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Abstract 48 
 49 

Oocyte vitrification is considered experimental in the horse with only three live foals reported. The 50 

oxidative conditions induced by vitrification could in part explain the poor results and melatonin, 51 

a powerful antioxidant, could stimulate ROS metabolization and restore mitochondrial function in 52 

these oocytes. Our objective was to determine the oxidative status of vitrified equine oocytes and 53 

to analyze the effect of melatonin on mitochondrial-specific ROS (mROS), oocyte maturation, 54 

ICSI embryo development and viability. Immature, abattoir-derived oocytes were held for 15 h 55 

and vitrified in a final concentration of 20% EG, 20% DMSO and 0.65 M trehalose. In Experiment 56 

1, overall ROS was determined by DCHF-DA; vitrification increased ROS production compared 57 

to non-vitrified controls (1.29±0.22 vs 0.74±0.25 a.u.; P= 0.0156). In Experiment 2, mROS was 58 

analyzed by MitoSOX™ in vitrified/warmed oocytes matured with (+) or without (-) 59 

supplementation of 10-9 M melatonin; mROS decreased in vitrified and non-vitrified oocytes 60 

matured in presence of melatonin (P< 0.05). In Experiment 3, we assessed the effect of melatonin 61 

supplementation on oocyte maturation, embryo development after ICSI, and viability by 62 

pregnancy establishment. Melatonin did not improve oocyte maturation, cleavage or blastocyst 63 

rate of non-vitrified oocytes. However, vitrified melatonin (+) oocytes reached similar cleavage 64 

(61, 75 and 77%, respectively) and blastocyst rate (15, 29 and 26%, respectively) than non-65 

vitrified, melatonin (+) and (-) oocytes. Vitrified, melatonin (-) oocytes had lower cleavage (46%) 66 

and blastocyst rate (9%) compared to non-vitrified groups (P < 0.05), but no significant differences 67 

were observed when compared to vitrified melatonin (+). Although the lack of available recipients 68 

precluded the transfer of every blastocyst produced in our study, transferred embryos from non-69 

vitrified oocytes resulted in 50 and 83% pregnancy rates while embryos from vitrified oocytes 70 

resulted in 17 and 33% pregnancy rates, from melatonin (+) and (-) treatments respectively. Two 71 

healthy foals, one colt from melatonin (+) and one filly from melatonin (-) treatment, were born 72 

from vitrified/warmed oocytes. Gestation lengths (considering day 0 = day of ICSI) were 338 days 73 

for the colt and 329 days for the filly, respectively. Our work showed for the first time that in the 74 

horse, as in other species, intracellular reactive oxygen species are increased by the process of 75 

vitrification. Melatonin was useful in reducing mitochondrial-related ROS and improving ICSI 76 

embryo development, although the lower pregnancy rate in presence of melatonin should be 77 

further analyzed in future studies. To our knowledge this is the first report of melatonin 78 

supplementation to an in vitro embryo culture system and its use to improve embryo 79 

developmental competence of vitrified oocytes following ICSI. 80 
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1. Introduction 94 

Equine assisted reproductive technologies such as ovum pick-up (OPU) and 95 

intracytoplasmic sperm injection (ICSI) have become widespread among practitioners in recent 96 

years. In addition, the advancement of equine cloning and the large numbers of oocytes required 97 

in this procedure, has resulted in a growing interest in oocyte cryobanking. Unfortunately, the 98 

mammalian oocyte is one of the hardest cells to cryopreserve by traditional, slow freezing [1,2]. 99 

Vitrification, a method that results in glass-like structure without the formation of ice crystals, was 100 

first reported by Luyet in 1937 [3]. For vitrification to occur, the oocytes must be exposed to 101 

relatively high concentrations of permeating and non-permeating cryoprotectants, which act by 102 

lowering the freezing point of the cytoplasm and causing oocyte dehydration. Once equilibrated, 103 

the sample must be cooled at ultra-rapid rates by direct plunging into liquid nitrogen. In humans, 104 

the first live birth from a vitrified/warmed oocyte was reported by Kuleshova et al. in 1999 [4]. 105 

