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ABSTRACT 

 

     The association of sleep disruption with a higher vulnerability to COVID-19 infection is a 

subject of major clinical importance. In patients with pneumonia associated with COVID-19 

admitted to non-intensive care unit (NICU) several factors, like the disrupting influence of 

respiratory distress, medication, greater stress due to social isolation, and lack of appropriate 

exposure to environmental light can be instrumental to disrupt sleep/wake cycle. The therapeutic 

potential of melatonin to counteract the consequences of COVID-19 infection has been 

advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and 

immunomodulatory compound, melatonin could be unique in impairing the consequences of 

SARS-CoV-2 infection. Melatonin is also an effective chronobiotic agent to reverse the circadian 

disruption of social isolation and to control delirium in severely affected patients. Properly 

administered, melatonin may restore the optimal circadian pattern of the sleep-wake cycle and 

improve clinical condition in pneumonia associated with COVID-19 patients. The present review 

article discusses the importance of maintaining normal sleep and circadian rhythmicity in NICU 

patients and provides preliminary data suggesting the efficacy of melatonin (9 mg/day) to reduce 

length of stay of pneumonia patients associated with COVID-19 in NICU.  

 

Key words: Chronotherapy, COVID-19 pandemic, melatonin, pneumonia, respiratory distress, 

sleep. 
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1 INTRODUCTION 

 

     In pneumonia associated with COVID-19 patients admitted to non-intensive care unit (NICU) 

several factors, like the disrupting influence of respiratory distress, medication, greater stress due 

to social isolation and erratic exposure to environmental light are instrumental to disrupt the 

sleep/wake cycle. Sleep deprivation and abnormal melatonin excretion are associated with the 

occurrence of delirium, a frequently encountered dysfunction in critically ill patients (1). 

Delirium is a consciousness disorder with cognitive change (hyperactive, hypoactive, or mixed 

form) and is a well-known risk factor for prolonged duration of intensive care unit (ICU) stay, 

higher mortality, greater risk of cognitive sequelae, and more hospital costs (1). 

The potentiality of melatonin, a molecule of unusual phylogenetic conservation present in all 

known aerobic organisms, to serve as a preventive and therapeutic agent in COVID-19 pandemic 

has been advocated (2, 3). Melatonin (a) may prevent SARS-CoV-2 infection; (b) is suitable as 

an effective anti-inflammatory/immunoregulatory/antioxidant agent; (c) counteracts 

chronodisruption; (d) combats several comorbidities such as diabetes, metabolic syndrome, and 

ischemic and non-ischemic cardiovascular diseases, which aggravate COVID-19 disease; (e) 

exerts a neuroprotective effect in acutely and chronically affected SARS-CoV-2 patients; and (f) 

can be an adjuvant to potentiate anti-SARS-CoV-2 vaccines (see for ref. (4). This multifactorial 

therapeutic potential is unique to melatonin and is not shared by any other therapeutic drug 

candidate for the COVID 19 pandemic. 

     As a chronobiotic agent, melatonin may restore the optimal circadian pattern of the 

sleep/wake cycle and improved clinical condition in individuals with COVID-19 pneumonia 

admitted to NICU. We hereby discuss the importance of sleep and circadian rhythm regulation in 

pneumonia associated with COVID-19 patients in ICU and provide preliminary data suggesting 

the efficacy of melatonin (9 mg/day) to reduce NICU length of stay in those patients. 

 

2. SLEEP / WAKE CYCLE IN NON-INTENSIVE AND INTENSIVE CARE UNIT 

 

     Human sleep is organized by the interaction of homeostatic and circadian processes that are 

carried out independently, but in a complementary way. The homeostatic component (process S, 

for “sleep”) leads to sleep approximately one third of each 24-hour cycle, and the circadian 

component (process C) links the desire to sleep with the daily fluctuations of hormones 

programmed by the body clock. This two-process model of sleep, first proposed by Borbély in 

1982, explains how homeostatic and circadian factors regulate the quantity and timing of sleep 

(5). According to this model, the requirement for sleep increases during wakefulness because of 

homeostatic process S in the brain (“sleep debt”) while circadian process C reflects circadian 

modification of vigilance. Borbély’s theory states that the likelihood of wakefulness and sleep 

are traded off against one another in a circadian mode. Homeostatic process S is defined as a 

homeostatic sleep-promoting process, which continuously escalates during wakefulness. Process 

S is related to decreased intellectual performance and vigilance, and an increase in 

sleepiness/fatigue while awake. During sleep, particularly slow wave sleep, process S 

continuously decreases (i.e., sleep pressure disintegrates). In contrast, the circadian scheduled 

process C (also known as the circadian pacemaker) is best seen as a nearly 24 h endogenous 

oscillatory variation for sleep propensity (5). 

