabolism is urea, so that its 
rise indicates an abnormal protein glycation rate during 
diabetes. This is due to decreased muscles and the elevat-
ed release of purine because of the increased activity of 
xanthine oxidase [34].

Coadministration of melatonin and insulin restored 
the urea, uric acid, and creatinine levels to the control 
value. The therapeutic role of melatonin and insulin is 
probably based on the neutralization of free radicals, 
hence preventing renal cortical damage [35, 36]. Exoge-
nous insulin normalizes the nitrogen level by metaboliz-
ing urea and restoring glucose metabolism and its subse-
quent conversion to glycogen.

Elevated levels of Na+ and K+ are observed in diabetic 
nephropathy [37–39]. Diabetic hyperkalemia reduces 
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glomerular filtration, and hypernatremia and hyperos-
molality are related to disruption of insulin-mediated 
glucose metabolism as well as glucagon-dependent glu-
cose release [40]. The coadministration of insulin and 
melatonin significantly restored Na+ and K+ concentra-
tions nearly to normal levels. Insulin activates the Na+-K+ 
ATPase pump and reduces the generation of free radicals 
[41].

A significant fall in the body weight and muscle pro-
tein content, presumably resulting from an elevation in 
the wasting of muscles and fat and protein catabolism, 
were found in diabetic rats. In the current study, the co-
treatment of melatonin plus insulin was given to diabetic 
animals for 4 weeks and resulted in a complete restoration 
of the body weight and protein content, presumably by 
inhibiting lipolysis in adipose tissue [42, 43]. Uncon-
trolled glucose metabolism resulted in a severe decrease 
in body weight despite increased appetite, predominantly 
due to a decrease of muscles and fatty tissue because of 

excessive catabolism of proteins [44]. Tian et al. [45] re-
ported that the glucose-lowering potential of jointly ad-
ministered melatonin and insulin influenced the en-
hancement of activation of β-cell degranulation. Melato-
nin could have a stimulatory impact on the 
insulin-producing β-cells by causing their regeneration as 
well as preventing their degeneration, whereas insulin 
stimulates glucose storage into glycogen. Previous results 
supported are consistent with the findings of the current 
study which reported that melatonin enhances insulin se-
cretion through melatonin-dependent IP3 release and 
may contribute to the short-term support of the IP3-re-
leasing agent such as acetylcholine [46]. Furthermore, 
during the diabetic condition, glycogen synthetase activ-
ity is inhibited, affecting the glycogen storage and its syn-
thesis in the hepatocytes and skeletal muscles [10]. Hence, 
deprivation of glycogen in the kidney cortex ensues. Dia-
betic rats receiving co-treatment of insulin as well as mel-
atonin revealed a considerable elevation in quantity of 

Table 5. Effect of exogenous melatonin and insulin alone or in combination on TBARS reduced GSH, SOD, CAT, and protein content in the 
renal cortex of control and diabetic rats

Groups TBARS, 
nmol/mg protein

GSH, 
µmoles/mg protein

SOD, 
units/min/mg protein

CAT, 
units/min/mg protein

Protein, 
mg/mg tissue

I. CON 43.6±3.04 7.15±0.72 43.09±2.18 606.65±25.69 33.05±0.74
II*** II*** II*** II*** II***

II. D 23.77±1.98 3.82±0.65 21.07±2.62 350.88±30.55 15.57±0.82
III**, IV*, V***, V* III**, IV*, V***, V* III**, IV*, V***, V* III**, IV*, V***, V* III**, IV*, V***, V*

III. D+MEL 38.34±1.92 4.95±0.39 38.81±1.39 554.9±15.03 30.14±1.16
IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI*

IV. D+INS 39.24±1.69 8.1±0.41 32.88±1.47 548.9±21.96 29.105±1.50
III**, V***, VI* III**, V***, IV* IIII**, V***, IV* IIII**, V***, IV* IIII**, V***,I V*

V. D+MEL+INS 40.65±176 7.05±0.96 43±1.76 598.9±28.10 31.67±0.55
III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI*

VI. D+GB 30.87±1.97 5.0±0.58 36.97±2.93 499.97±15.19 28.59±0.79
IIII*, IV*, V*** IIII*, IV*, V*** IIII*, IV*, V*** IIII*, IV*, V*** IIII*, IV*, V***