Since then, the procedure has gone from experimental to clinical application and is now an integral 106 

part of human reproductive medicine.  107 

In the horse, oocyte vitrification is still considered an experimental procedure due to its 108 

low success, with only three live foals reported [5,6]. In 2002, Maclellan et al. [5] collected oocytes 109 

from live donors; these in vivo matured oocytes were vitrified/warmed, surgically transferred to 110 

the oviduct of inseminated recipients and ultimately resulted in the birth a foal (“Vitreous”) and a 111 

filly (“Ethyl”). Sixteen years later, Ortíz-Escribano et al. [6] reported the birth of one foal 112 

(“VICSI”) from vitrified/warmed, in vitro matured oocytes fertilized by ICSI. Although these live 113 

births represent a significant accomplishment, the efficiency of the procedure remains extremely 114 

low. Several contributing factors have been associated to the lack of progress in the equine species, 115 

including the length of exposure to cryoprotectant combinations [6,7,8,9], nuclear maturation 116 

status [8,10,11,12], presence or absence of cumulus investments [13], cytoskeletal damage and 117 

microtubule depolymerization [6,7], meiotic spindle and chromosomal aberrations [14]. Other 118 

factors affecting equine oocyte vitrification were recently reviewed by De Coster et al. [15]. 119 

Clearly, a better understanding of the vitrification/warming process and its effects on the oocyte is 120 

needed to improve the use of this technology in the horse. 121 

The oocyte requires a considerable stock of functional mitochondria to support early 122 

embryonic division and mitochondrial health has been associated with energy reserves during 123 

meiosis, calcium modulation, lipid oxidation and successful embryo development [16,17,18]. 124 
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Mitochondria plays an important role in the reactive oxygen species (ROS) balance during the 125 

process of oxidative phosphorylation and their dysfunction results in harmful accumulations of 126 

superoxide anions within the cell. Interestingly, vitrification/warming has been linked both to 127 

increased ROS levels and mitochondrial dysfunction in several species, including pigs [19], cattle 128 

[20], mice [21,22] and humans [23]. Although there is currently no information regarding the 129 

oxidative status of the vitrified/warmed equine oocyte, our group recently demonstrated impaired 130 

mitochondrial function and lower membrane potential after vitrification/warming, particularly 131 

with long exposure to cryoprotectants [9]. Mitochondrial function and increased ROS levels in 132 

vitrified/warmed oocytes may contribute to the reduced developmental competence observed in 133 

the horse.  134 

Melatonin (N-acetyl-5-methoxy tryptamine), an indole compound found in vertebrates to 135 

modulate circadian rhythm, has been reported to stimulate ROS metabolization, improve cell 136 

membrane fluidity and restore mitochondrial function [24,25]. The importance of melatonin as 137 

antioxidant has been associated with several unique characteristics such as its lipophilic and 138 

hydrophilic nature, its ability to by-pass membranes, and its accumulation in all cell compartments 139 

including mitochondria [25, 26]. As antioxidant, it has been shown to improve the development of 140 

porcine [27], bovine [28,29] and murine [30] oocytes after in vitro maturation. Several authors 141 

have suggested mitochondria are the main targets of melatonin’s antioxidant action, by improving 142 

electron transport chain and reducing mitochondrial DNA damage [24,31]. 143 

To date, there are no reports about the oxidative status or mitochondrial-related ROS of the 144 

vitrified/warmed equine oocyte. We hypothesize ROS may increase after vitrification and 145 

melatonin’s antioxidant capacity could act as a free radical scavenger thus improving embryo yield 146 

after vitrification. Therefore, our objective was to determine the overall oxidative status of vitrified 147 

equine oocytes and to evaluate the effect of melatonin supplementation on mitochondrial-specific 148 

ROS (mROS), oocyte maturation, ICSI embryo development and viability by pregnancy 149 

establishment following transfer of in vitro produced equine blastocysts.  150 

 151 

2. Materials and Methods 152 

2.1. Media and chemicals 153 

 154 

Except otherwise indicated, all chemicals were obtained from Sigma-Aldrich®. 155 
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 156 

