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Abstract 

 

This paper is concerned with the status of mathematical fictions in Leibniz’s work and 

especially with infinitary quantities as fictions. Thus, it is maintained that mathematical 

fictions constitute a kind of symbolic notion that implies various degrees of impossibility. 

With this framework, different kinds of notions of possibility and impossibility are 

proposed, reviewing the usual interpretation of both modal concepts, which appeals to the 

consistency property. Thus, three concepts of the possibility/impossibility pair are 

distinguished; they give rise, in turn, to three concepts of mathematical fictions. Moreover, 

such a distinction is the base for the claim that infinitesimal quantities, as mathematical 

fictions, do not imply an absolute impossibility, resulting from self-contradiction, but a 

relative impossibility, founded on irrepresentability and on the fact that it does not conform 

to architectonic principles. In conclusion, this “soft” impossibility of infinitesimals yields 

them, in Leibniz view, a presumptive or “conjectural” status. 
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1. Introduction 

 

In this paper we will deal with the question of the status of the concept of 

mathematical fiction in Leibniz’s work, with special emphasis on the application of this 

concept to infinitary quantities. Within this framework, our analysis holds that 

mathematical fictions constitute a kind of symbolic notion that implies various degrees of 

impossibility. From this perspective, we propose to examine different kinds of notions of 

possibility and impossibility, introducing clarifications in relation to the usual interpretation 

of both modal concepts, which is usually based on the property of non-contradiction or 

consistency. Thus, we distinguish three concepts of the possibility/impossibility pair, which 

give rise, in turn, to three concepts of mathematical fictions. The distinction between 

different classes of mathematical fictions provides us with the basis to hold that 
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infinitesimal quantities, as mathematical fictions, do not imply an absolute impossibility, 

resulting from self-contradiction, but a relative impossibility, founded on irrepresentability 

and the fact that it does not conform to architectonic principles. As we will see, this “soft” 

concept of the impossibility of infinitesimals as fictions will mean that Leibniz assigns 

them a presumptive or “conjectural” status. 

In order to approach the analysis of mathematical fictions in terms of symbolic 

notions or concepts, we will also synthetically deal with some of the main concepts of 

Leibniz’s conceptions about symbolic knowledge. Briefly, the Leibnizian concepts 

concerning the connection between signs and knowledge lead to a methodological approach 

to mathematical fiction. Thus, a mathematical fiction turns out to be a class of symbolic 

notion or concept
1
 with the following features or fundamental notes (Raffo Quintana 2020, 

pp. 131-150): 

 

1. In principle it is an empty concept, without a denotation or an idea that corresponds 

to it. In the Leibnizian classification of notions, it would be considered a confused 

notion (Esquisabel 2012a, pp. 4-7). 

2. It is analogical in nature, in the sense that its introduction is based on an analogical 

relation to concepts of entities and operations already known or established (Sherry 

& Katz 2012, pp. 166-192; Esquisabel 2020). 

3. As with any symbolic notion, a fiction functions as a surrogate, in the sense that it is 

used instead of something else. Unlike the symbolic notions that substitute the 

consideration of the object as such (or of the idea of the object), fictions surrogate 

procedures or operations. In relation to this surrogative function, the relation that a 

fiction maintains with what is surrogated is, in our opinion, twofold. On the one 

hand, a fiction provides an abbreviation of the mathematical procedure and, in that 

sense, it works as a compendium. On the other hand, the surrogated procedure has a 

foundational nature, in the sense that it is exact and rigorous (it does not appeal to 

fictions). Thus, the result obtained through fiction should in principle always be 

able to be validated by means of the corresponding procedure (for the symbolic 

notion in general and its function for substitution and abbreviation, see Esquisabel 

2012a and for the case of infinitesimals, see Raffo Quintana 2020). 

4. Its introduction is in general informal in nature, but it can be made more rigorous by 

means of syntactic procedures regulated by operating rules. In this way, Leibniz 

tries to construct a calculus that regulates the operation with fictitious notions. 

5. A fiction has a heuristic power, in the sense that it broadens the scope of the “art of 

invention”: it provides better solutions to known problems, in that they are simpler 

and more elegant ones. It also broadens the domain of soluble problems, since it 

provides a solution to problems for which a solution had not yet been found (Sherry 

& Katz 2012, pp. 181-190). 

 

The properties that we have just stated concerning the methodological efficacy of 

mathematical fictions constitute the general framework that guides our investigation; 

however, it is beyond the scope of this paper to systematically consider them in their 

                                                 
1
 An analysis of the symbolic notion or concept can be found in Esquisabel (2012a, pp. 1-49). This topic 

connected to the question of the fictionalism of infinitesimals was dealt with in Esquisabel (2012b), and more 

recently it can be found in Rabouin and Arthur (2020, pp. 406-407). 
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entirety. Accordingly, we will limit our considerations mainly to the first statement, 

namely, that mathematical fictions are symbolic notions, although in the development of 

our analysis we will refer to the remaining features. 

Thus, we hold that Leibniz introduces infinitesimal quantities on the basis of these 

properties as regulatory principles. For the moment, we will elucidate the concept of the 

infinitesimal and other related concepts in terms of their status as mathematical fictions, 

providing some simple examples of their methodological function. Additionally, our 

approach, which adopts a semiotic perspective, will only tangentially affect the well-known 

controversy regarding the nature of infinitesimals, as well as the justification for their 

introduction,
2
 whether the defended approach –just to name the main lines of 

interpretation– is a “syncategorematic” one (Ishiguro 1990, chap. V; Arthur 2013, pp. 553-

593; see also Arthur 2018, pp. 155-179), an “ideal” one (Sherry and Katz 2012, Bair et al. 

2018, pp. 186-224, contains a good summary of the current discussion on the question of 

the status of Leibnizian infinitesimals), an “epsilontic” one (Knobloch 1994, pp. 265-278; 

Knobloch 2002, pp. 43-57) or an approach based on the principle of continuity (Bos 1974, 

pp. 1-90). On the contrary, we are more interested in determining how Leibniz himself 

conceived and tried to interpret the novelty of his method. 

 

2. Symbolic knowledge, symbolic cognition and fictions 

 

As anticipated, we will deal with Leibniz’s understanding of mathematical fictions, 

by departing from his conceptions about symbolic knowledge and taking as a starting point 

the examination he developed in Meditationes de cognitione, veritatis et ideis (MCVI), 

from 1684 (A VI 4, 585-492
3
). It is well-known that in this brief but central work Leibniz 

paradigmatically presents his classification of knowledge or notions, among which can be 

found the confused notion, which is what interests us in the present context. Thus, Leibniz 

firstly distinguishes between clear and obscure notions; in turn, within clear notions, he 

establishes a division between confused and distinct notions, while the latter are divided 

into adequate and inadequate ones. This last division is finally connected with the 

distinction between intuitive and symbolic notions (for a review of this way of 

understanding the division, see Esquisabel 2012a, pp. 5-7). Thus, a symbolic notion is 

characterized by being a sign of a sensible nature that substitutes, in one way or another, the 

comprehension of a notion or idea.
4
 Although Leibniz seems to oppose symbolic notions to 

intuitive notions only, it is wrong to interpret symbolic notions as merely replacing the use 

of intuitive notions. As we will see, the use of purely symbolic notions implies the 

epistemic risk of accepting notions containing a contradiction since they are “cognitively 

confused”, that is, because we have not analyzed them properly, as occurs with the notion 

of maximum speed.  

Although the distinction is not always established, it is convenient to differentiate 

between symbolic knowledge itself, on the one hand, and symbolic cognition, on the other. 

By the former, we understand the true information that we can obtain through the use and 

                                                 
2
 For a summary of the controversy in the seventeenth century, see

 
Mancosu (1996, chap. 6) and Jesseph 

(1998, pp. 6-38). For the controversy with Newton regarding the attribution of its originality, see Sonar 

(2016). 
3
 We will refer to Leibniz (1923-seq.) following the standard abbreviation: A, followed by series (in Roman 

numerals), volume (in Arabic numerals) and page number. Ex.: A VII 6, 600. 
4
 For the moment, we consider both concepts as equivalent, but later it will be necessary to distinguish them. 
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operation with different forms of semiotic representation, while symbolic cognition consists 

of the cognitive operations, such as to reason, infer, remember, imagine, etc., that we carry 

out or can carry out with the assistance of signs. This distinction is important to 

differentiate between the algorithmic manipulations of signs and the cognitive orientation 

that the use of semiotic resources can provide. 

The symbolic notion, which has an ambivalent status in relation to the previous 

distinction, is defined as a representation or thought with a perceptible material support, 

that is, it has semiotic features. The fundamental feature of a symbolic notion, as a sensible 

sign, is given by its various functions as a support for cognition. On the one hand, it 

accompanies and supports the comprehension of simple elements of thought. On the other, 

when the comprehension is composed of a multiplicity of contents of thought, the symbolic 

concept substitutes or surrogates the consideration of each thought or globally “embraces” 

the conceptual components taken together.
5
 Accordingly, the symbolic notion is known as a 

“blind notion” or “blind thought”. It is worth clarifying that Leibniz frequently refers to 

“blind notion” or “blind concept” and not to “symbolic” notion or concept (as in MCVI), 

including a wide range of notions within blind notion or concept, as, for example, notions 

we apply in our common languages, most of which are confused notions (or “distinct-

inadequate” ones, in the sense of MCVI) (see A VI 1, 170, 551; A VI 2, 481; A VI 4, 587; 

A VI 6, 185-186, 259, 275, 286, inter alia). In this way, the confused notion is essentially 

“blind” or “symbolic”, in the paradoxical sense that it is a cognition “without concepts”, 

that is, without capturing “intellectual contents” or “ideas”. 

Additionally, a symbolic notion can be completely separated from the acts of 

cognition or of understanding of meaning, in such a way that it can be treated as a purely 

physical object, according to syntactic or combinatorial rules. In that case, we have a “blind 

notion” in the proper sense of the expression, since in this way the symbolic notion can be 

operationally manipulated, as usually occurs in the calculus of algebra and of arithmetic, 

which allows surrogative inferences to be made. On the other hand, Leibniz bases the 

surrogative ability of semiotic forms on the possibility of establishing structural analogies 

between such forms and what is represented (Esquisabel 2012a, pp. 18-32 and 32-43. Cf. 

Swoyer 1991 and 1995). Thus, the introduction of mathematical fictions constitutes a 

challenge for this way of conceiving the efficacy of symbolic notions, since their efficiency 

and soundness for surrogative inferences must be justified. As we have anticipated, the 

analysis of this question, which corresponds to features 3 to 5 on our list, is beyond the 

scope of this paper.  