     According to the classical view, the preoptic area (POA) and the posterior hypothalamus are 

thought to be the sleep and wake centers, respectively (6). More recently, new brain areas and 
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neurons involved in the regulation of the sleep/wake cycle have been uncovered. For example, 

GABAergic neurons in the medullary parafacial zone located in the brain stem and the ventral 

tegmental area (7) and adenosine expressing neurons in the nucleus accumbens are involved in 

the regulation of rapid eye movement (REM) sleep, whereas the MT2 receptors selectively 

increase non-REM sleep (8). While the POA contains not only sleep-promoting neurons but also 

wake-promoting neurons (9), noradrenergic neurons in the locus coeruleus, serotonergic neurons 

in the dorsal raphe, and histaminergic neurons in the tuberomammillary nucleus are only 

implicated in regulation of wakefulness (10). Orexin/hypocretin neurons in the lateral 

hypothalamus play a crucial role to maintain wakefulness by orchestrating the activity of these 

monoaminergic neurons (11).  

     Sleep deprivation and poor sleep quality are problems in patients admitted in NICU, as 

reported in a study of 100 patients with low levels of sleep quality from Canadian general or 

family practice wards (12). In this type of patients, most studies reported difficulties during night 

sleep, even without previous sleeping problems at home (13–15).    

These disorders worsen in ICU patients. The therapeutic procedures and medication and 

inappropriate lighting conditions contribute to disruption of the normal sleep / wake cycle in ICU 

(16–18). Increased pain sensitivity, reduced respiratory capacity, impaired immunity, and 

changes in neuroendocrine and metabolic functions have been reported in ICU patients (see for 

ref. (19). Additionally, consequences of sleep deprivation like memory impairment and mood 

deficits and delirium occur (20). Therefore, normalization of sleep in pneumonia associated with 

COVID-19 patients is instrumental to improve secondary outcomes including ICU length of stay 

and post-ICU recovery and functioning (18).  

     A mixture of medications including analgesic, sedative and hypnotic agents are often used in 

the ICU to reduce patients’ pain or awareness of their environment, reduce responses to external 

stimulation, and eventually facilitate endotracheal tube tolerance and mechanical ventilator 

synchrony. Approximately 25% of ICU patients were prescribed eight or more medications 

concurrently and, of those patients, the average number prescribed was more than 13 (21). 

However, many negative side-effects emerge with the use of these medications, including 

impaired cognitive function, risk of dependency, depressed ventilation, and disrupted sleep 

patterns.  

     By measuring blood and urine melatonin levels the abolition of the circadian rhythm of 

physiologic melatonin release was documented in sedated ICU patients (22). This may be due to 

the exposure to artificial light and limited natural light exposure, greater severity of illness 

compared with the general wards, and universal application of sedative and narcotic drugs, 

which may further contribute to a compromised quality of sleep. About 15% of hospitalized 

COVID-19 patients have impaired consciousness including somnolence, confusion and delirium 

(23). Indeed, about 50% of hospitalized elderly patients and 80% of critically ill patients under 

mechanical ventilation shows sleep disturbances and delirium (17, 24). All these indicate a 

profound alteration in the duration and organization of sleep. 

     Circadian disruption by sleep loss, like that observed in COVID-19 patients admitted to ICU, 

affects every major system in the human body. Several epidemiologic studies have reported 

associations between sleep/wake cycle disruption and cardiometabolic disease (25, 26). 

Shortened sleep and poor sleep quality have also been identified as risk factors for cognitive 

decline, neurodegenerative disease, mood changes and depression, as well as other 

neuropsychiatric conditions (27, 28). There is also mounting evidence linking sleep disruption to 

immune function and cancer (29–31). 
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3. MELATONIN AND SLEEP 

 

     The circadian rhythm in synthesis and secretion of pineal melatonin is closely associated with 

the sleep rhythm (32). The onset of nighttime melatonin secretion is initiated approximately 2 h 

in advance of an individual’s habitual bedtime and has been shown to correlate with the onset 

evening sleepiness. Several studies implicate endogenous melatonin in the physiological 

regulation of the circadian mechanisms ruling sleep propensity (33). Melatonin reduces the need 

for sedation in ICU patients (34–39). Thus, in the context of COVID-19 pandemic the 

therapeutical utility of melatonin emerges. 