2.2.General Procedures 157 

2.2.1. Oocyte harvest and holding 158 

Equine ovaries were obtained from local abattoir (Frigorífico Lamar, Buenos Aires, 159 

Argentina), transported at room temperature to the laboratory in an insulated container (2-h transit 160 

time) and processed by follicular slicing followed by scraping using bone curettes of various sizes. 161 

All visible follicles up to 35 mm in diameter were processed; this was done because larger-size 162 

follicles tend to be hyaluronan-rich and will typically render a tight matrix that makes the recovery 163 

of oocytes problematic. In addition, follicles with evidence of intrafollicular blood were also 164 

avoided. The contents of curettes were rinsed in a centrifuge tube containing 25 mL of Hepes-165 

TALP medium [32], allowed to sediment to the bottom and transferred to a search dish. The 166 

cumulus-oocyte complexes (COCs) were isolated in a stereomicroscope at 50X magnification.  167 

No separation of expanded versus compact cumulus was made; all COCs with no evidence 168 

of degeneration were included. Previous reports regarding vitrification of immature equine oocytes 169 

suggested that leaving only a few layers of cumulus cells surrounding the oocyte would not affect 170 

subsequent IVM and may be beneficial in the process [6]. Therefore, the excess cumulus cells of 171 

all the COCs were removed in Hepes-TALP medium using an oocyte stripper (Stripper®, Cooper 172 

Surgical, USA) fitted with a 150 μm pipette tip immediately after isolation.  173 

Oocytes were held overnight (~15 h) in 2 mL Eppendorf tubes filled to the top with holding 174 

medium, sealed with parafilm and placed in a thermostatic water bath set at 22oC. Holding medium 175 

consisted of 40% Medium 199 Hanks’s salts, 40% Medium 199 Earle’s salts and 20% fetal bovine 176 

serum (FBS) supplemented with 25 µg/mL gentamicin.      177 

 178 

2.2.2. Oocyte vitrification and warming 179 

 180 

Immature oocytes were vitrified and warmed using a three-step short protocol adapted from 181 

Lane et al. (1999) [33,34]. The description of vitrification media composition, exposure times and 182 

working temperatures is shown in Table 1. Concave microwells of Universal GPS® petri dishes 183 

(LifeGlobal, Cooper Surgical, USA) were used to move oocytes trough sequential 184 

cryopreservation solutions without mineral oil overlay. A pulled, borosilicate Pasteur pipette 185 
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connected to a 0.22 µm filter and mouth tubing was used to move oocytes through solutions with 186 

minimal volume. The Cryotop® was selected as the vitrification device, in which oocytes were 187 

loaded in groups of 5 with minimal volume of vitrification solution number 3 (VS3). Excess 188 

medium was quickly removed, thus creating a thin film layer and causing the oocytes to flatten 189 

onto the surface of the device.  The Cryotop® was then plunged into liquid nitrogen; the action of 190 

plunging was conducted in one single, rapid movement while maintaining horizontal agitation in 191 

order to minimize the Leidenfrost effect. Vitrified oocytes remained stored for at least one week 192 

at -196oC prior to removal and warming. Warming was conducted in 4-well plates (USCryotec, 193 

USA); oocytes were moved sequentially through warming solutions. The description of warming 194 

media composition, volumes, exposure times and working temperatures is shown in Table 1. 195 

Both vitrified/warmed and non-vitrified oocytes were allowed a 90 min cytoskeletal 196 

stabilization period prior to fluorescent staining or exposure to IVM medium with gonadotropins. 197 

This stabilization was conducted in pre-equilibrated IVC medium (composition described in 198 

2.2.7.) at 38.2oC in a humidified atmosphere of 6% CO2 in air.  199 

  200 

2.2.3. Determination of total reactive oxygen species (ROS)  201 

 202 

The level of intracellular ROS of equine non-vitrified and vitrified immature oocytes was 203 

measured using 2′', 7′-dichlorodihydrofluorescein diacetate (DCHF-DA, Molecular Probes, 204 