Using this framework, we propose to elucidate the notion of fiction in terms of a 

symbolic notion without denotation. To do this, we will appeal to the distinction introduced 

by Hans Poser between idea, on the one hand, and notion or concept, on the other (Poser 

1979, pp. 309-324, Poser 2016, pp. 90-92). This distinction was indeed introduced by 

Leibniz in the 1680s. For example, in MCVI he clearly states the possibility of a thought 

without ideas (A VI 4, 588). Similarly, in Quid sit idea, a text written a few years before 

MCVI, Leibniz maintains a conception of ideas in terms of “faculties” or dispositions to 

think about something (A VI 4, 1370). The idea as a faculty reappears in the Discourse on 

metaphysics, where Leibniz contrasts idea with notion, conceiving the former as an active 

                                                 
5
 This phenomenon of vague or “global” understanding occurs mainly in verbal language, although it does not 

necessarily have to accompany every use of symbolic notions. See Esquisabel (2012a, pp. 10-18), where the 

distinction between two kinds of symbolic thought is proposed. 
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power of thinking about an object, while the latter is described as what is formed in thought 

as a result of an actualization of the former (A VI 4, 1572; see also A VI 4, 591; A VI 6, 12; 

A VI 6, 109). Thus, every idea is expressed –in the Leibnizian sense of the term– in 

notions. On the other hand, although for every idea there may be a multitude of notions that 

express it, the reverse does not apply; in other words, there is not always an idea for every 

actual notion. There may be notions without ideas and in that case they are “false” notions, 

as, for example, when the notion we think about implies a contradiction, according to the 

classic example invoked by Leibniz of maximum speed. In this way, we maintain the thesis 

that an idea fulfills the role of being the reference or denotation of a notion. In other words, 

a notion refers to or denotes an object –when there is one– only by means of an idea, which 

is its immediate denotation. This is how we understand the Leibnizian statement that an 

idea is an immediate internal object (A VI 6, 109). Thus, a “false” symbolic notion, that is, 

one without ideas, lacks reference or denotation. In conclusion, fictions and especially 

mathematical fictions can be considered as a class of “empty” symbolic notions, that is, 

devoid of reference. 

 

3. Fiction as a symbolic notion  

 

According to the results of the previous sections, we will characterize a fiction in 

principle as a blind or symbolic notion, cognitively confused, in such a way that, when we 

distinctly analyze it, we notice that it is empty or without denotation, either because the 

corresponding idea is impossible (“false” or “non-existent”), or because the object that 

corresponds to the notion has not existed, does not exist nor will it actually exist. Therefore 

it is necessary to distinguish two kinds of fictions: the “ideal” one, which violates the 

principle of contradiction (for example, the notion of a round square), and the “factual” 

one, which refers to objects that do not exist in reality, as is the case of fictional characters 

in novels. For the moment, this distinction will suffice, although we must introduce some 

clarifications on the concept of “ideal” fiction, as we will see later, after carrying out a 

subtler analysis of the concept of impossibility (see also Rabouin and Arthur 2020, p. 407). 

It is also worth mentioning that this distinction does not affect mathematical objects with a 

consistent definition (such as circle), since they “exist” as possibilia in the mind of God, 

even if they do not actually exist. On the contrary, existence does not correspond to fiction 

in any sense. 

In a short fragment dedicated to the Stoic argument of sorites entitled Acervus 

Chrisyippi (1678, A VI 4, 69-70), Leibniz briefly thinks about what we would today call 

“vague” concepts or terms, that is, those having cases in which the application of the 

concept or term is indeterminate, such as poverty, baldness, heat, cold, warmth, etc. Leibniz 

considers that all these notions are imaginary in nature, and are characterized by him in this 

way: 

[All these notions] taken absolutely, are vague imaginary notions, indeed false ones, 

that is, ones having no corresponding idea. (…) I call those notions imaginary which 

are not in the things outside us, but whose essence is to appear to us to be something. 

(A VI 4, 69-70. Translation: Leibniz (2001, p. 231), slightly modified) 

It is true that Leibniz is not talking here about fictions, but about imaginary notions. 

Although a close connection between the fictionality and the (purely) imaginary could be 

shown, for the sake of brevity allow us to argue that fictions fall within the field of 
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imagination. In any case, the lack of ideas is precisely what we want to highlight in the 

present context. It is clear that to have a notion is not the same as to have an idea and in that 

sense a notion can be false. This is precisely the main feature of a fiction. 

Now, if a fiction is a notion devoid of any idea and therefore a false one, we can 

nevertheless detect two possible cases of falsehood or of “lack of denotation”. The first 

corresponds to the strictly speaking impossibility (based in principle on inconsistency or 

“contradictoriness”, although we will see later that there are other kinds of impossibility 

regarding the existence of mathematical objects), and the second one corresponds to the 

factual non-existence. We could say that it is about the ontological limitations of fictions. In 

De ente, existent, aliquo, nihilo et similibus, a list of definitions dated between 1683 and 

1685/86, we find precisely this characterization of a fiction: 

A fiction is the thought of an impossible thing, such as the fastest motion; sometimes it 

is also taken as the concept of a thing that never existed, as Argenis. (A VI 4, 570) 

As we will see later, the distinction made by Leibniz between two kinds of fictions 

is essential for distinguishing the kinds of mathematical fictions. In this case, the “factual” 

fictions consist of notions of objects that never existed, as in the case of Barclay’s Argenis. 

However, this class of fictions does not exclude the possibility of existing in the future, 

since they do not imply in themselves a contradiction, as is the case of the former fictions. 

For the case of some kinds of mathematical fictions, such as infinitesimal quantities, a 

stricter condition is required: although they are not in themselves inconsistent, they cannot 

exist in any way, at least in the actual world as it is constituted. We will discuss this later. 

Finally, a fiction implies a certain confusion or lack of distinction. As we pointed 

out before, the confused notion or concept is closely connected to that of blind or symbolic 

thought, especially when considering signs of a verbal nature, such as those that generally 

constitute phonic languages. Our cognitive limitations, whether in regard to intellection, 

memory, or imagination, set limitations on operations with compound notions, as are most 

of the concepts that we apply in our cognitions. Without the intention of being exhaustive 

here, it is possible to detect in Leibniz’s conception of the confused notion different degrees 

of confusion, so to speak. Thus, depending on whether the confusion is ultimately solvable 

or not, “cognitively” confused notions are distinguished from “essentially” confused 

notions. Thus, for example, the concept of cognitively confused cognition is present in the 

following text of the New Essays: 

If I am confronted with a regular polygon, my eyesight and my imagination cannot 

give me a grasp of the thousand which it involves: I have only a confused idea
6
 both of 

the figure and of its number until I distinguish the number by counting. (NE, A VI 6, 

261; Translation: Leibniz (1996, p. 261)). 

This kind of confusion can be solved through an adequate analysis of the component 

notions. However, what may happen is that in the final analysis the notion is found to be 

inconsistent or impossible. In that case, its elucidation will reach the proof of its falsity: 

Firstly, there is what is thinkable, which it is impossible, if it involves a contradiction, 

when it is distinctly thought, even though it could be confusingly thought. (A VI 4, 

388. See also A VI 3, 276-277 (for the Parisian period); A VI 4, 590; A VI 4, 199; A 

VI 4, 1500). 

                                                 
6
 Leibniz is not always terminologically consistent in relation to the distinction between notion and idea. Here 

“idea” must be understood in the sense of “notion” or “concept”. 
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On the other hand, there are essentially confused notions which cannot be analyzed 

in their component notions, due to the very limitations of our cognitive capacities (as, for 

example, of our senses), as occurs with the data of sensation, that is, colors, smells or tastes 

(MCVI, A VI 4, 586). 

Our interest focuses on “cognitively” confused notions, since they normally 

intervene in our language, whether it be oral or written. Thus, the notion merges with the 

cognitive meaning which usually accompanies a word or sentence, when the notions that 

intervene in it are not distinctly analyzed. According to Leibniz terminology, we can speak 

of a “blind” or symbolic notion, merging the sign and its confused meaning into one thing. 

In conclusion, a fiction is a confused symbolic notion, devoid of denotation or idea and, 

therefore, false. According to what we have examined so far, its falsity can be proven either 

by an analysis that shows the inconsistency of the notion, that is, its impossibility, or in a 

factual way, showing that the denoted object does not exist. Hence, it seems that there are 

two kinds of fiction, namely, the inconsistent and the “factual” one. However, our 

examination regarding mathematical fictions will show that Leibniz more or less 

consistently recognized a third possibility: fictions that, without being inconsistent, are 

impossible because they are geometrically irrepresentable or because they violate 

architectonic principles. In our interpretation, infinitesimal quantities are fictions of this 

second and third kind rather than of the first. In this point our opinion differs from that of 

Rabouin and Arthur (2020), since they maintain that Leibniz rejects the existence of 

infinitesimals based on the contradictory nature of the concept of infinitesimal, and hence it 

would be impossible in the strict or “strong” sense. They base their claim on applying 

Leibniz’s thesis on the inconsistency of the infinite number to infinitary concepts, which in 

turn results in the rejection of infinite wholes (2020, pp. 406-407, 413, 434, 441). 

Regardless of the fact that we agree on many aspects with Rabouin and Arthur’s 

interpretation, we disagree with the reasons they gave for the Leibnizian rejection of the 

existence of infinitesimals, and in our opinion the texts they refer to in order to support 

their interpretation are not convincing. Since we argue that Leibniz did not consider the 

concept of infinitesimal as self-contradictory, we try to provide an alternative conception of 

impossibility. As the authors themselves admit, Leibniz does not explicitly and openly 

maintain the contradictoriness of the concept of infinitesimal quantities (2020, p. 422). On 

the other hand, as we try to show in this paper, the reasons for the impossibility of 

infinitesimals and for other infinitary concepts are not based on inconsistency, but on 

architectonic principles. It is true that there are some texts in which Leibniz seems to 

suggest an argument based on inconsistency, as in the case of Numeri infiniti (A VI 3, sp. 

503-504); however, as we try to show in this and other papers of ours, if we take into 

account the reasons that Leibniz mostly gave for rejecting the existence of infinitary 

quantities, such as infinitely small quantities or infinite bounded lines, we must recognize 

that arguments based on inconsistency are conspicuous by their absence. On the other hand, 

it is not our intention to construct a possible argument against the existence of 

infinitesimals based on some concept of Leibniz, whether Leibniz formulated it or not, but 

to trace the reasons that he explicitly formulated for rejecting the existence of infinitary 

quantities. 
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4. Leibniz on the fictionality of infinitary concepts 

 

It is usually argued that Leibniz assumes a fictionalist conception of infinitary 

concepts from the controversy raised by the diffusion of his method after the publication of 

his Nova methodus pro maximis et minimis (1684, see n. 8) (For example, Jesseph 1998, 

pp. 16 et seq.; 2008, pp. 225-228; 2015, pp. 192-195 and 200-203). This would be the way 

in which Leibniz responds to Nieuwentijt’s objections and to the controversy raised 

between the defenders of the new method, for example, Varignon, the Bernoulli brothers 

and the Marquis de l’Hopital, on one hand, and their detractors, led by Rolle, on the other. 

There are two texts that constitute commonplaces of the thesis of fiction. The first one can 

be found in a letter to Des Bosses dated March 11, 1706: 

Speaking philosophically, I no more support infinitely small magnitudes than infinitely 

large ones, or no more infinitesimals than infinituples. For I consider both to be 

fictions of the mind, due to abbreviated ways of speaking, which are suitable for 

calculation, in the way that imaginary roots in algebra are. Moreover, I have 

demonstrated that these expressions have a great usefulness for shortening thinking, 

and thus for discovery, and that they cannot lead to error, since it would suffice to 

substitute for the infinitely small as small a magnitude as one wishes, so that the error 

would be less than any given; whence it follows that there can be no error. (GP 2 305. 