     Melatonin is a prototype chronobiotic that plays a major function in the coordination of 

circadian rhythmicity (40). Drugs that directly affect the circadian phase, and thus the output of 

the biological clock, are called chronobiotics. This term was introduced in the early 1970s and 

has been used to broadly define a drug that affects the physiological regulation of the structure of 

biological time and, specifically, is capable of therapeutically recovered desynchronized 

circadian rhythms in the short or long term, or prophylactically avoiding its interruption after an 

environmental attack (41). The magnitude and direction of phase changes depend on the 

circadian phase in which these compounds are administered, which in turn produces pronounced 

phase changes in behavioral rhythms. For example, melatonin given in the morning delays the 

phase of circadian rhythms while when given in the evening it advances the phase of circadian 

rhythms. For most part of the day, melatonin administration is unable to modify the phase of the 

clock (phase response curve).  

     During the day-to-night transition, melatonin exposure advances neural activity rhythms in 

the central circadian pacemaker located at the hypothalamic suprachiasmatic nuclei (SCN) via 

the activation of protein kinase C. Melatonin induces an increase in the expression of two SCN 

clock genes, Period 1 (Per1) and Period 2 (Per2). This effect occurs at circadian time (CT) 10, 

when melatonin advances SCN phase, but not at CT 6, when it does not. Using anti-sense 

oligodeoxynucleotides to Per1 and Per2, as well as to E-box enhancer sequences in the 

promoters of these genes, it was shown that their specific induction is necessary for the phase 

altering effects of melatonin on SCN neural activity rhythms (42).  

     Melatonin secretion is an “arm” of the biologic clock in the sense that it responds to signals 

from the SCN and that the timing of the melatonin rhythm indicates the status of the clock, both 

in terms of phase (i.e., internal clock time relative to external clock time) and amplitude (43). 

From another point of view, melatonin is also a chemical code of night: the longer the night, the 

longer the duration of its secretion. In most vertebrate species, this pattern of secretion serves as 

a time cue for seasonal rhythms (44).  

     Pineal melatonin production is controlled by a complex neural system originating in the SCN 

and terminating in the high levels of the thoracic spinal cord – the superior cervical ganglion 

sympathetic system. The postganglionic sympathetic nerve terminals of the superior cervical 

ganglion release norepinephrine into the pineal gland that triggers melatonin synthesis by its 

interaction with β- (mainly) and α-adrenoceptors on the membrane of pineal cells. Melatonin, 

due to its high diffusibility, is not stored inside the pineal and is released as soon as it is produced 

(45). The structures which regulate circadian rhythms have been described as the SCN-melatonin 

loop (45). This loop includes melanopsin-containing retinal ganglion cells, the retino-

hypothalamic tract, SCN, paraventricular nucleus, intermediolateral cell column, the sympathetic 

cervical ganglia, the pineal gland, and the melatonin rhythm which feedback impacts the SCN. 
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     As a result, the melatonin production, and consequently its cerebrospinal fluid and blood 

levels, are circadian in nature and tightly synchronized with the environmental light/dark cycle. 

Indeed, the circadian pineal production of melatonin is restricted to the dark phase of the 

light/dark cycle in all mammalian species. It is noteworthy that melatonin is always produced 

during the night independent of the daily pattern of activity/rest of the species, indicating its 

strong relationship with the external photoperiod. Additionally, melatonin is produced during the 

night provided there is no light in. Given the regularity of the daily melatonin production that is 

associated with high and low or absent blood concentrations during the night and day, 

respectively, melatonin is able to synchronize the circadian rhythms of several organs and their 

functions (43) 

     Daily timed administration of melatonin to rats shifts the phase of the circadian clock, and 

this phase shifting may explain the effect of melatonin on sleep in humans. Indirect support for 

such a physiological role derives from clinical studies on blind subjects (who show free running 

of their circadian rhythms) treated with melatonin (46). More direct support for this hypothesis 

was provided by the demonstration that the phase response curve for injected melatonin was 

opposite (i.e., about 180 degrees out of phase) to that of light (47). 