Eugene, OR, USA) as previously described for other species [35,36]. 205 

Due to lack of published information about ROS measurement in equine oocytes, incubation 206 

temperature was adjusted to fit the equine requirements. Oocytes were gently and completely 207 

denuded from cumulus cells using an oocyte stripper fitted with a 130-µm diameter micropipette 208 

in TALP medium without hyaluronidase supplementation. Then, oocytes were washed and 209 

incubated in 10 µM DCHF-DA in Hepes-TALP for 30 min at 38.2°C, in total darkness and 210 

humidified air. Fluorescence emission was measured in an epifluorescence microscope with 211 

bandpass green filter block (465-495 nm excitation/515-555 nm emission) immediately after 212 

mounting. 213 

 214 

2.2.4. Determination of mitochondrial-specific reactive oxygen species (mROS)  215 

 216 
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MitoSOX™ Red (Molecular Probes, Eugene, OR, USA) stock solution (5 mM) was prepared 217 

according to manufacturer instructions by diluting the content of 1vial (50 µg) into 13 µL of sterile 218 

DMSO and stored in 1 µL aliquots in a vacuum packed and sealed container. Oocytes were 219 

denuded as described in 2.2.3. and incubated in a final concentration of 5µM MitoSOX™ in Hepes-220 

TALP (without phenol red) for 30 min at 38.2°C in the dark in a humidified chamber. After 30 221 

minutes, the oocytes were washed three times in 100 µL TALP droplets and placed for 222 

visualization in groups of 5 oocytes/concave slide. Fluorescence emission was evaluated in an 223 

epifluorescence microscope with bandpass red filter block (528 nm excitation/575 nm emission) 224 

immediately after mounting. 225 

 226 

2.2.5. Images analysis  227 

The acquired images of ROS and mROS determination were processed using ImageJ 228 

software (version 1.51, National Institutes of Health, USA). Micrographs were converted into 229 

greyscale images and the integrated density of the signal was quantified individually. Background 230 

fluorescence was subtracted in every repetition; Mean fluorescence intensity (arbitrary units, a.u.) 231 

was plotted graphically with standard error of mean. 232 

 233 

2.2.6. In vitro maturation with and without melatonin supplementation 234 

 235 

The melatonin working concentration was selected based on previous reports for pigs [27,37] 236 

because the low number of available oocytes precluded a preliminary dose-response curve. 237 

Melatonin (M5250) working stock was prepared weekly in Medium 199 while protecting from 238 

light and used immediately; it was added to oocyte IVM medium to a final concentration of 10-9 239 

M.  240 

In vitro maturation was conducted in Medium 199 with 10% FBS, 1 μL/mL insulin-241 

transferrin-selenium, 1 mM sodium pyruvate, 100 mM cysteamine, 0.1 mg/mL FSH (Folltropin-242 

V; Vetoquinol, USA) and 25 µg/mL gentamicin. Maturation was conducted in groups of up to 10 243 

COCs per 100 µL droplets under mineral oil. Cumulus-oocyte complexes were cultured for 28 244 

hours at 38.2oC in a humified atmosphere of 6% CO2 in air. 245 

 246 

2.2.7. Intracytoplasmic sperm injection (ICSI) and embryo in vitro culture (IVC) 247 
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Only oocytes with a visible first polar body were considered mature and subjected to 248 

conventional ICSI without Piezo drill. Frozen semen from a single stallion of previously proven 249 

fertility for ICSI was used. A 3-5 mm portion of the semen straw was cut under liquid nitrogen 250 

and transferred to a centrifuge tube containing 3 mL of Hepes-TALP. Sperm was allowed to swim 251 

up for 25 min at room temperature, protected from light. A 1 µL aliquot of the upper layer was 252 

added to a 3µL droplet of 7% PVP solution (Sage, Cooper Surgical, USA). Micromanipulation 253 

was conducted in a Nikon TiU inverted microscope fitted with Narishige micromanipulators and 254 

oil microinjectors. Mature oocytes were placed in a 100 µL Hepes-TALP droplet; a single sperm 255 

immobilized and injected using a 7 µm (o.d.) micropipette (Origio, Cooper Surgical, USA).  256 