Translation: Leibniz 2007, p. 33). 

A similar but more concise argument can be found in Leibniz’s letter to Varignon of 

April 14, 1702: 

As for the rest, some years ago I had written to Mr. Bernoulli of Groningen that the 

infinities and the infinitely small could be considered as fictions, similar to imaginary 

roots, without this being prejudicial to our calculations, being these fictions useful and 

well-founded in reality of things. (GM 4 98) 

These passages, which summarize many of the features we have conferred to 

fictions in the introductory section, are representative of what seems to be Leibniz’s mature 

position, after the litmus test of making public his method. However, a passage from a letter 

to Bernoulli of July 29, 1698 shows that the thesis of fiction was in the very beginnings of 

the infinitesimal method. In this letter Leibniz indeed confesses to Bernoulli: 

But talking among us, I add the following, which I wrote long time ago in that 

unpublished treatise, namely, that it can be doubted that infinite in length but bounded 

straight lines actually exist; for the calculus, however, it is enough that we imagine 

them, the same as with imaginary roots in algebra. (GM II 524) 

The “unpublished treatise” to which Leibniz refers is De quadratura arithmetica 

circuli, ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis (1676, A 

VII 6 520-676), completely edited and published for the first time by E. Knobloch in 1992 

(Leibniz 1992. French translation: Leibniz 2004; German translation: Leibniz 2016; 

Spanish translation: Leibniz 2014, pp. 107-241). As it was revealed from Knobloch’s and 

other scholar’s studies, this work contains a systematic study of conics by introducing 

infinitesimal methods, though not the formalism of infinitesimal calculus. In that work we 

can find the following comment about the introduction of infinitary notions: 

It does not matter whether such quantities [namely, infinitely and infinitely small ones] 

exist in nature or not; it is enough to introduce them as a fiction, insofar as they 
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provide abbreviations for expressing, thinking, and finally for both inventing and 

demonstrating. (A VII 6, 585)  

In other words, as Arthur (2009, pp. 11-28) pointed out, more than twenty years 

before his letter to Johann Bernoulli, Leibniz already held the fictional character of 

infinitary concepts, which is a clear sign that his birth certificate had a decisive 

instrumental and pragmatic orientation. Thus, long before the controversy about the 

reliability of the infinitesimal calculus, Leibniz expressed a pragmatic point of view about 

infinite and infinitesimal quantities. At the same time, he expressed serious doubts that 

objects of this sort had any kind of reality, as the following passage of the Pacidius 

Philalethi (written at the end of 1676), which is consistent with the above text, shows: 

1 would indeed admit these infinitely small spaces and times in geometry, for the sake 

of invention, even if they are imaginary. But I am not sure whether they can be 

admitted in nature. (A VI 3, 564-565. Translation: Leibniz (2001, p. 207)) 

Leibniz was certainly not the first mathematician who employed infinitary notions, 

whether they are called indivisible or “infinitely small quantities”. Cavalieri and Galileo 

Galilei had already appealed to the notion of “indivisible” for their mathematical proofs, 

while Pascal, Roberval, Barrow, Wallis, Fermat, and Newton (see Jullien 2015 for updated 

studies of the different infinitesimal methods employed by the referred authors) had used 

some version of the infinitely small for dealing with mathematical problems. In summary, 

the use of indivisibles or infinitely small quantities was widely extended at the time, and 

the main problem was not regarding its effective application for demonstrations and 

resolutions of mathematical problems, but the technical question of the best way to 

introduce and operate with them. To this rather technical question, the ontological problem 

about whether such infinitesimal objects were really existent or if on the contrary they had 

a merely instrumental or methodological status, was added. 

Leibniz’s works on infinite mathematics provides many examples of the way in 

which he introduces infinitary concepts as methodological resources for dealing with 

geometric and arithmetic problems. A classic case is the proof that for certain hyperbolas 

the infinite space limited by the branch of the hyperbola and the asymptote is equivalent to 

the area of a finite rectangle (for the demonstration, see DQAC, A VII 6, 578-580, 

Knobloch 1993, p. 84 and Knobloch 1994, p. 275). More generally, it is a key resource in 

Leibnizian methodology for squaring and determining tangents to conceive a curve in terms 

of an infinite polygon with infinitesimal sides, as well as the introduction of “characteristic” 

triangles with infinitesimal sides is (Methodi tangentium inversae exempla A VII 5, 326, 

inter alia). In turn, the dealing with infinite series offers cases of application of infinitary 

procedures to arithmetics, such as the dealing with the sum of the reciprocals of triangular 

numbers or with the quadrature of the circle by means of the series of reciprocals of the 

sequence of odd numbers (Accessio ad arithmeticam infinitorum A II 342-356; A VII 3 

365-369 and 712-714; DQAC VII 6, 600 and GM 5 121). In both cases, the dealing with 

arithmetic series depends on conceiving series as a given totality with infinite terms, 

something that must be rejected from the strictly philosophical point of view (for the 

problems that Leibniz finds in infinite series as wholes, see Numeri infiniti, A VI, 3 502-

503; see also Esquisabel and Raffo Quintana 2017, pp. 1319-1342; Raffo Quintana 2018, 

pp. 65-73 and Crippa 2017, pp. 93-120). Finally, Leibniz also proposes an algebra of 

infinitely small quantities, which can be subjected to algebraic operations in the same way 

as common quantities. In this case, as is known, the differential notation dx and dy is 
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introduced in equations to express infinitesimal increments of finite quantities. Differential 

quantities can have many interpretations, being able to designate, among other things, 

infinitely small geometric lines in geometric diagrams. It is common knowledge that 

Leibniz published the rules of infinitesimal calculus for the first time in Nova methodus pro 

maximis et minimis of 1684,
7
 although he had already come up with them by around 1680. 

In order to illustrate how Leibniz applies infinitary quantities as fictions, we will 

exhibit two examples, one geometric in nature and the other emerging from the 

infinitesimal calculus or “algebra of infinitesimals”. For the first one, we consider a part of 

the proof of proposition XXI of DQAC, which refers to the dimensions of a rectangle 

formed by the abscissa and ordinate of a hyperboloid. This rectangle has the distinctive 

feature that the abscissa is infinitely small, while the ordinate has an infinite length, 

although it has an extreme or limit (that is, it is a linea infinita terminata) (A VII 6, 548-

549; Leibniz 2004, 99-101). As Leibniz himself maintains, both are mathematical fictions. 

Thus, in Proposition XXI Leibniz says: 

The rectangle 0C0GA0B with the infinitely small abscissa A0B times the 

infinitely large ordinate 0B0C of the hyperboloid 0C1C2C is an infinite 

quantity when the order of elevation of the abscissas is greater than the order of 

elevation of the ordinates in relation of proportionality; if, on the contrary, the 

order of elevation [of the abscissas] is smaller, the rectangle will be an 

infinitely small quantity. Finally, if both orders are equal, the rectangle will be 

an ordinary finite quantity. (DQAC, A VII 6, 579. Our translation is based on 

Leibniz 2004, p. 167)  

 
Image: A VI 6, 560 

This is a theorem on hyperboloids in which ordinates and abscissas are related as y
m
 

. x
n
 = a, in such a way that 𝑦𝑚 =

𝑎

𝑥𝑛. Thus, being AB the abscissas axis and AG the 

ordinates axis, the rectangle A0B0C0G (in red) is constituted by an infinitely small abscissa 

A0B (or 0C0G) and an infinitely long ordinate 0B0C (or A0G), in which a last term 0B (or 

0G) at infinity must be assumed. Hence, the theorem states the dimensions of this rectangle, 

which we will characterize as “infinite-infinitesimal” and we will designate with the letter 

                                                 
7
 Its full title is Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec 

irrationales quantitates moratur, et singulare pro illis calculi genus, GM 5 220-233, originally published in 

Acta Eruditorum, 1684. French translation: Leibniz (1995, pp. 104-117). 
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R, in connection with the relation that the exponents of the abscissa and the ordinate 

maintain to each other. In this way, three possibilities arise (Knobloch 2002, p. 69): 

1. if m < n, then R is infinite 

2. if m > n, then R is infinitely small 

3. if m = n, then R is a finite 

For the sake of brevity, we will exhibit Leibniz’s proof of the first case, m < n (see 

Knobloch, 1993, p. 84 and Knobloch, 1994, pp. 273-276). We then have that for every 

abscissa and ordinate we must prove that the infinite-infinitesimal rectangle 0C0G0A0B = 

A0B0C0G is of an infinite dimension (A VI 6, 579). Leibniz does not demonstrate the 

property for every possible exponent, but provides the proof for the particular case of n = 2 

and m = 1 and assumes that the procedure is generalizable to any power. 

(1) By the general relation between abscissas and ordinates 

𝐵𝐶 =  
𝑎

𝐴𝐵2
 𝑜𝑟 𝐵𝐶 . 𝐴𝐵2 = 𝑎 

 

(2) From (1) is obtained that 

0𝐵0𝐶

1𝐵1𝐶
=

𝐴1𝐵2

𝐴0𝐵2
 

 

(3) On the other hand, the rectangles 0C0GA0B = A0B0C0G (R) and A1B1C1G (in green) 

are in the relation 
𝐴0𝐵0𝐶0𝐺

𝐴1𝐵1𝐶1𝐺
 =  

𝐴0𝐵 . 0𝐵0𝐶

𝐴1𝐵. 1𝐵𝐼𝐶
=

𝐴0𝐵

𝐴1𝐵
 .

0𝐵0𝐶

1𝐵1𝐶
 

 

(4) Thus, replacing in (3) by (2), we obtain that 

𝐴0𝐵0𝐶0𝐺

𝐴1𝐵1𝐶1𝐺
=

𝐴0𝐵

𝐴1𝐵
.
𝐴1𝐵2

𝐴0𝐵2
=

𝐴1𝐵

𝐴0𝐵
 

 

Thus, we have an important step for the demonstration, namely, that the infinite-

infinitesimal rectangle R is to the finite rectangle A1B1C1G in the same ratio as the finite 

abscissa A1B with the infinitely small one A0B. The sought conclusion is obtained by 

stating a lemma on the relation between finite, infinite and infinitely small quantities: 

 

(5) Something that has the same ratio to a finite quantity a a finite term to an infinitely 

small one, or also, as an infinite term to a finite one, is infinite. (A VII 6, 579; Leibniz 

2004, p. 169. Our translation is based on Leibniz 2004, p. 167) 

 

Knobloch (1994, p. 273; see also 1993, p. 84 and 2002, pp. 67-68) formulates this lemma 

as a corollary of an operation rule with finite, infinite, and infinitely small quantities: 

 

finite : infinitely small = infinite : finite = infinite. 

Corollary: if finite : infinitely small = x : finite, then x is infinite. 