     Melatonin is a pleiotropic signal that has to be analyzed at different levels, from the sites of 

synthesis and local dynamics, distribution of receptors and other binding sites in target organs, 

cell-specific differences in signaling as related to the presence of G protein variants, and 

intracellular effects – with a particular focus on mitochondrial actions – to numerous secondary 

changes induced by influencing other hormones, neurotransmitters, neurotrophins and further 

signal molecules (48). In functional terms, melatonin exerts a host of effects that can be under 

the control of the SCN and has also direct effects in numerous peripheral organs. In particular, 

melatonin is involved in sleep initiation, vasomotor control, adrenal function, antiexcitatory 

actions, immunomodulation including anti-inflammatory properties, antioxidant actions, and 

energy metabolism, influencing mitochondrial electron flux, the mitochondrial permeability 

transition pore, and mitochondrial biogenesis (48, 49).  

     The chronobiotic action of melatonin is mediated via the melatonin receptors, which have 

been identified both in the central nervous system and in the periphery (50). Melatonin MT1 and 

MT2 receptors, all belonging to the superfamily of membrane receptors associated with G 

proteins (G-protein coupled receptors, GPCR), have been cloned. More recently, another 

member, GPR50, was included in the melatonin receptor subfamily. GPR50 shows high 

sequence homology to MT1 and MT2 but does not bind to melatonin or any other known ligand. 

Ligand-independent functions for GPR50 such as the allosteric regulation of other 

proteins/receptors through their interaction with GPR50 in common protein complexes have 

been proposed. In the case of the molecular complex of GPR50 with the melatonin MT1 receptor, 

GPR50 negatively regulates the function of MT1 (51).  

     Circulating melatonin is loosely bound to albumin (52) and in the liver, it is first hydroxylated 

and then conjugated with sulfate and glucuronide (53). In human urine, 6-sulfatoxymelatonin has 

been identified as the main metabolite. In the brain and most peripheral cells melatonin is 

metabolized into kynurenine derivatives. In mammals, circulating melatonin is derived almost 

exclusively from the pineal gland. In addition, melatonin is synthesized locally in most cells, 

tissues and organs, including lymphocytes, bone marrow, thymus, gastrointestinal tract, skin and 

eyes, where it can play an autocrine or paracrine role (54). Indeed, there is now strong evidence 

that melatonin is produced in every animal cell that has mitochondria (55). In both animals and 

humans, melatonin participates in diverse physiological functions that indicate not only the 
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duration of the night, but also improve the elimination of free radicals and the immune response, 

showing relevant cytoprotective properties. 

     Concerning the sleep/cycle, melatonin is a powerful chronobiotic with very slight hypnotic 

capacity. Daily doses of 2-5 mg melatonin, timed to advance the phase of the internal clock by 

interaction with MT1 receptors in the SCN, maintains synchronization of the circadian rhythms 

to a 24-h cycle in sighted persons who are living in conditions likely to induce a free-running 

rhythm (47). Melatonin synchronizes the rhythm in persons after a short period of free running. 

In blind subjects with free-running rhythms, it has been possible to stabilize, or entrain, the 

sleep/wake cycle to a 24-h period by giving melatonin, with resulting improvements in sleep and 

mood (46). The phase shifting effect of melatonin is also sufficient to explain its effectiveness as 

a treatment for circadian-related sleep disorders, such as jet lag or delayed phase sleep syndrome 

(56, 57). Recent advances using selective MT1/MT2 receptor ligands and MT1/MT2 receptor 

knockout mice have suggested that the activation of the MT1 receptors is mainly implicated in 

the regulation of REM sleep, whereas the MT2 receptors selectively increase non-REM sleep 

(58).  

     Several meta-analyses support the view that the chronobiotic/hypnotic properties of melatonin 

are useful in patients with primary sleep disorders to decrease sleep onset latency and to increase 

total sleep time, with little if any effect on sleep efficiency (59–61). Several expert consensus 

reports also support such a role of melatonin in adult insomnia (62–65). 

     In normal aged subjects and in demented patients with disturbed synchronization of the 

sleep/wake cycle (66, 67) melatonin administration is helpful to reduce the variation of onset 

time of sleep. In demented patients, melatonin improved the circadian rhythm, cognition and 

mood, and diminishes nocturnal restlessness (68). In the long term, melatonin administration 

halted evolution of minimal cognitive decline to Alzheimer´s disease. This effect may be 

relevant in the control of residual effects of COVID 19 disease. Indeed, in a recent study 

including 84,285 Great British Intelligence Test with biologically confirmed COVID-19 

infection, people who had recovered, including those no longer reporting symptoms, exhibited 

significant cognitive deficits (69). The scale of the observed deficits was equivalent to the 

average 10-year decline in global performance between the ages of 20 to 70 within the same 

dataset. “Brain fog”, i.e., confusion, forgetfulness, inability to focus, fatigue, and low mental 

energy (70, 71) is thus an emerging major sequel of COVID-19 infection. In this context the 

neuroprotective properties of melatonin deserve consideration (72).  