VII. CON+MEL 42.97±1.89 6.69±0.94 47.84±2.19 614.97±16.98 32.72±2.64 INS
II***, III*, IV*, IV** II***, III*, IV*, V** III***, III*, IV*, V**, V* III***, III*, IV*, V**, V* III***, III*, IV*, V**, V*

VIII. CON+INS 42.23±2.12 6.9±0.75 43.19±2.12 598.33±29.32 32.86±3.16
II***, III*, IV*, V** II***, III*, IV*, V**, V* II***, III*, IV*, V**, V* II***, III*, IV*, V**, V* II***, III*, IV*, V**, V*

IX. CON+GB 44.48±2.23 6.67±0.89 43.86±2.20 596.03±21.56 33.1±2.50
II***, III*, IV*, V**, V* II***, III*, IV*, V**, V* II***, III*, IV*, V**, V* II***, III*, IV*, V**, V* II***, III*, IV*, V**, V*

Shown are the means ± SEM (n = 6/group). ANOVA: numerals indicate the group which mean is significantly different, and asterisks 
designate the p value; for example, 43.6 (I) is different from 23.77 (II); 23.77 (II) is different from 38.34 (III), 39.24 (IV), 40.65 (V), and 30.87 (VI); 
and also 42.97 (VII), 42.23 (VIII), and 44.48 (IX) differ significantly from groups 23.77 (II), 38.34 (III), 39.24 (IV), 40.65 (V), and 30.87 (VI). GSH, 
glutathione; TBARS, thiobarbituric acid reactive oxygen species; SOD, superoxide dismutase; CAT, catalase; CON, control; DB, diabetic; MEL, 
melatonin; INS, insulin; GB, glibenclamide. * p ≤ 0.05. ** p ≤ 0.01. *** p ≤ 0.001.
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glycogen in the kidney cortex. The likely cause may be the 
normalization of the glycogen synthase by exogenous in-
sulin.

In the current study, LPO was elevated considerably in 
diabetic rats; treatment of melatonin and insulin given to 
the diabetic rats induced a noteworthy decrease in LPO 
back to control values. The present findings agree with 
previous studies reporting that melatonin neutralizes free 
radicals, acting as a scavenger of the hydroxyl radicals as 
well as peroxyl radicals [47]. Melatonin is a lipophilic as 
well as a fairly hydrophobic molecule that can reach tissue 
and cellular compartments through a nonreceptor path-
way [48]. Exogenous insulin might have reactivated glu-
cose metabolism and hence caused the increased efficien-
cy of melatonin. The results were comparable to those of 
the standard hypoglycemic drug glibenclamide as far as 
the restoration of LPO levels.

Diabetic rats revealed a considerable reduction in 
GSH, SOD, CAT, GSH cycle enzymes (GPX, G6PDH, 
and GR) and GST activities in the renal cortex, all the ef-
fects being counteracted by the coadministration of mel-
atonin and insulin. These results agreed with earlier find-
ings [6, 48, 49]. GST levels were restored by melatonin 

and might catalyze GSH conjugation reactions, leading to 
an alteration in the intracellular GSH level of the renal 
cortex and shields cells against free-radical-generating 
agents. Reduced GSH constitutes 98% of the GSH in the 
cells, whereas GSSG constitutes only 2% [48, 50–54]. 
Thus, the current data indicate that the conjoint treat-
ment of melatonin and insulin stimulated the antioxida-
tive enzymatic activities and overturned the entire dis-
torted activities of enzymes.