 

(6) The conclusion obtained in (4) fulfills the condition of the lemma (5), since the ratio 

between the infinite-infinitesimal rectangle R and the finite rectangle A1B1C1G is the same 

as that between a finite quantity, A1B, and an infinitely small quantity, A0B. Therefore, the 

rectangle R has an infinite dimension. Q.E.D. 
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 Although in DQAC Leibniz appeals to infinitary concepts, he nevertheless does not 

apply the calculus and infinitesimal notation, which he was already developing at that time. 

Our second example comes precisely from the time when he had already developed the 

basic rules of the infinitesimal algorithm, which he finally published in 1684. As we have 

pointed out earlier, in that year Leibniz published for the first time the differentiation rules 

of the five operations in Nova methodus pro maximis et minimis. In this work, Leibniz 

introduces the differential notation, dx, for differential quantities and formulates the rules of 

operation with such quantities for the five fundamental operations: addition, subtraction, 

multiplication, division and radication (GM V 221-222; Leibniz, 1995, pp. 106-109). 

Infinitely small quantities are exhibited as infinitely small increments or differences 

between finite quantities, and its interpretation is mainly geometric, for example, in terms 

of infinitely small increments of abscissas and ordinates or of infinitely small sides of 

infinitangular polygons (GM V 223). Leibniz remarkably does not justify the rules of 

differentiation, but, after explaining their general properties, he just presents examples of 

their use to differentiate equations (GM V 223-224) and to give proof of the law of Snell on 

the relation of the angles of incidence and refraction of a light ray (GM V 224-225; Hess, 

1986, p. 70). However, a few years earlier, Leibniz provided a justification for a 

preliminary version of these rules in an unfinished treatise entitled Elementa calculi novi 

pro differentiis et summis, tangentibus et quadraturis, maximis et minimis, dimensionibus 

linearum, superficierum solidorum, aliisque communem calculum transcendentibus 

(HOCD 32-38; Leibniz (1855), pp. 149-155; Hess (1986), pp. 97-102. English translation: 

Child (1920), pp. 134-144. We follow Hess’ edition). The essay has not been dated, but 

according to Child it was written in the 1680s (Child 135) and Hess, its most recent editor, 

dates it before 1684 (1986, p. 71). Unlike Nova methodus, in Elementa calculi Leibniz not 

only introduces the differential notation dx, but also the integration operation∫ 𝑑𝑥, as well 

as the fundamental law of the calculus, which states that differentiation and integration are 

inverse operations (Hess, p. 100; Child, p. 142). Thus, Leibniz introduces a preliminary 

method for obtaining integrations from differentiations (Hess, p. 102). These are the 

differentiation rules that we find in Elementa calculi (Hess, pp. 101-102; Child, pp. 142-

144): 

 

Addition: 𝑑(𝑥 + 𝑦) =  𝑑𝑥 + 𝑑𝑦 

Subtraction: 𝑑(𝑥 − 𝑦) =  𝑑𝑥 − 𝑑𝑦 

Multiplication: 𝑑(𝑥𝑦) = 𝑥𝑑𝑦 + 𝑦𝑑𝑥 

Division: 𝑑 (
𝑥

𝑦
) =

𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥2
 

Exponentiation: 𝑑(𝑥𝑒) =  𝑒𝑥𝑒−1𝑑𝑥 

Radication: 𝑑 √𝑥ℎ𝑟
=  

ℎ

𝑟
√𝑥ℎ−𝑟𝑟

 

 

Except for the rules of addition and subtraction, the rest are all accompanied by their 

justification. We will reproduce here the demonstration of the multiplication rule, in which 

how Leibniz proceeds by “eliminating” differential quantities is clear: 

 

Assuming dx, dy as “infinitely small” differential increments of x and y, we have that: 
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(1) 𝑑(𝑥𝑦) = (𝑥 + 𝑑𝑥). (𝑦 + 𝑑𝑦) − 𝑥𝑦 
 

If we develop (1), we obtain that 

 

(2) 𝑑(𝑥𝑦) =  𝑥𝑦 + 𝑥𝑑𝑥 + 𝑦𝑑𝑥 + 𝑑𝑥𝑑𝑦 − 𝑥𝑦 𝒕𝒉𝒂𝒕 𝒊𝒔 𝑥𝑑𝑦 + 𝑦𝑑𝑥 + 𝑑𝑥𝑑𝑦 
 

Now, the fundamental step is to eliminate the product dxdy, which Leibniz justifies 

on the basis that it constitutes an infinitely small quantity not only in relation to the finite 

quantities x and y, but also in relation to dx and dy, which are infinitely small quantities. In 

other words, dxdy is an infinitely infinitely small quantity, and therefore its elimination is 

justified; consequently, we obtain that 

 

(3) (𝑑𝑥𝑦) =  𝑥𝑑𝑦 + 𝑦𝑑𝑥 
 

This kind of justification of the rule, which anticipates the introduction of infinitesimal 

quantities in terms of relative incommensurable quantities (GM VI 150; GM IV 91-92, see 

also Rabouin & Arthur, 2020, pp. 432-433) reappears in a letter from Leibniz to Wallis, 

where he appeals precisely to the concept of incomparable quantity to justify the 

elimination of dxdy (GM IV 63, A III 8, 92. Rabouin & Arthur, 2020, pp. 437-438). The 

justification for the division rule appeals to the same procedure of eliminating infinitely 

small quantities. 

The cases we have considered were formulated in different periods of Leibniz’s 

development of infinitesimal mathematics. In the first one, we have tried to show how 

Leibniz appeals to geometric infinitary fictions to prove a geometrical theorem , while in 

the second case he introduces a property of infinitely small fictional quantities, that is, 

“incommensurability”, to justify the elimination of infinitely small quantities (in this case, 

infinitely infinitely small ones). At the moment, we are not concerned with justifying these 

infinitary procedures of Leibniz. For a discussion of this problem, we refer to the works of 

Bos (1974), Knobloch (2002), Rabouin (2015) and Rabouin & Arthur (2020). 

 

5. Mathematical fictions and impossibility 

 

 It is now necessary to clarify the notion of mathematical fiction, with regard to the 

question of the existence or nonexistence of its corresponding objects.
8
 If by “fiction” we 

understand a notion without a denotation, we run the risk of throwing the baby out with the 

bathwater, because Leibniz recognizes that mathematical objects are ideal in nature, having 

an incomplete nature and therefore they lack real or substantial existence.
9
 Thus, we could 

                                                 
8
 Regarding this question, it is worth mentioning that Levey (2008, pp. 123-128) exhibited three senses in 

which fictions can be conceived, without trying to unravel Leibniz’s own notion, but anachronistically, based 

on three ways in which scientific theories can be interpreted. Thus, he distinguished (1) “reductionism”, 

according to which Leibniz’s infinitesimal language can be reduced to a language that includes only finite 

terms (that is, the syncategorematic interpretation to which the author subscribes); (2) “pragmatism”, 

according to which the infinitesimal language is an adequate way, scientifically speaking, to describe the data 

that the theory attempts to organize, explain and predict; and (3) “ideal-theory instrumentalism”, according to 

which an infinitesimal is a device “for inferring meaningful results from meaningful premises” (p. 124). 
9
 Leibniz seems to have developed this conception of mathematics as something “ideal” at the end of his 

Parisian period and especially in the 1680s. Cf. A II 2 75; A VI 4 991; GP 4 490, 561; GP 2 225/OFC 16B 
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say that they are notional or “thought” objects, but that as such they cannot be found in 

factual reality, nor do they have an existence in themselves, independent of their being 

thought or conceived.  

Now, such a conception, which Leibniz emphatically holds in his mature thought, 

raises the question as to whether the concept of fiction as a notion without a denotation 

(beyond its confusion) could not be applied to the entire domain of mathematics. This 

consequence would be undesirable for our purpose, since it would no longer make much 

sense to try to clarify the place of fictions within mathematics, as opposed to “true” or 

“real” notions, to which some kind of denotation should correspond. Thus, the answer to 

this question is the same as clarifying the Leibnizian concept of mathematical existence. In 

other words, if we can properly elucidate what it means for Leibniz that a mathematical 

object exists, we will have a secure basis for distinguishing “true” or “real” mathematical 

notions from merely fictitious and instrumental ones. 

In relation to this, the Leibnizian answer to the problem of the existence of 

mathematical objects seems clear: in mathematics, the criterion of existence is possibility. 

In other words, returning to some previous considerations, a mathematical object is 

admissible if it is possible, and the feature and fundamental criterion of possibility is 

consistency. In other words, for a mathematical object to exist, it is enough to prove that a 

contradiction does not follow from its concept. This existence cannot of course be 

assimilated to the way in which physical objects exist, since it has a notional character in 

the sense of an existence-in-idea or “in thought” (moreover, they are possible objects in the 

mind of God).
10

 In conclusion, the existence of mathematical objects means 

straightforwardly to be possible. In De libertate et necessitate, Leibniz precisely points out 

the relationship between mathematical existence and possibility: 

I therefore say that it is possible that of which the essence or reality is something, that 

is, which can be distinctly thought. (A VI 4, 1447) 

 In other words, a notion is possible if its notional components, when separately 

thought, are compatible, that is, they do not imply a contradiction. From the fact that in 

nature there is not, nor has there been, nor will there be a perfect geometric figure (for 

instance), it does not follow that this figure is neither possible nor thinkable. That is to say, 

for something to have an essence means, as Leibniz maintains, that it has an “ideal” or 

“conceptual” existence or being. Thus, for example, although there is no perfectly circular 

object in nature and we cannot form an image of a perfect circle because of our cognitive 

limitations (as Leibniz explained in Numeri infiniti, A VI 3, 498-499), the circle is 

something possible, that is, there is an essence of the circle and thus it is thinkable (A VI 3, 

463). The same could be said, for example, of a pentagon: the fact that in nature there has 

not been and will not be an exact pentagon (accuratum pentagonum; A VI 4, 1447) does 

not make it less possible. Just like in the case of the circle, we can give a definition of a 

pentagon and ultimately we can think and demonstrate things about this figure. Thus, 

mathematical entities in general are possible without an existence outside our minds. 

Hence, as anticipated the distrust about concepts that can hide contradictions and 

therefore have no denotation, entails the need to find proofs of possibility based on a 

                                                                                                                                                     
1164, inter alia. For the question of the origins of the “ideal” conception of mathematical entities, see 

Esquisabel and Raffo Quintana (2020).  
10

 It is outside the scope of this paper to explain the difficult connections between our thoughts and those of 

the divine mind. 
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demonstration of consistency. Likewise, the difficulties involved in analyzing consistency 

in geometry provide the basis for the acceptance of the method for the proof of 

mathematical existence based on genetic or causal definitions, which basically consist of a 

constructive norm (this question is closely connected with the importance that Leibniz 

gives to causal definitions as proof of possibility. Cf. A VI 4 542-543; A VI 4 589-590; GP 

2 225, inter alia). 