 

4. MELATONIN USE IN COVID-19 PANDEMIC 

 

     In severely infected patients with COVID-19, an excessive inflammation, a depressed 

immune system, and activated cytokine storm contribute substantially to pathogenesis. In light of 

the public health problem triggered by the spread of COVID-19 and in the face of essentially null 

options for prevention or treatment presently available, a number of recent reports have put forth 

the use of melatonin to treat COVID-19 disease (73–81).   

     In diseases showing a high level of inflammation, the application of melatonin showed 

promising results with strong attenuation of circulating cytokine levels. This was documented in 

patients with diabetes mellitus and periodontitis (82) and severe multiple sclerosis (83). In the 

acute phase of inflammation, during surgical stress (84), cerebral reperfusion (85) or reperfusion 

of the coronary artery (86), treatment with melatonin reduced the level of proinflammatory 

cytokines.  
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     According to the COVID-19 clinical reports, patients with severe infection have an increased 

risk of sepsis and cardiac arrest (87, 88). The available information indicates that the application 

of melatonin can improve septic shock through inhibition of the NLRP3 inflammasome pathway 

(89). Interestingly, the upregulation of matrix metalloprotease 9 MMP9 (activated during NLRP3 

inflammasome) was found to be correlated with COVID-19 related cytokine storm (79), and a 

recent meta-analysis indicates that melatonin may interact with MMP9 in the extracellular matrix 

of the respiratory tract from the SARS-CoV-2 patients to reduce inflammation during COVID-19 

infection (80). 

     Melatonin has a preventive effect against sepsis-induced kidney damage, septic 

cardiomyopathy, and liver damage (90–92). Melatonin has also been reported as beneficial in 

patients with myocardial infarction, cardiomyopathy, hypertensive heart disease, and pulmonary 

hypertension. In the ICU, deep sedation is associated with increased long-term mortality, and the 

application of melatonin reduces the use of sedation and the frequency of pain, agitation and 

anxiety and improves the quality of sleep (93). Therefore, the rationale for the use of appropriate 

doses of melatonin in COVID-19 focuses not only on attenuation of infection-induced 

respiratory disorders, but also on general improvement and prevention of possible complications, 

like the cardiac and neurologic ones.  

     A recent study determined the efficacy and tolerability of a high dose of melatonin (36 

mg/day to 72 mg/day p.o. in 4 divided doses) as an adjuvant therapy, in addition to standard 

and/or empirical therapy in COVID-19 pneumonia (94). The 10 patients given melatonin had 

high-risk features determined for age (> 60 years) or/and established comorbidities. No 

significant side effects were noted except for drowsiness. Benefits of time were observed for 

clinical improvement (reduction of symptoms, stabilization and/or regression of lung infiltrates, 

decrease in proinflammatory markers), as well as the need for mechanical ventilation, duration of 

hospital stay and outcome (death, or recovery and discharge) (94). 

     Another recent report was a retrospective analysis based on the clinical experience at the 

Columbia University Irving Medical Center related to drugs used to treat respiratory distress in 

COVID-19-infected patients who required endotracheal intubation (95). After a comprehensive 

evaluation of 791 patients diagnosed with COVID-19 who required intubation, the application of 

melatonin is the only drug that was statistically associated with higher positive clinical outcome 

including survival of patients intubated and in those requiring mechanical ventilation. Presently 8 

clinical trials looking for melatonin therapeutic effects in COVID pandemic are in different 

phases of development (https://clinicaltrials.gov/). 

 

5. PRELIMINARY OBSERVATION ON MELATONIN EFFICACY IN PNEUMONIA 

ASSOCIATED WITH COVID-19 PATIENTS PNEUMONIA ADMITTED TO NICU 

       

     Sleep deficiency is one of the most common complains in patients with respiratory diseases, 

and insomnia results in a significant deterioration in respiratory performance, even in a healthy 

person (96). Indeed, sleep disruption has been reported as extremely common in the pulmonary 

ICU (97). 
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Table 1. NICU, laboratory-confirmed, pneumonia associated with COVID-19 patients 

treated (Buenos Aires) or non-treated (New York) with melatonin. 