Presumptive zygotes were cultured in DMEM-F12/Global Total LP® (54:40) with 6% FBS 257 

(GE Healthcare HyClone™ Fetal Bovine Serum, U.S., Standard, SH30088.03), 0.1 mM sodium 258 

pyruvate and 10 μg/mL gentamicin and cultured at 38.2ºC in 5% CO2, 5%O2 and 90% N2 in a 259 

modular incubator chamber MIC-101 (Billups-Rothenberg Inc., CA, USA) placed inside a 260 

traditional water-jacketed CO2 incubator. 261 

 262 

2.2.8. Evaluation and transfer of ICSI embryos 263 

Cleavage assessment was conducted on day 3 (day 0= ICSI). On day 5 of IVC, medium was 264 

completely renewed, unfertilized oocytes were removed and those with 16 or more visible 265 

blastomeres were recorded as well as embryos with evidence of cytoplasmic fragments. From days 266 

7 to 10 of IVC, blastocyst development was monitored daily.  267 

Embryo grading system was based on our own laboratory observations and also on grading 268 

described by Tremoleda et al. (2003) for equine embryos produced by piezo-assisted ICSI [38].  269 

Embryos were graded from 1 to 4 (1= Excellent; 2= Good; 3= Poor; 4= Degenerate); grade 1 270 

blastocysts were symmetrical and evenly colored, with a noticeable blastocele cavity, refringent 271 

trophectoderm layer, absence of cytoplasmic fragmentation and frequently thinned zona pellucida; 272 

grade 2 may include irregular shape, minor cytoplasmic fragmentation and less evident 273 

trophectoderm layer; grade 3 embryos were characterized by substantial cytoplasmic granules, 274 

large perivitelline space, and absence of distinguishable trophectoderm;  grade 4 was characterized 275 

by overall cytoplasmic fragmentation, absence of trophectoderm layer or noticeable blastocoel 276 

cavity, and may include broken zona pellucida. Only embryos grades 1 and 2 were transferred. 277 
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Embryos were transferred to recipients from a commercial polo embryo transfer herd during 278 

the reproductive season for the Southern Hemisphere. Available recipients with ovarian follicles 279 

≥ 35 mm diameter were synchronized by hCG administration on the same day of the ICSI 280 

procedure and subsequently monitored for ovulation. Embryos were rinsed, loaded into sterile 0.5 281 

mL straws in Syngro® holding medium (Vetoquinol, USA), transported to the farm (2 h-transit 282 

time) and non-surgically transferred to the uterus of a recipient on day 5 post-ovulation.  Pregnancy 283 

was checked by rectal ultrasonography on day 14 and confirmed for the presence of an embryo 284 

with cardiac activity on day 26; fetal sexing was conducted between days 50 and 60 after transfer 285 

by an experienced technician. 286 

 287 

2.3. Experiments and treatments  288 

 289 

2.3.1. Experiment 1: Determination of oxidative status  290 

The overall oxidative status of fresh and vitrified/warmed equine oocytes was studied. For 291 

this, the total ROS of immature oocytes randomly allocated to Non-vitrified or Vitrified treatment 292 

groups, was measured by DCHF-DA staining in 2 replicates (n=25 oocytes per group).  293 

 294 

2.3.2. Experiment 2: Determination of mitochondrial-specific reactive oxygen species  295 

Mitochondrial function was analyzed by measurement of mROS using MitoSOX™ Red 296 

fluorescent assay for live cells. Immature oocytes were randomly allocated to Non-vitrified, 297 

melatonin (-), Non-vitrified, melatonin (+), Vitrified, melatonin (-) or Vitrified, melatonin (+) 298 

groups. After IVM, only the oocytes with a visible first polar body were used for fluorescent 299 

staining. The mROS level was measured in 3 replicates (n=45 in vitro-matured oocytes per group). 300 