In conclusion, if mathematical existence is mere possibility, the difference between 

a “real” notion and a fiction in the mathematical domain seems to be given by the 

possibility or impossibility of the corresponding object, which, at first glance, must be 

determined by means of a consistency test. In other words, it seems that we must conclude 

that mathematical fictions are notions of impossible and therefore self-contradictory 

objects. In this way, whenever we have a mathematical fiction, we should be able to show 

its inconsistency. Thus, for example, in relation to our main topic, we should be able to 

show the self-contradictory character of all infinitary concepts, whether they are infinite 

numbers, infinite bounded lines or infinitely small quantities. 

However, an examination of Leibniz’s arguments concerning the fictionality of 

infinitary objects reveals a more prudent attitude. For example, unlike the self-contradictory 

character of the infinite number, Leibniz’s arguments for rejecting infinitary objects such as 

bounded infinite lines or infinitely small quantities are often more nuanced, in the sense 

that they do not point out the contradiction, but rather conclude paradoxical or inadmissible 

properties, which make their existence at least “improbable” (for a discussion of Leibniz’s 

arguments regarding the contradictoriness of the infinite number, see Esquisabel and Raffo 

Quintana 2017; Fazio 2016, pp. 164-169; Brown 1998, pp. 113-125; Brown 2000, pp. 21-

51; Levey 1998, pp. 49-96 and Lison 2006, pp. 197-208). 

This suggests the idea that for Leibniz both the existence and the mathematical 

possibility or impossibility are not a matter of absolute oppositions but they do to some 

extent admit degrees. In this vein, for example, Lison (2020, p. 281) pointed out that there 

are some mathematical quantities that, although they cannot be clearly and distinctly 

perceived, “can be considered to be imaginary in the sense that they belong to the ideal 

scope of mathematics”, since “they do not include a contradiction (otherwise they would be 

excluded from being possibilities) but neither are they candidates for actual realization”. 

From this perspective, we argue that different concepts of mathematical possibility and 

impossibility can be detected in Leibniz’s work and hence different degrees and hierarchies 

of fictionality should also be defined. This observation constitutes another argument to 

maintain that the problem of possibility in terms of consistency is a starting point for 

dealing with the question of mathematical existence, but it does not exhaust it. Thus, there 

are valid reasons to introduce the thesis that, since the mathematical existence is closely 

related to the possibility, it will ultimately depend on the different gradations that Leibniz 

admits for this concept. As we shall see, what is possible includes what is relatively 

possible or secundum quid, that is, what is possible in relation to certain principles or points 

of view. In conclusion, we can distinguish different concepts of impossibility, ranging from 

the most rigorous one, based on inconsistency, to other looser ones. These different forms 

of impossibility also force us to recognize different forms of mathematical fiction, as we 

will see in what follows. 

 

6. Three concepts of mathematical possibility and impossibility 
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Thus, in Leibniz’s considerations on the nature of mathematical objects, three 

concepts of possibility and correlatively of impossibility can be distinguished, namely: 

absolute possibility/impossibility as consistency/inconsistency; (relative) 

possibility/impossibility as mathematical representability/irrepresentability; and (relative) 

possibility/impossibility as compatibility/incompatibility with architectonic principles of 

order of the world, such as, for example, the principle of continuity and of sufficient 

reason.
11

 

We have already discussed the first case of possibility/impossibility. Absolute 

possibility is indeed given by the absence of contradiction. In other words, something is 

possible if its notion contains no inconsistency. Thus, for example, the number two and the 

circle are possible. As we saw, the consistency test is one of the main reasons for the 

Leibnizian preference for causal or “constructive” definitions. Correlatively, the 

impossibility is given by self-contradiction or conceptual inconsistency, as occurs with the 

notion of a ‘square circle’ or of ‘the number of all numbers’.
12

 

However, Leibniz recognizes other forms of possibility/impossibility. A second 

class of this pair of modal notions is given by the possibility of providing some kind of 

instantiation or geometric representation in the proper sense of the word (not an analogical 

one) to a mathematical concept. For example, the infinitely small abscissa of our first 

example can be represented only analogically by a finite abscissa. Moreover, the fact that 

something is geometrically irrepresentable also implies that the conditions for solving the 

problem or for the construction of the corresponding entity are not given. In that case, that 

which is geometrically representable is possible, such as finite magnitudes or the “real” 

roots of an equation, while that which is geometrically irrepresentable is impossible, 

namely, imaginary roots and infinitely small or infinitely large bounded quantities. 

Finally, some meditations of Leibniz indicate that he conceived of a third type of 

possibility/impossibility pairing, which arises from the compatibility or incompatibility 

with the architectonic or rationality principles that govern the constitution of the world, 

such as the principle of continuity and the principle of sufficient reason. In that case, what 

adapts to and is compatible with these architectonic principles is possible. Thus, for 

example, mathematical continuity, unbounded magnitudes and potential infinity fulfill the 

requirements of sufficient reason and the law of continuity or order, and hence they are 

“cosmologically” possible, that is, admissible within the structural order of a rationally 

organized world. On the other hand, notions of objects that violate or are incompatible with 

those same principles of organization of the world are impossible. This is the case with 

infinite concepts such as infinitely small or infinitely large bounded quantities. As we shall 

see, the admission of both concepts effectively constitutes a violation of the principle of 

                                                 
11

 It may be surprising to say that infinitely small quantities could be incompatible with the principle of 

continuity. But we take that principle here in the sense of a principle of order, that is, nature should be orderly 

constructed (see, for example, A VI 3, 564-565, and GP II 193; 282). Thus, to suppose the existence of 

infinitely small real quantities could entail the thought that motion would really be composed of infinitely 

small jumps in infinitely small parts of space and time, and this goes against the order of nature. 
12

 In accordance with this and in an illustrative way, in the Parisian period Leibniz noted: “It is not admirable 

that the number of all numbers, all possibilities, all relations, that is, reflections, are not distinctly intelligible; 

in effect, they are imaginary and do not have anything that corresponds in reality [a parte rei]” (A VI 3, 399). 

However, there is also a difference between what is manifested in this passage and what he does later. For, in 

this passage epistemic elements prevail for possibility and impossibility, expressed in the fact that they “are 

not distinctly intelligible”, while the “logical” criterion based on consistency, which already appears in the 

Parisian period, is however much more clearly formulated after this period. 
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sufficient reason and of continuity (for the application of architectonic principles in 

Leibnizian philosophy, especially in the construction of its dynamics, cf. Duchesnau 1993, 

ch. 4; Duchesnau 1994 and Duchesnau 2019, pp. 39-62; in relation to the principles of 

sufficient reason and continuity, see Nicolás 1993 and Luna Alcoba 1996). 

The distinction between possibility/impossibility as consistency/inconsistency and 

possibility/impossibility as representability/irrepresentability appears in many Leibnizian 

texts from his youth and also from the 1680s. It is introduced as a difference between 

impossibility in the strict or essential sense and per accident impossibility. The fact that 

Leibniz introduces the distinction based on analogies with mathematical objects is central 

to our purposes. Thus, Leibniz introduces an analogy between impossibility of essence and 

contradictory mathematical notions, while the impossibility of existence is analogous to 

geometric irrepresentability. 

Thus, for example, in the Confessio philosophi (1672-1673), Leibniz argues that, 

rigorously speaking, impossibility implies unintelligibility, despite the fact that, in a broad 

sense, we can call per accident impossible that which, being intelligible, that is, possible in 

a proper sense, is impossible from the point of view of existence (in some sense of the 

word). Thus, for example, he points out: “therefore, the necessity and impossibility of 

things are to be sought in the ideas of those very things themselves, not outside those 

things. It is to be sought by examining whether they can be conceived or whether instead 

they imply a contradiction” (A VI 3, 128. Translation: Leibniz 2005, 57). It is important to 

highlight the relation between the notions of impossibility, possibility and intelligibility, 

especially insofar as the latter is a condition of possibility. In other words, a thing can be 

possible, that is, intelligible, despite the fact that it “cannot” ever exist and is thus 

“impossible” in an improper sense: 

Therefore if the essence of a thing can be conceived, provided that it is conceived 

clearly and distinctly (e.g., a species of animal with an uneven number of feet, also a 

species of immortal beast), then it must already be held to be possible, and its contrary 

will not be necessary, even if its existence may be contrary to the harmony of things 

and the existence of God, and consequently it never will actually exist, but it will 

remain per accidens impossible. Hence all those who call impossible (absolutely, i.e., 

per se) whatever neither was nor is nor will be are mistaken. (A VI 3, 128. Translation: 

Leibniz 2005, 57) 

Thus, the fact that something is per accident impossible does not imply that it is 

absolutely impossible. In other words, what is intelligible but has not existed, nor does 

exist, nor will exist, is not however essentially impossible. At the end of the Parisian 

period, Leibniz returned to the question of the impossibility from a very similar approach to 

that of Confessio philosophi, although this time emphasizing the analogies which can be 

established between the question of the possible and the impossible with the domain of 

mathematics. As we will see, this will be a constant in the following years. Two texts from 

the end of 1675 give a clear account on this, namely Imaginariae usus ad comparationem 

circuli et hyperbolae of November 29, 1675 and De mente, de universo, de Deo, from mid-

December of the same year. Unlike the Confessio philosophi, Leibniz does not repeat the 

distinction between absolute impossibility and per accident impossibility, but argues that 

“impossible” is a two-fold notion: on the one hand, what has no essence is impossible and, 

on the other, that which lacks existence because it is inharmonious is also impossible: 
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In the same way, there is a two-fold reason for impossible problems: one, when they 

are analyzed into a contradictory equation, and the other, when there is an analysis into 

an imaginary quantity, for which no place can be understood. (A VI 3, 464. 