 

 

Centro Gallego  

of Buenos Aires 

n=37 

n (%) or mean (SD) 

New York 

metropolitan region (98) 

n=60 

n (%) or mean (SD) 

p 

Female 17 (45.9%) 8 (13.3%) < 0.001 a 

Age (years) 60.2 (19.4) 58.7 (13.4) ns c 

Length of 

stay (days) 
4.9 (2.6) 10.7 (8.4) b < 0.001 c 

Death 1 (2.7%) 8(14.6%) ns a 

     a. chi square test; b. Length of stay Mean and SD were estimated from median and 

interquartile range values reported in (98). Calculations were conducted as described elsewhere 

(99). c. Student’ t-test; ns: non-significant. 

 

     In a recent therapeutic algorithm for the use of melatonin in patients with COVID-19 a dose 

of 3 to 10 mg/day dose of melatonin was proposed for elderly patients with co-morbidities like 

sleep disruption (100). We employed a 9-mg melatonin dose to improve clinical conditions and 

hastened recovery in a group of 37 hospitalized patients with COVID-19 pneumonia (Table 1). 

This was a retrospective cohort study of a limited clinical database of confirmed pneumonia 

associated with COVID-19 patients hospitalized at Centro Gallego of Buenos Aires. All patients 

were diagnosed as per the World Health Organization’s interim guidance document. Collected 

information on consecutive patients admitted to the general ward from August 31, 2020, to 

September 11, 2020, as per our inclusion and exclusion criteria, was obtained. The ethics 

committee of Centro Gallego of Buenos Aires approved this study and permitted a waiver of 

informed consent from the study participants.  

     Patients were eligible for the study if they met the following inclusion criteria 1) Age > 18 

years old, 2) Confirmed cases of SARS-CoV-2 by PCR method, 3) Admitted in general ward, 4) 

Bilateral infiltrate on chest imaging validated by radiology staff. Nasopharyngeal swab samples 

were obtained from all patients at admission and tested using real-time reverse transcriptase-

polymerase chain reaction assays to identify SARS-CoV-2 infected patients. Limited available 

information included sex, age, length of stay and outcome (discharge or ICU transfer). All 

patients were on corticosteroid treatment and received 9 mg of melatonin p.o. at 2200 h daily.  

The primary outcomes were the composite outcome of intensive care unit (ICU) transfer, 

intubation, or death and length of stay. No relevant side effect of melatonin was recorded in the 

sample of patients examined. 

     Results are summarized in Table 1. As a comparison, data from a NICU, laboratory-

confirmed, COVID-19 pneumonia study performed in the New York metropolitan region were 

employed, considering only the subgroup of patients under corticosteroid treatment (98). 

Although we cannot discard that patients from our study were less severely affected than those 

from the New York series, melatonin administration reduced by half the length of stay of 

pneumonia associated with COVID-19 patients. It must be stressed that this is a retrospective 

cohort study of a limited clinical database from which, unfortunately, no more information was 

available, like for example, that derived from non COVID-19 patients hospitalized in the same 



 

Melatonin Research (Melatonin Res.)                                    http://www.melatonin-research.net 

Melatonin Res. 2021, Vol 4 (1) 173-188; doi: 10.32794/mr11250089                                          181                               
 

NICU. Clearly, the samples in Table 1 might not be comparable, and the possible effect of 

melatonin in reducing length of stay needs further examination.  

  

6. CONCLUSIONS 

 

     The current COVID-19 pandemic is the most devastating event in recent history. As above 

discussed, in the ICU, deep sedation is associated with increased long-term mortality, and the 

application of melatonin reduces the use of sedation and the frequency of pain, agitation and 

anxiety and improves the quality of sleep. Properly administered, the chronobiotic/cytoprotective 

agent melatonin may restore the optimal circadian pattern of the sleep-wake cycle and improve 

clinical condition in individuals with COVID-19 pneumonia.  

     A recent study endorses the efficacy and tolerability of a high dose of melatonin as an 

adjuvant therapy in ICU patients, in addition to standard and/or empirical therapy for COVID-19 

pneumonia (94) and preliminary data of Table 1 suggesting the efficacy of a relatively low dose 

of melatonin to reduce NICU length of stay in pneumonia associated with COVID-19 patients 

support such a view.  

     Melatonin has been used as a sleep aid for decades without any serious adverse effects being 

reported (101, 102).  Moreover, it has often been used in critically ill patients to improve sleep 

and wellbeing, both of which would also be beneficial to SARS-CoV-2 infected patients.  It is a 

molecule with an uncommonly high safety profile and can be administered via numerous routes 

including orally.  It is inexpensive, stable without refrigeration and would be particularly useful 

in underdeveloped countries where access to high quality health care may be lacking.   
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