Renal diseases entail vascular complications, loss of 
podocytes, and epithelial dysfunctions, which lead to 
pathogenesis via inflammation, cell hypertrophy, and de-
differentiation through the activation of classic pathways 
of regeneration [55]. Inflammatory cytokines are related 
to the initiation of renal complications such as fibrosis in 
diabetes. Excessive glucose elevates the expression of 
TNF-α, IL-6, and monocyte chemoattractant protein-1. 
In diabetic rats, inflammatory cytokines (TNF-α, IL-6, 
IL-1β, and TGF-β1) levels in the serum were elevated, 
while those of the anti-inflammatory IL-10 decreased, 
presumably because of the alteration in K+ [56]. Elevation 
of serum TNF-α, TGF-β1, IL-1β, and IL-6 and the decre-
ment of IL-10 in diabetic rats indicate an altered innate 
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immunity and chronic inflammation strongly associated 
with insulin resistance, as reported earlier [57]. The co-
treatment of melatonin and insulin when given to dia-
betic animals showed considerably greater changes in all 
the cytokines examined in comparison to each treatment 
alone. It can be concluded that the combined treatment 
of a potent immune modulator like melatonin and of an 
immunocompetence enhancer like insulin normalizes 
the quantity of pro-inflammatory cytokines (TNF, 
TGF-β1, IL-1β, and IL-6) and improves the levels of IL-10 
in circulation. Melatonin decreases the level of pro-in-
flammatory cytokines by reducing the free-radical-medi-
ated damage; hence, it contributes to the reduction of 
pro-inflammatory cytokines and increases anti-inflam-
matory cytokines [58]. Moreover, the anti-inflammatory 
effect of insulin can be explained through the activation 
of cytokine expression because insulin affects the differ-
entiation and survival of cells [59].

Chronic inflammation triggers the activation of in-
trinsic renal immune cells [60]. The augmented TGF-β1 
levels due to inflammatory stimuli in diabetes lead to the 
elevated synthesis of collagen and its deposition as the 
extracellular matrix, resulting in glomerulosclerosis [61]. 
Experimental studies reported that melatonin is a master 
regulator of inflammation, regulating pro- and anti-in-
flammatory cytokines in different adverse physiological 
conditions [62–64]. Insulin, in addition to its role in re-
ducing the detrimental effects of hyperglycemia, also di-
rectly regulates the production of pro- as well as anti-in-
flammatory cytokines and acts on the cells of the immune 
system to increase. Therefore, melatonin and insulin 
combined therapy may be an excellent approach to pre-
vent chronic inflammation during diabetes and renal 
damage [65].

The fibrosis and congestion of blood vessels and defor-
mations in Bowman’s capsule are the main pathological 

Table 6. Effect of exogenous melatonin and insulin alone or in combination on GSH cycle enzymes (GR, GPX, and 
G6PDH) and GST in the renal cortex of control and diabetic rats

Groups GSH cycle enzymes (unit/min/mg protein) GST 
(unit/min/mg protein)

GR GPX G6PDH

I. CON 45.7±4.05 9.14±0.72 47.10±2.18 610.73±25.69
II** II** II** II**

II. D 20.55±2.02 4.94±0.65 24.09±3.71 350.88±30.55
III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI* III*, IV*, V***, VI*