Translation: Leibniz (1992, 7)) 

Thus, Leibniz establishes an analogy such that the impossibility of essence 

corresponds in mathematics with the problems that are solved in contradictory equations, 

such as 3 = 4, while the impossibility of existence corresponds in mathematics with the 

problems that are solved in quantities that are geometrically irrepresentable. In a later text, 

De libertate et necessitate, written between 1680 and 1684 (A VI 4, 1444-1449), Leibniz 

returns to this point and illustrates the analogy in greater detail. In order to show the 

difference between the possibility of essence and the impossibility of existence, Leibniz 

once again appeals to examples based on solving equations. In this way, Leibniz goes back 

to the difference between two kinds of unsolvable problems, that is, those that are solved in 

a contradiction and those that are resolved in a quantity that cannot numerically be 

designated. For the first case he gives the example of solving for the unknown quantity in 

the system of equations 𝑥2 = 9 and 𝑥 + 5 = 9, which gives an impossible result, namely 3 

= 4. For the second one, he give the example of the equation 𝑥2 + 9 = 3𝑥, which has roots 

with an imaginary component. Although this is not a contradictory equation, it is solved in 

a quantity which cannot be exhibited, that is, such that the corresponding geometric 

construction cannot be assigned to it (A VI 4, 1448). Precisely, regarding the analogy 

between the impossibility of existence and imaginary quantities, Leibniz states: 

(…) this [scl. the impossibility of existence] can be optimally illustrated in the likeness 

[similitudine] of imaginary roots in Algebra, since √−1 involves some notion, 

although it cannot be exhibited. Indeed, if someone wants to exhibit it in a circle, then 

he or she would find that that circle is not touched by the line required for it. (A VI 4, 

1448) 

The correlation between factual existence and geometric representability, as well as 

between nonexistence and irrepresentability, is complex and must be taken within the limits 

of the analogy, especially because it is not necessarily true that something should be 

considered to be irrepresentable if it does not strictly correspond with reality. However, the 

analogy is based on the fact that there are quantities that cannot be geometrically 

represented, namely imaginary quantities. As is known, Leibniz recurrently established a 

connection between the question of fictitious quantities and imaginary roots (as examples 

of his mature thought, A VI 4, 1448; Leibniz to Foucher, A II 2, 495-496; Leibniz to 

Bernoulli; A III 7 796-797; Leibniz to Varignon, GM 4, 98; Leibniz to Hermann, A III 9, 

469; Leibniz to Grandi, GM 4, 218-219; regarding this issue, cf. Sherry & Katz 2012). In 

connection with this, the features of the imaginary roots that can be extracted from the 

following passage of Imaginariae usus ad comparationem circuli et hyperbolae are very 

significant for our purposes: 

I don’t know what needs to be discussed more diligently than whether the quantity 

√−1 is nothing at all or if it actually contains [something]. Although it cannot be 

carried out, however it can be understood, not by itself, but with the help of characters 

and analogy, such as, for example, those thoughts that I call blind. And indeed, just as 

there are incommensurable [quantities] that are powers of commensurable [quantities], 

so there are also imaginaries ones whose powers are real [quantities]; that is, there are 

impossible [quantities] whose squares are possible, such as, for example, √−1 whose 
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square is -1, even if it is claimed that there is nothing at all in nature that corresponds 

to such a quantity; however, it is enough for its character to be useful, since it 

expresses real things when [the character] is joined with other things. (A VII 7 [draft 

version], 221) 

We can point out two main groups of features of imaginary roots worth noting here, 

namely, those related to the question of possibility and impossibility, on the one hand, and 

those related to their use for mathematical practice, on the other. In the first place, 

imaginary roots are impossible quantities in the broad sense of the expression, that is, they 

cannot be carried out (non possit effici), that is, they cannot be represented geometrically. 

Secondly, these roots are operationally thinkable with the help of characters and analogy: 

although these quantities are not possible, we take them as if they were when we operate 

with them, that is, when we give effective rules of operation, as we have pointed out in 

point 4 of the introduction. In turn, as we anticipated in point 5 and in the section dedicated 

to symbolic knowledge, characters constitute an indispensable support because in context, 

that is, in the procedures we carry out using these impossible quantities together with other 

possible quantities we can solve problems and thus “express real things”. There are 

additional problems in relation to imaginary quantities, which for the sake of order we will 

consider in the next section. For the rest, in what exact sense this latter condition must be 

understood is precisely one of the pending tasks in the analysis of mathematical fictions. 

Unlike De libertate et necessitate, in Elementa nova matheseos universalis (1683), 

the distinction between equations with absurd resolutions and the geometric 

irrepresentability of imaginary solutions is not introduced as a mere analogy to illustrate the 

difference between the impossibility of essence and the impossibility of existence, but 

rather this distinction truly acquires mathematical relevance. In this text Leibniz expressly 

applies the difference between absolute impossibility and per accidens impossibility to 

mathematical concepts. The importance of the passage justifies the fact that we quote it in 

full: 

There is a big difference between imaginary or accidentally impossible quantities and 

absolutely impossible quantities, which involve contradiction, as when it is found that 

for solving the problem it is necessary for 3 to be equal to 4, which is absurd. 
However, imaginary quantities, that is to say, impossible by accident, namely, those 

that cannot be exhibited because of a lack of sufficient constitution, which is necessary 

for the intersection, can be compared with infinite or infinitely small quantities, which 

arise in the same way. (A VI 4, 521; Leibniz 2018, 108) 

As we can see, Leibniz takes up the question of imaginary quantities almost in the 

same way: the square roots of negative numbers, geometrically interpreted, represent an 

intersection that does not occur between a line and a circle. Although the distinction 

between absolute impossibility and per accidens impossibility is based on basically the 

same examples as in De mente, de universe, Deo and De libertate et necessitate, it is central 

to our approach that the context of application is a strictly mathematical one. The inclusion 

of infinitary concepts, such as infinitely small or infinitely large quantities, within the class 

of accidentally impossible notions is equally important. In that case, Leibniz’s used the 

examples of the right angle, understood as an angle that has an infinitesimal difference in 

regards to the perpendicular, and parallel lines with an intersection at infinity. In addition, 

Leibniz adds that, although for an inexperienced person in mathematics these fictions seem 
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to lead to absurd conclusions, they are not only productive for the calculation, but also, in 

their practice, we are necessarily led to them (A VI 4, 521). 

Finally, the impossibility as incompatibility with architectonic principles appears 

more than once throughout the different periods of Leibniz’s thought. Thus, in De mente, 

de universo, de Deo, the impossibility of existence is based on the incompatibility with 

divine reasons for things to be or not to be (A VI 3 464-465). A similar consideration but 

applied to mathematical objects, appears in De libertate et necessitate, a text to which we 

have previously referred. As we saw, Leibniz returns to the distinction between the 

possibility of essence and the possibility of existence and illustrates it in the following way: 

For example, even if we imagine that in nature no exact pentagon has existed and 

never will exist, nevertheless the pentagon would still be possible. However, a reason 

must be given as to why the pentagon did not exist or will never exist. There is no 

other reason for this situation than the fact that the pentagon is incompatible with other 

things that include a greater perfection, that is, that involve more reality, so that they 

will certainly exist instead of it. Now, if it is inferred that for this reason it is necessary 

that the same pentagon does not exist, I concede the conclusion, if its meaning is that 

the proposition “the pentagon will not exist nor has it existed” is necessary, but it is 

false if its meaning is that the proposition “no pentagon exists” (which makes 

abstraction of time) is necessary. I indeed deny that this proposition can be 

demonstrated, since the pentagon is not absolutely impossible and does not imply a 

contradiction, although it follows from the harmony of things that it cannot find a 

place in things. (A VI 4 1447-1448; emphasis added) 

The passage without doubt contains more questions than we can deal with here. 

However, we would like to highlight three central assertions for our interpretation: in the 

first place, Leibniz clearly determines that not every single thing that is possible absolutely 

speaking, that is to say, that is non-contradictory, is also possible from the point of view of 

real existence; secondly, the impossibility relative to the real existence or “the series of 

things” obeys reasons of perfection and harmony, that is to say, reasons of order; last, but 

not least, there is a way of understanding existence that puts aside considerations of time 

and place, that is, the close connection of the existence of mathematical objects (the 

pentagon) with possibility reappears. 

In any case, Leibniz’s argument aims to show the distance that exists between the 

“pure” or “absolute” possibility and the real possibility, relative to the existence of the most 

perfect and harmonic series of things. The requirement of compatibility, harmony and order 

is generally Leibniz’s argument against the real existence of infinitary objects. As we have 

seen in the case of De mente, de universo, de Deo, the issue at stake is the concordance of 

existence with divine reason, that is, the grounds that God finds for something to be or not 

to be. It is not uncommon to find arguments of this kind to reject the existence of infinitary 

objects in Leibniz’s writings of the Parisian period. Thus, for example, in the Pacidius 

Philalethi Leibniz at least twice states his rejection of infinitary objects, based on the 

principle of sufficient reason. 

Firstly, while it does not directly concern the question of the existence of 

infinitesimals, although it implies it tangentially, Leibniz presents an argument that appeals 

to reasons of harmony and congruence. The context of the discussion consists of the 

explanation of motion in terms of the annihilation of a body in one position and its 

recreation in the next one. Thus, motion can be understood as an infinitely small “leap” 

from one position to the next, through an act of destruction and creation (A VI 3 560). 
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Leibniz’s refutation of this conception of motion appeals to the principle of sufficient 

reason, through arguments based on harmony and congruence; indeed, “(…) this opinion 

(…) is offensive to the beauty of things and the wisdom of God” (A VI 3 560. Translation: 

Leibniz 2001, p. 199), because: 

(…) the supremely wise author of things does nothing without a reason; yet there is no 

reason why these miraculous leaps should be ascribed to this rather than that grade of 

corpuscles (…) (A VI 3 561. Translation: Leibniz (2001, p. 199)). 

Although Leibniz’s argument exhibits other facets which we will not develop here 

(for an analysis we refer to Raffo Quintana 2019, 60-61, and Esquisabel and Raffo 

Quintana 2020), it can be synthesized in the thesis that accepting a break in the analysis of 

the motion of a body by introducing a “minimum last leap” would constitute a violation of 

the uniformity of the motion, implying that for each traveled path there is a smaller one ad 

infinitum. In conclusion, there would not be a sufficient reason to accept such leaps. 

Be that as it may, a subsequent examination of the nature of motion introduces the 

consideration of infinitely small lines and times, precisely in connection with the possibility 

of resuming the explanation of the change of place by leaps through infinitely small spaces 

and times. The development of this hypothesis would imply the existence of infinitely 

small spaces and times (A VI 3 564). The response of Pacidius, Leibniz’s alias in the 

dialogue, is a categorical rejection of this possibility (Raffo Quintana 2019, p. 81): 

1 would indeed admit these infinitely small spaces and times in geometry, for the sake 

of invention, even if they are imaginary. But I am not sure whether they can be 

admitted in nature. For there seem to arise from them infinite straight lines bounded at 

both ends, as I will show at another time; which is absurd. Besides, since further 

infinitely small spaces and times can also be assumed, each smaller than the last to 

infinity, again no reason can be provided why some should be assumed rather than 

others; but nothing happens without a reason. (A VI 3 564-565. Translation: Leibniz 

2001, p. 207).  

Leibniz’s conclusion adds an additional consideration to the rejection of 

infinitesimal quantities based on the violation of the principle of sufficient reason. In 

accordance with the argument synthesized some paragraphs before, the admission of 

infinitely small quantities would amount to violating the uniformity of nature, since we 

would have to admit the existence of quantities smaller than any others and there would be 

no reason for it. However, in addition to the transgression of the principle of sufficient 

reason, Leibniz alleges another reason for the rejection: the existence of infinitely small 

lines would also imply the existence of infinite lines bounded at both sides, and Leibniz 

rejects this as “absurd”. Nevertheless, as we saw in the section devoted to examples of 

infinite entities, despite the fact that he rejects their real existence, Leibniz employs them as 

mathematical fictions to solve mathematical problems. Once again, the admission of these 

fictions is justified by its usefulness for mathematical invention. 

The reasons for denying real existence to this class of mathematical fictions are not 

circumstantial or momentary. In the discussion with Johann Bernoulli about the reality of 

infinitesimals, Leibniz goes against the real existence of infinitesimals in his letter of June 

7/17, 1698 with the same argument as before: the existence of infinitely small quantities 

would imply the admission of bounded infinite lines, which implies absurd consequences 

such as the existence of a bounded time, that is, infinite but endowed with extremes: 
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If we establish infinitely small real lines, it would follow that lines bounded on both 

sides would also have to be established, which, however, would be to our ordinary 

lines as the infinite to the finite; and since from this it would follow that exists a point 

in space which could never be reached in an assignable time by means of a constant 

motion; likewise, a time bounded by both sides would necessarily be conceived, 

which, however, would be infinite in such a way that it would happens, so to speak, as 

a kind of bounded eternity; or one could live without ever being possible to assign a 

bounded number of years to die and yet one day would die; for this reason, unless I am 

forced by incontestable demonstrations, I do not dare to admit all this. (GM III 499-

500). 