 301 

2.3.3. Experiment 3: In vitro embryo development after ICSI and transfer to recipients  302 

The developmental potential of non-vitrified and vitrified oocytes, with and without 303 

melatonin supplementation was analyzed by ICSI embryo production. The viability of the resulting 304 

embryos was evaluated by transfer to synchronized recipients; this experiment was conducted in 305 

4 replicates during the reproductive season for the Southern Hemisphere. A total of 452 immature 306 

oocytes were randomly allocated to Non-vitrified, melatonin (-) (n=137), Non-vitrified, melatonin 307 

(+) (n=100), Vitrified, melatonin (-) (n=106) or Vitrified, melatonin (+) (n=110) groups. Only day-308 
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7, grades 1 or 2 blastocysts were selected for transfers to the available synchronized recipient 309 

mares. 310 

 311 

2.4. Statistical analysis 312 

Continuous variables in Experiment 1 and 2 were analyzed using the non-parametric 313 

Kruskal-Wallis and Dunn’s test for multiple comparisons with GraphPad Prism software (version 314 

6.0c for Mac, GraphPad Software, La Jolla California, USA); values were expressed as Mean 315 

fluorescence intensity ± SEM. The effect of melatonin supplementation on in vitro oocyte 316 

maturation rate, embryo development and viability (Experiment 3) was analyzed using a probit 317 

link function with binomial error distribution; results were expressed as mean (%) within the text, 318 

and dispersion values (SEM) were included in Table 2. InfoStat software (Versión 2020, Centro 319 

de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina) was used to 320 

perform the generalized linear model. Statistical significance level was set at P<0.05. 321 

 322 

3. Results  323 

3.1. Experiment 1: Determination of oxidative status 324 

Non-vitrified and vitrified/warmed immature equine oocytes showed differences in their 325 

intracellular ROS levels. Intracellular ROS was higher in vitrified/warmed oocytes; Mean 326 

fluorescence intensity increased significantly after a vitrification/warming cycle (1.503±0.32 vs 327 

2.394±1.01 a.u., P<0.05) (Figure 1).  328 

 329 

3.2. Experiment 2: Determination of mitochondrial-specific reactive oxygen species  330 

There was no difference in mROS levels of non-vitrified and vitrified oocytes without 331 

melatonin supplementation. However, supplementation with 10-9 M melatonin during oocyte IVM 332 

resulted in a decrease in mitochondrial-specific ROS, both for non-vitrified (1.184±0.08 vs 333 

0.787±0.04 a.u., P<0.05) and vitrified oocytes (1.048±1.16 vs 0.560±0.02 a.u., P<0.05) (Figure 2). 334 

  335 

3.3. Experiment 3: In vitro embryo development after ICSI and transfer to recipients  336 

All the vitrified oocytes (n=216) survived (morphologically) the vitrification/warming 337 

cycle. Non-vitrified and vitrified/warmed equine immature oocytes were matured in vitro, with or 338 

without supplementation of 10-9 M melatonin for a period of 26-28 h. The addition of melatonin 339 
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to IVM did not have an effect on the proportion of oocytes reaching the metaphase-II stage, 340 

although a slight increase in maturation rate was observed for oocytes in the non-vitrified, 341 

melatonin (+) group (P= 0.19). 342 

Melatonin supplementation had no effect on embryo development after ICSI of non-343 

vitrified oocytes in terms of cleavage (75 vs 77%) or blastocyst rate (29 vs 26%; melatonin (+) and 344 

(-) respectively). However, vitrified, melatonin (+) oocytes reached similar cleavage (62%) and 345 

blastocyst (15%) rates than non-vitrified oocytes. No differences either in cleavage or blastocyst 346 

rate were observed among vitrification groups (Table 2, Figure 3). Also, when analyzing the effect 347 

of vitrification procedure, a decrease in embryo development of vitrified oocytes compared to non-348 

vitrified groups was observed (P= 0.0168 for cleavage; P= 0.0265 for blastocyst rate). 349 

Two pregnancies were established from vitrified/warmed oocytes; one from melatonin (+) 350 

and the other from melatonin (-) treatment groups. A 17 and 33% pregnancy rate 351 