III. D+MEL 40.34±1.92 6.95±0.39 35.73±2.01 554.9±53.54
IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI*

IV. D+INS 39.24±1.69 III*, V***, VI* 8.1±0.41 35.92±2.81 548.9±21.96
III*, V***, VI* III*, V***, VI* III*, V***, VI*

V. D+MEL+INS 43.86±176 9.05±0.96 46±1.65 609.10±34.12
III*, IV*, VI* III*, IV*, VI* III*, IV*, VI* III*, IV*, VI*

VI. D+GB 34.87±1.97 9.0±0.58 38.92±1.99 520.76±18.21
III*, IV*, V*** III*, IV*, V*** III*, IV*, V*** III*, IV*, V***

VII. CON+MEL 44.81±2.04 8.03±0.83 46.94±3.02 607.82±21.91
II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI*

VIII. CON+INS 42.23±2.12 6.9±0.75 44.32±3.21 602.41±32.21
II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI*

IX. CON+GB 44.48±2.23 6.67±0.89 46.76±1.92 607.04±31.67
II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI*

Shown are the means ± SEM (n = 6/group). ANOVA: numerals indicate the group which mean is significantly 
different, and asterisks designate the p value; for example, 45.7 (I) is different from 20.55 (II); 20.55 (II) is different 
from 40.34 (III), 39.24 (IV), 43.86 (V), and 34.87 (VI); and also 44.81 (VII), 42.23 (VIII), and 44.48 (IX) differ significantly 
from groups 20.55 (II), 40.34 (III), 39.24 (IV), 43.86 (V), and 34.87 (VI). CON, control; DB, diabetic; MEL, melatonin; INS, 
insulin; GB, glibenclamide; GSH, glutathione; GPX, glutathione peroxidase; GR, glutathione reductase; G6PDH, glu-
cose-6-phosphate dehydrogenase; GST, glutathione-S-transferase. * p ≤ 0.05. ** p ≤ 0.01. *** p ≤ 0.001.
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alterations induced in the kidney during diabetic condi-
tions and were also observed in the present study as his-
topathological examination indicated an increased me-
sangial matrix in the glomerulus, basement membrane 
thickening, and interstitial fibrosis. The deteriorative 
nephrotoxic effect of diabetes can be monitored by the 
notable changes in the cellular architecture of the renal 
cortex. In the present study, degeneration of glomeruli, 
distinct tubular artifacts, permeation of interstitial mono-
nuclear cells, fibrosis, congested blood vessels, and defor-
mation of Bowman’s capsule were seen in the kidney of 
diabetic rats. These findings agree with previous reports 
in the literature [66]. Coadministration of melatonin and 
insulin to the diabetic rats brought about an almost total 
restoration, from toxic morphological manifestations to 
healthy Bowman’s capsule, normal glomeruli, and tu-
bules. The free-radical-scavenging potential of melatonin 
makes it able to prevent the cellular damage in the kidney, 

and also, insulin lowers the cellular destruction by nor-
malizing glucose metabolism and preventing auto-oxida-
tion of glucose. Moreover, insulin also delays cellular 
damages [67, 68]. Melatonin is a potent antioxidant, par-
tially due to its molecular structure, which is both lipo-
philic and hydrophilic. Therefore, it crosses all major bar-
riers easily and is accumulated in higher amounts within 
subcellular organelles like mitochondria which are the 
main sites for reactive oxygen species production. There-
fore, the administration of melatonin and insulin plays 2 
major functions which are neutralization of free radicals 
and inhibition of oxidants, while insulin normalizes the 
glucose metabolism in the cells by converting it into gly-
cogen. Hence, conversion of excess glucose into glycogen 
by insulin simultaneously with inhibition of oxidants by 
melatonin decreases the oxidative stress in cells. Both 
these activities prevent the histological damage in renal 
tissues.

Table 7. Effect of exogenous melatonin and insulin alone or in combination on serum TNF-α, IL-6, IL-1β, TGF-β1, and IL-10 in control and 
diabetic rats

Serum cytokines, MIU/mL

groups TNF-α IL-10 IL-6 IL-1β TGF-β1

I. CON 68.07±2.30 74.54±0.67 21.7±0.03 104.05±1.78 100.7±2.60
II*** II*** II*** II*** II***

II. D 130.45±3.70 56.43±3.40 34.4±0.76 116.76±1.21 370.27±7.33
III***, IV*, V***, VI* III***, IV*, V***, VI* III***, IV*, V***, VI* III***, IV*, V***, VI* III***, IV*, V***, VI*

III. D+MEL 100.67±4.20 68.23±0.53 26.2±0.54 109.63±1.34 204.65±6.9
IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI* IV*, V***, VI*

IV. D+INS 113.02±1.9 67.67±0.42 25.1±0.56 107.65±1.98 240.7±7.40
III***, V***, VI* III***, V***, VI* III***, V***, VI* III***, V***, VI* III***, V***, VI*

V. D+MEL+INS 71.8±1.1 73.56±0.72 22.09±0.21 107.54±1.34 110.8±6.30
III***, IV*, VI* III***, IV*, VI* III***, IV*, VI* III***, IV*, VI* III***, IV*, VI*

VI. D+GB 115.05±1.00 65.99±0.82 27.8±0.34 111.45±1.27 150.4±7.90
III***, IV*, V*** III***, IV*, V*** III***, IV*, V*** III***, IV*, V*** III***, IV*, V***

VII. CON+MEL 67.09±2.10 74.31±0.65 22.2±0.21 105.76±1.87 102.5±5.80
II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI*

VIII. CON+INS 68.9±1.3 66.51±0.54 23.9±0.67 103.91±1.45 106.8±8.9
II*, III*, IV*, V**, VI* II*, III*, IV*, V**, VI* II*, III*, IV*, V**, VI* II*, III*, IV*, V**, VI* II*, III*, IV*, V**, VI*

IX. CON+GB 68.09±0.6 73.01±0.65 23.09±0.87 105.68±1.67 115.5±7.70
II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI* II***, III*, IV*, V***, VI*