Many of the arguments supporting these paradoxical consequences –a limit that 

cannot be reached in a finite time, an eternity with extremes, an infinite but equally mortal 

life– can be found in writings that go back to the Parisian period and that according to the 

editors of the Academy edition belong to the De summa rerum project (for example, De 

infinito observatio notabilis, A VI 3 481). Although the examination of the arguments used 

by Leibniz in these writings exceeds the scope of this paper (cf. Esquisabel and Raffo 

Quintana 2020), these absurd consequences, though not strictly contradictory, are what 

motivate Leibniz to reject the real existence of infinitary objects and sustain their 

impossibility in terms of incompatibility with the nature of an orderly and harmonious 

world. As he responds to Johann Bernoulli in his letter of November 18/28, 1698, 

As regards infinitesimal terms, it seems to me that not only we cannot reach them, but 

that they do not even exist in nature, that is, they are not possible; otherwise, as I said, 

if I admitted that they are possible [esse posse], I would concede that they exist. 
Therefore, it would be necessary to see under what reason it can be shown that it is 

possible, for example, an infinite straight line, but bounded by both sides. (GM III 

551). 

Leibniz’s statement to Bernoulli regarding the question of the existence of the 

infinitely small and the infinitely large could not be more illustrative as a sign of Leibniz’s 

prudence: Leibniz certainly does not uphold the categorical impossibility of the existence in 

nature for infinitary objects, but limits himself to a weaker claim: up to now, the possibility 

of their existence has not been demonstrated. In other words, he only claims the 

presumption of its impossibility until the contrary is proven, in which case he would be 

willing to admit its existence. Thus, if there is only a presumption of impossibility, based 

on the reasons we have earlier proposed (absurd consequences, inconsistencies, violation of 

the principle of sufficient reason), apparently Leibniz would not be willing to hold that 

there is a categorical proof of impossibility founded on self-contradiction either. 

From this perspective, it is permissible to maintain that Leibniz only presumptively 

rejects the existence of infinitary objects based on architectonic reasons; for that reason, we 

also assign them an impossibility of the third type, namely, due to incompatibility with the 

principles that articulate actual reality. The presumptive nature of this impossibility and the 

provisional rejection of the existence in nature of infinitary objects explains in some way 

Leibniz’s prudent attitude regarding the possibility of resolving or not this metaphysical 

question, as well as his recommendation, reiterated each time he faces this metaphysical 

problem, of remaining within the realm of mathematics, where the admission of the 

infinitely small and the infinitely large are justified by their methodological effectiveness, 

as he maintains in Cum prodiisset: 
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Meanwhile, I confess that it can be doubted whether this state of momentary transition 

from inequality to equality, from movement to rest, from convergence to parallelism, 

or the like can be sustained in a rigorous and metaphysical sense, that is, it can be 

doubted that infinite extensions, some greater than others, or the infinitely small ones, 

some smaller than others, are real. And whoever wants to dispute about these questions 

will find him embroiled in metaphysical controversies about the composition of the 

continuum, on which there is no need for geometric questions to depend. (HOCD, p. 

43)  

 

7. The reconsidered concept of mathematical fiction  

 

At this point, we will try to connect the lines of argumentation that we have 

developed so far with the considerations we proposed for the notion of mathematical 

fiction. We initially analyzed mathematical fiction as a symbolic notion devoid of 

denotation or reference, the latter consisting of an idea or better an “ideated” or “in-idea” 

object. Now, we have elucidated the lack of denotation in terms of the impossibility of 

existence of the corresponding object, and, with regards to mathematical fictions, we 

preliminarily understood such impossibility in terms of inconsistency. However, the 

analysis of Leibniz’s texts has revealed the existence of three kinds of impossibility, in such 

a way that, according to this result, it is necessary to expand the concept of mathematical 

fiction considered as a starting point. Consequently, three concepts of mathematical fiction 

can be distinguished, in correspondence with the expansion of the concept of impossibility. 

Firstly, the concept of absolute impossibility based on inconsistency corresponds to 

fiction1, which delimits the class of inconsistent mathematical notions, such as the concept 

of “number of all numbers”, which we repeatedly mentioned. Secondly, the concept of 

impossibility due to geometric irrepresentability corresponds to fiction2, which groups 

together mathematical notions that cannot be geometrically instantiated or exhibited, such 

as imaginary roots, the extremes of infinite lines, the common points of parallel lines to 

each other and infinitely small quantities. Finally, the third kind of fiction –fiction3– arises 

out of the concept of impossibility due to incompatibility with architectonic principles, 

which once again affects the “infinitary” concepts. In regards to fiction3, it should be finally 

added that infinitary fictions are of a “presumptive” nature, in the sense that their objects 

are considered impossible until their possibility is proven. 

As we have anticipated at the beginning of our inquiries, Leibniz applies in 

mathematics, in one way or another, the three classes of fiction, whether considering the 

case of infinite wholes (the case of infinite series), imaginary roots or infinitary objects. 

From the point of view of symbolic knowledge, the introduction of fictions can take place 

through verbal or written discourse, that is, using common language terms whose meanings 

can be clarified in the best-case scenario by a merely nominal definition, such as “the 

infinite number is the number of all numbers” or “an infinitely small quantity is a quantity 

lesser than any assignable quantity”,
13

 and so on. Another way of representing a 

                                                 
13

 Actually, Leibniz appeals to various ways of referring to infinitesimal or infinitely small quantities: 

“quantity smaller than any assignable quantity” is one of them, but there is a plurality of characterizations that 

are only apparently equivalent. Moreover, it can be shown that there is an evolution in the way that Leibniz 

characterizes infinitely small quantities. Although we cannot develop it here and we will do so in a later 

study, we maintain that the different ways of designating or characterizing infinitely small quantities denote 

an evolution in the way that Leibniz conceived of the mathematical function of such fictions. 
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mathematical fiction appeals to an integrable and manipulable symbolic element in the 

context of a calculus, as in the case of differential quantities, and the same could be said of 

the series given by infinite expansion, with which Leibniz operates as if they were given 

infinite totalities of terms. In particular, the algebraic symbols that represent infinitary 

quantities constitute an outstanding case of a blind symbolic notion, since in themselves 

they lack denotation, and hence their introduction is operationally justified in the sense that 

they allow us to efficiently solve mathematical problems, such as quadratures or problems 

about minima and maxima. It must be added to this that the arithmetic operations with 

infinitary quantities (addition, subtraction, product, powers and radication) constitute an 

analogical extension of the operations with finite quantities to (fictional) infinitary objects. 

Finally, a third class of representation of infinite quantities is the geometric or 

diagrammatic representation, which also exhibits a markedly semiotic character. In that 

case, the representation (when it can be carried out) is purely analogical, since an infinite 

quantity is in itself irrepresentable or non-instantiable. This is the case, for example, of 

infinitesimal quantities such as differential increments of abscissa and ordinate or 

rectangles with infinitely large and infinitely small sides. In all these examples, the diagram 

allows us to operate with infinite or infinitesimal quantities as if they were finite or as if 

they had properties analogous to those of finite quantities. In this regard, E. Grosholz has 

developed an interpretation of this analogical use of finite quantities in terms of a theory of 

ambiguous signs, which, when representing finite quantities, are valid as iconic signs, 

while, when they represent infinitary quantities, they work as symbols in the Peircian sense 

of the term (Grosholz 2007, ch. 8). 

There is a particular case of mathematical fiction that seems to contradict our 

interpretation of mathematical fictions, namely, the case of imaginary quantities. Leibniz 

proposes a method for providing real roots in terms of “in appearance” (in speciem) 

imaginary quantities (GM VII 141-144), when dealing with the casus irreducibilis of the 

cubic equation, for which the real solutions of the equation can only be expressed through 

imaginary values. These are “in appearance” imaginary quantities precisely because we 

employed them to express real roots that cannot be obtained by other algebraic methods. 

Leibniz introduces the concept of an “in appearance imaginary quantity” in De 

resolutionibus aequationum cubicarum triradicalum, de radicibus realibus, quae interventu 

imaginariarium exprimuntur, deque sexta quadam operationem arithmetica (GM VII 138-

153), a text in which the study of a general method for solving cubic equations is 

considered, and these quantities are also mentioned in Elementa nova matheseos universalis 

as “in appearance impossible” quantities (A VI 4, 520; cf. Leibniz 2018, pp. 107-108).  

Thus, the concept of an “in appearance imaginary quantity” or of an “in appearance 

impossible quantity” seems to imply an objection against our interpretation, for these 

quantities seem ultimately to refer to real quantities, since imaginary quantities are put in 

equivalence with real quantities. However, in our view in appearance imaginary quantities 

do not conflict with our general interpretation of mathematical fictions. For, as we have 

pointed out at the beginning of our work, the introduction of mathematical fictions 

contributes to the creation of new procedures and methods that expand or complete 

previously existing methods or theories, especially if the introduction of these fictions can 

be carried out by clearly formulated rules of symbolic operation. In our interpretation, this 

is the case of in appearance imaginary quantities. Leibniz justifies expressing real roots in 

terms of imaginary quantities because in this way the method of solving cubic equations by 

the reduction to a quadratic equation is coherently completed, thus providing generality 
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while lying within the field of “algebraic” or “analytical” solving methods, as clearly 

emerges from his critique of the Cartesian method, which appeals to a geometric procedure. 

In regard to the Cartesian method, Leibniz holds: 

For analytical notations are of one kind and geometric ones are of another kind. 