(pregnancy/transferred embryo) was obtained from vitrified, melatonin (+) and (-) oocytes, 352 

respectively. In addition, pregnancies were also established from non-vitrified, melatonin (+) and 353 

(-) oocyte groups (50% and 83% pregnancy rate, respectively), indicating the ICSI embryos 354 

produced were viable. The lack of available recipients precluded the transfer of all the blastocysts 355 

produced in the study; however, embryos in all treatment groups continued to increase in diameter 356 

and hatch (partially or totally) in vitro (Figure 4). 357 

The two pregnancies established from vitrified/warmed oocytes were allowed to progress 358 

to term; the remaining pregnancies from non-vitrified oocytes were terminated after fetal sexing 359 

on day 60 due to the need to free those recipients for the commercial operation.  Two healthy foals, 360 

one colt from melatonin (+) and one filly from melatonin (-) treatment, were born from 361 

vitrified/warmed oocytes . Gestation lengths (considering day 0 = day of ICSI) were 338 days for 362 

the colt and 329 days for the filly, respectively (Figure 5).   363 

 364 

4. Discussion 365 

Equine oocyte vitrification is still considered an experimental procedure due to its low 366 

success, with only three live foals reported to date [5,6]. Several contributing factors have been 367 

associated to the lack of success; among these, oocyte maturation status at vitrification [12], 368 

presence or absence of cumulus cells [6], media cryoprotectant composition and exposure to 369 
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vitrification solutions [8]. Clearly, a better understanding of the effects of the vitrification/warming 370 

process is needed in order to make improvements to the current procedures in the horse. 371 

Reactive oxygen species (ROS) are metabolism by-products generated during the 372 

intermediate steps of oxygen reduction. Superoxide anion radical, hydrogen peroxide, and 373 

hydroxyl radical have been implicated in oxidative stress of gametes and embryos. Our work 374 

demonstrated that in the horse, as in other species, the intracellular oxidative status is affected by 375 

the vitrification and warming process, resulting in an increase in ROS activity. These results are 376 

in agreement with previous observations reported for human [39] mouse [40], cattle [20,41] and 377 

pigs [42]. Increased ROS level in oocytes can lead to mitochondrial disfunction [43], alterations 378 

in calcium oscillations, reductions in ATP content and fertilization failure [44,45].  The increased 379 

ROS activity of vitrified/warmed oocytes could, in part, explain the reduced developmental rates 380 

observed in equine studies [6,8,46]. 381 

The superoxide anion reactive oxygen species is generated as a by-product of 382 

mitochondrial oxidative phosphorylation (mROS). Oxidative stress has been associated with 383 

mitochondrial damage [47] and mitochondrial DNA (mtDNA) is particularly prone to mutations 384 

due to its lack of histones which normally contribute to ROS control [48]; therefore, the generation 385 

of superoxide has been described as one of the most damaging sources of toxicity and 386 

mitochondrial dysfunction. In the present study, we found no difference in the mROS levels after 387 

IVM of equine oocytes in absence of melatonin. However, when oocytes were supplemented with 388 

melatonin during IVM we found a significant decrease in mitochondrial-specific ROS, for both 389 

non-vitrified and vitrified oocytes. These results are consistent with previous observations in other 390 

species, indicating that melatonin may have an action as a mitochondrial-specific antioxidant [49] 391 

and adds the body of evidence regarding the antioxidant and free radical scavenging properties of 392 

melatonin and its metabolites [25,50]. 393 

In cattle, El-Raey et al. [28] reported improved oocyte maturation and reduced ROS in 394 

presence of melatonin. In pigs, melatonin supplementation during maturation resulted in higher 395 

glutathione content and inhibited apoptosis when oocytes were exposed to heat stress [51]. 396 