Shown are the means ± SEM (n = 6/group). ANOVA: numerals indicate the group which mean is significantly different, and asterisks 
designate the p value; for example, 68.07 (I) is different from 130.45 (II); 130.45 (II) differs from 100.67 (III), 113 (IV), 115.05 (V), and 71.8 (VI); 
and also 67.09 (VII), 68.9 (VIII), and 68.09 (IX) differ significantly from groups 130.45 (II), 100.67 (III), 113 (IV), 115.05 (V), and 71.8 (VI). TNF-α, 
tumor necrosis factor-α; IL, interleukin; TGF-β1, tumor growth factor-β1; CON, control; DB, diabetic; MEL, melatonin; INS, insulin; GB, glib-
enclamide. * p ≤ 0.05. ** p ≤ 0.01. *** p ≤ 0.001.
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Melatonin receptors (MT1 and MT2) are distributed 
in the peripheral tissues such as the liver and kidney [69–
71]. During induction of the diabetic state, pathogenic 
changes in the expression of the melatonin receptors 
MT1 and MT2 were noted. The renal cortex of diabetic 
rats revealed considerable upregulation of those recep-
tors, presumably because of the low circulating levels of 
melatonin occurring in diabetes [71–73]. Melatonin and 
insulin treatment alone or in combination resulted in a 
momentous reversal in the relative expression of MT1 as 
well as MT2 receptors in the renal cortex. Treatment of 
control rats with insulin or glibenclamide brought about 
a significant depression in MT2 receptor expression. 
Overexpression of MT1 following the insulin and gliben-
clamide treatment (CON+INS and CON+GB groups) 
treatment established that low circulating levels of mela-
tonin produced overexpression of the melatonin recep-
tor.

Summarizing, the results of the current study allow the 
conclusion that melatonin plus insulin might be an effec-
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tive therapeutic combination to prevent diabetes-induced 
functional renal alterations, as demonstrated by changes 
in kidney histoarchitecture, renal cortex biochemistry 
(LPO, GSH, SOD, CAT, GPX, GR, G6PDH, GST, glyco-
gen, and total cellular protein content), serum biochemi-
cal indicators of renal function (creatinine, urea, and uric 
acid), electrolytes (Na+ and K+), and serum concentration 
of pro- and anti-inflammatory cytokines (TNF, TGF-β1, 
IL-1β, IL-6, and IL-10), regulating the innate immune 
system. The favorably safe nature and nephroprotective 
property of melatonin and insulin suggest it to be a phar-
macological adjunct to increase the therapeutic window 
of important nephrotoxic drugs in clinical trials. Mitiga-
tion of diabetes-induced renal damages by melatonin and 
insulin involves a complex series of biochemical improve-
ments at cellular levels. Melatonin and insulin attenuate 
the nephrotoxicity of diabetes through their potent anti-
oxidant and glucose metabolizing actions, respectively, as 
it is believed to reinforce the antioxidant enzymes and 
direct free-radical scavenging at subcellular levels. Apart 

Fig. 5. Effect of exogenous and insulin alone and in combination on MT1 and MT2 relative receptor expression 
in the renal cortex of STZ-induced diabetic rats. Histogram represents mean + SE; n = 6; CON, control; DB, dia-
betic; MEL, melatonin; INS, insulin; GB, glibenclamide; STZ, streptozotocin. **p < 0.01 and ***p < 0.001. Group 
I (CON) versus group II (D) group II (D) versus group III (D+MEL) group II (D) versus group IV (D+INS) group 
II (D) versus group V (D+MEL+INS) group II (D) versus group VI (D+GB).
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from its antioxidant actions, melatonin and insulin mod-
ulate various inflammatory cytokines that are also associ-
ated with its ability to restore histological and cell sur-
vival. Melatonin displays direct antioxidant and anti-in-
flammatory action without any interventions of melatonin 
receptors (MT1 and MT2), found on the kidney, in the 
correction of drug-induced nephrotoxicity. Therefore, 
investigation regarding melatonin receptors and insulin 
involved in the mitigation of diabetes-induced renal in-
jury may further justify the use of melatonin for modera-
tion of glucose metabolism, neutralization of free radicals 
and inflammatory cytokines, and stimulation of antioxi-
dant enzymes.
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