The first ones are used to enunciate an unknown quantity in relation to certain 

arithmetic operations, such as additions, subtractions, multiplications, divisions, 

roots extractions, and transformations [reformationes] of imaginary quantities 

(which I added to the previous ones). The second ones, however, enunciate an 

unknown quantity in relation to some geometric operations and the drawing of 

lines. (GM VII 143-144) 

Ultimately, the rejection of the Cartesian solution, however clear it may be, is based on the 

fact that it is a geometric construction, while a strictly algebraic solution must be suitable 

for calculation or “algorithmic” procedures: 

It is characteristic of the analyst to express unknown quantities using always 

notations that are suitable for the calculation. However, it is clear that 

Descartes’ notation, with which unknown quantities are expressed through 

relations with arcs, is not useful for calculating or, if calculates, it always does 

it with an invariable measure. (GM VII 144) 

From this point of view, it seems clear that Leibniz considers the introduction of “in 

appearance” imaginary quantities as a syntactic procedure of a symbolic nature, regardless 

of the fact that a geometric interpretation of it can be given or not. In this way, the “purity” 

of the algebraic method remains, while at the same time it provides completeness. This 

conclusion is clear when Leibniz refers to the expression of real roots through imaginary 

quantities in terms of a new operation, which Leibniz calls “transformation of imaginaries 

in terms of reals” (reformatio imaginarios ad reales). This operation, the details of which 

are beyond the scope of this paper, allows us to express the sum of two real roots x + y in 

terms of imaginary quantities (GM VII 140), making thus sense of the fact that x and y are 

expressed by imaginary quantities (GM VII 141). Thus, Leibniz concludes:  

And it is worth noting that we will have a sixth kind of operation, be it 

arithmetic or analytical one. For besides addition, subtraction, multiplication, 

division and roots extraction, we shall have the transformation [reformatio], 

that is, the reduction [reductio] of imaginary expressions to real ones. Addition 

and subtraction certainly reduce what is compound to the simple, that is, the 

parts to the whole or conversely, while multiplication reduces causes to effects, 

just as division and roots extraction make the reverse path. Finally, the 

transformation [reformatio] reduces imaginaries to reals. (GM VII 141) 

 In summary, the concept of in appearance imaginary quantity refers to a syntactic or 

purely “symbolic” operation, which is the transformation of imaginaries into reals. By 

virtue of this operation a real quantity is validly expressed by imaginary quantities. Thanks 

to this, the root system of cubic equation is completed and at the same time the generality 

of the method proposed by Tartaglia and Cardano for its solution is assured. 

According to what we have proposed, Leibniz considers that infinite fictions are at 

the same time of the kind 2 and 3, that is, they are irrepresentable in the proper sense of the 

expression and also incompatible with architectonic principles. In other words, unlike the 
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infinite number or the number of all numbers, for Leibniz infinitary concepts do not imply 

any contradiction, although they may imply paradoxical consequences, such as those 

already mentioned. As we pointed out earlier, it is true that in some texts, as for example in 

Numeri infiniti, a contradiction seems to be derived from the existence of infinitely small 

quantities, since the acceptance of the sum of bounded infinite series, endowed with a last 

infinitesimal term, seems to imply the existence of an infinite number, which, as we already 

know, is a contradictory notion (A VI 3 502-503). However, it is not a consequence that 

Leibniz himself categorically enunciates.
14

 Whereas he constantly and consistently appeals 

to the “presumptive impossibility” argument based on considerations of incompatibility 

with principles, especially in his mature thought. 

In any case, there is a question that requires clarification concerning the inclusion of 

infinitary notions such as fictions2 and fictions3. If infinitary quantities are fictions of both 

the second and third kind, this question naturally arises: why does Leibniz reject the 

existence of this kind of object from two different points of view, when in fact it would be 

enough with one kind of impossibility, be it the second or the third one? The answer to this 

question would probably require an analysis that goes beyond the scope of this work, and 

hence we will limit ourselves to giving only its general guidelines. 

If we pay attention to the development of the problem of the fictionality of infinitary 

objects through the various phases of Leibniz’s philosophy, we can see that arguments 

based on incompatibility with architectonic principles prevail. This insistence seems to 

indicate that Leibniz’s preoccupation with the fictionality of infinitary entities is connected 

preponderantly to the problem of the real existence of infinite quantities, and not to that of 

their mathematical existence in terms of mere mathematical objects. In this regard, the 

progressive separation that Leibniz establishes between the field of mathematics, which 

restricted itself to ideal existence, and the domain of the actual existence of complete and 

concrete entities, is accompanied by the distinction between potential infinity for the 

domain of the mathematical and actual infinity, which affects factual reality (GM 4 93; GP 

2 268-69; 282-283, 314). From this perspective, it is natural that the problem of the 

existence of infinitary objects moves to the field of what is actually real, since in the 

mathematical domain it is no longer a problem, since for Leibniz in that domain the infinite 

divisibility of the geometric continuum tends to weaken the intensity of the quarrel about 

the actual existence of infinitely small quantities, that is, smaller than any other quantity.
15

 

Instead of that, the actual infinite division of material bodies raises the need to seriously 

                                                 
14

 Apart from that, the notion of the infinitesimal that follows from the case of Numeri infiniti previously 

mentioned does not seem to coincide with the one we pointed out before: it is not a quantity smaller than any 

given one, but of a quantity smaller than any than can be given, or, as Leibniz literally says, a “last number”. 
15

 That is, they can be applied in mathematics as fictions without problems and can be substituted by other 

methods, but they do not exist in the actual world. An anonymous referee has objected that, in the question of 

Leibniz’s treatment of infinitely small quantities, methodological and of existence questions must be 

distinguished, since Leibniz himself dealt with them separately. As an answer to this objection, we fully agree 

with this approach, as can be seen, for example, in a forthcoming paper of ours (Esquisabel y Raffo Quintana 

2021). In the same way, our final brief reference to Leibniz’s solution of the continuum problem, namely, the 

distinction between an ideal continuum (or “syncategorematic”, in the sense of potential), and a real 

continuum, in which there is an infinite actual division, refers to the problem of existence, and not to 

methodological questions, regarding which Leibniz just appeals to infinitary fictions. On the other hand, it 

seems clear enough to us, as it is to Rabouin & Arthur (2020), that in his maturity Leibniz deals with the 

question of the justification for the introduction of infinitely small quantities by appealing to the principle of 

continuity. 
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deal with the question of the existence of infinitely small quantities, since the composition 

of the real continuum is at stake, as Leibniz notes in the quote of Cum prodiisset. 

However, the introduction of infinitary notions from the purely mathematical point 

of view is not irrelevant either, since in one way or another it affects the justification of the 

effectiveness of the new calculus. Thus, the problem of impossibility as irrepresentability 

closely connects the question of fictionality with the principle of continuity, on the basis of 

which Leibniz tries to prove that infinitely small quantities are eliminable. According to 

this principle, when a series infinitely approaches a limiting case that does not belong to the 

series, it must be considered as included within the series (HOCD 40/Child 147; GM 5 385. 

Cf. Bos 1974, pp. 56-57). Thus, for example, if by doubling the sides of an inscribed 

polygon it is brought closer and closer to a circle, then the latter can be thought of as the 

last term in the series of polygons. Thus, we can conceive of the circle as an infinitangular 

polygon, although this is an irrepresentable fiction, except in an analogical way, by means 

of a finite polygon whose finite sides must be considered as if they were infinitesimal 

straight lines. Similarly, as in the examples in Elementa nova matheseos universalis, if a 

series of acute angles comes closer and closer to a right angle, the latter, which is the limit 

of the series, can also be thought of as an acute angle. Likewise, if a bundle of lines 

intersects another at further and further distances, thus moving the point of intersection 

further and further, it will happen that the limiting case of this bundle of lines will be a 

parallel line, which can be conceived as a straight line whose point of intersection is at 

infinity (A VI 4 521). In all these cases, it is a matter of conceiving irrepresentable or non-

instantiable objects analogically in terms of representable geometric objects, thanks to 

which the possibilities of the analytical calculus are facilitated and expanded. Hence, it is 

not a matter of the existence or not of infinitary objects, but whether it is possible to give 

meaning to their introduction into the calculus or the geometric reasoning, as well as to the 

results obtained thanks to them, even if they are not able to be represented as such.
16

 

 

Concluding remarks 

 

Throughout our paper we have tried to show that, when Leibniz introduces 

mathematical fictions or fictional mathematical objects, he actually appeals to cognitively 

confused notions devoid of denotation, the use of which is validated, among other things, 

by efficiency in providing the resolution of mathematical problems. The question as to 

whether this resolution is also demonstrative or not remains open, because it implies 

examining with more precision what a mathematical proof for Leibniz consists of. 

Similarly, the question of the methods Leibniz uses to effectively introduce these kinds of 

confused notions into mathematics must wait for another work. In any case, mathematical 

fictions constitute a chapter of the Leibnizian concept of symbolic knowledge. 

Be that as it may, the introduction of fictions into mathematics implies a problem in 

relation to mathematical objects in general, since Leibniz also gives them a purely “ideal” 

or “abstract” status, especially in his mature thinking. For this reason, we were forced to 
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 This role is often characterized in terms of introducing “ideal” concepts, as Sherry and Katz (2012) do. 

However, we think that the concept of “ideal”, which corresponds to the concept introduced in the geometry 

of the nineteenth century, should be applied, in the case of Leibniz, cum grano salis. As we could show, 

towards the last stage of his thought, Leibniz conceives that all mathematical entities, and not only infinitary 

ones, are “ideal”. 
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appeal to the difference between notion or concept, on the one hand and idea on the other, 

in order to show that fictions are notions “without idea” and, therefore, without denotation. 

The impossibility turned out to be precisely the criterion of the lack of denotation and, for 

that very reason, the mark of mathematical non-existence. Likewise, our examination 

showed that Leibniz holds three concepts of impossibility, giving rise to three concepts of 

fiction, namely, fiction1 in terms of inconsistency, fiction2 in terms of irrepresentability, and 

fiction3 in terms of incompatibility with architectonic principles. The main goal of our 

analysis was to clarify the fictional status of infinitary concepts, that is, infinitesimal 

quantities and infinitely large quantities. According to our point of view, except for the 

concept of infinite number, which is inconsistent, the fictionality of infinitary quantities is 

for Leibniz based on considerations of irrepresentability and incompatibility with 

architectonic principles, that is, there is no way to represent or exhibit them geometrically 

and they cannot exist in the world as it was created. Although we have not analyzed it 

thoroughly, we have also argued that the impossibility of actual existence is for Leibniz 

more important than the impossibility based on irrepresentability, since the latter is 

admissible, insofar as it occurs in the field of mathematics and it arises from the 

methodological and analogical introduction of infinitary quantities. 

However, the result of our inquiries raises some questions which remain unanswered. 

Firstly, the problem of the “ideality” of mathematical objects leads us to the following 

question: the fact that no geometric entity has an actual existence contaminates 

mathematics with a certain fictional look, in the sense that there is nothing in the real world 

that has the uniformity required by a geometric entity. Likewise, our conclusions confront 

us with a somewhat unforeseen result: infinitesimal quantities and infinitely large 

quantities, according to Leibniz, are not in themselves inconsistent, that is, they do not 

imply contradictions, even if unacceptable or paradoxical states of affairs follow from their 

real (non-mathematical) existence. If we are consistent, then it turns out that such objects 

could be possible in an absolute sense (although, as we saw, that possibility must be 

demonstrated) and, therefore, it could be argued that an idea corresponds to them and, what 

is more, we could conceive possible worlds in which they take place, even if they are 

“inharmonic” ones.
17

 Probably, this consideration is in the background of the prudence of 

the mature Leibniz, when he expresses himself about the existence of infinitary objects, to 

the point of maintaining the presumption of impossibility, but not of affirming it 

categorically. 

In conclusion, our final reflections point to a complex and current problem, even 

perhaps going beyond Leibniz, namely: what does it mean for Leibniz that a mathematical 

object exists? According to what we have suggested, mere consistency is a necessary 

condition, but apparently it is not enough, especially when we think about mathematics in 

terms of what constitutes something like the structural or “formal” background of reality, 

on the basis of which the mathematical science of nature is made possible. 
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