Although in our present study maturation rate of non-vitrified oocytes supplemented with 397 

melatonin was only marginally improved, some studies have indicated that melatonin’s effect 398 

might be dose-dependent [52]. In addition, it must me noted the reduced number of equine oocytes 399 

precluded a preliminary dose-response curve; therefore, it is possible the melatonin concentration 400 
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selected for our study based on previous publications for pigs [27,37] may not be adequate for the 401 

horse; further experiments should evaluate the optimal concentration for the equine species. To 402 

our knowledge, this is the first report of melatonin addition to maturation medium of equine 403 

oocytes. 404 

In addition, there are no reports of melatonin supplementation for the improvement of 405 

vitrification outcome in the horse and only a few reports are available for other animal species. In 406 

the mouse, a 1-hour of exposure of metaphase-II oocytes to melatonin during post-warming 407 

stabilization period did not result in improvements to embryo developmental competence [53]. On 408 

the contrary, Zhang et al., [54] reported vitrified metaphase-II oocytes reached similar blastocyst 409 

formation than non-vitrified control when melatonin supplementation was conducted for the 410 

complete post-warming and IVC period (2-hour stabilization, 5-hour activation and complete 411 

IVC), indicating the length of exposure to antioxidant could be a contributing factor. Similar 412 

findings were also reported for mature bovine vitrified oocytes supplemented with melatonin both 413 

during IVM and vitrification procedure, suggesting a relationship between developmental 414 

potential, ROS reduction and the consequent inhibition of apoptotic events due to melatonin 415 

addition [55]. In our present study, vitrified melatonin (+) oocytes reached similar cleavage (61, 416 

75 and 77%, respectively) and blastocyst rate (15, 29 and 26%, respectively) than non-vitrified, 417 

melatonin (+) and (-) oocytes; this combined with our observations regarding melatonin’s ability 418 

to reduce mROS indicates the beneficial role of melatonin on mitochondrial health may be related 419 

to the improved embryo development from equine vitrified oocytes. 420 

Although the mechanism of melatonin action is still unclear, some reports have suggested 421 

a relationship between melatonin, mitochondrial function and lipid metabolism. In 2017, Jin et al. 422 

[56] reported higher number of lipid droplets (LDs) and upregulated gene expression related to 423 

lipogenesis after maturation of porcine oocytes with melatonin supplementation. In another 424 

study, He et al. (2017) [57] showed pig oocytes supplemented with melatonin had higher 425 

maturation rates, more lipid droplets and higher triglyceride content. Interestingly, they reported 426 

reduced mitochondrial reactive oxygen species (mROS) content and a significant down-regulation 427 

of mtDNA‐encoded genes after melatonin treatment. This reduction in mROS levels is in 428 

agreement with our present study in horses. Because both porcine and equine oocytes are 429 

characterized by relatively high lipid content, a possible mechanism of action regarding melatonin-430 

mitochondria-lipid should be analyzed in the future. 431 
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Although the lack of available recipients precluded the transfer of every blastocyst 432 

produced, the transferred embryos from non-vitrified oocytes resulted in 50 and 83% pregnancy 433 

rates while embryos from vitrified oocytes resulted in 17 and 33% pregnancy rates, from melatonin 434 

(+) and  (-) treatments respectively. Noteworthy, this study was limited by the lack of available 435 

recipients which precluded the transfer of every grade 1 and 2 embryo produced.  Although no 436 

statistical difference on pregnancy rates was observed, they tended to be lower with melatonin 437 

supplementation and this aspect should be further analyzed in future studies. Also, when compared 438 

to non-vitrified groups, vitrified/warmed oocytes had lower pregnancy rates although no statistical 439 

differences were observed probably due to the low number of observations (P= 0.32). These results 440 

are similar to those previously reported by Ortiz-Escribano et al. [6] for vitrified oocytes, where 1 441 

out of 4 transfers resulted in pregnancy establishment, indicating that embryo viability from 442 

vitrified oocytes could be compromised. 443 

Previously, our laboratory reported ICSI blastocyst development from immature, abattoir-444 

derived vitrified and non-vitrified oocytes [9]. Noteworthy, we described an asynchrony in 445 

blastocyst development between vitrified and non-vitrified groups; embryos from vitrified oocytes 446 

reached the same developmental stage (early blastocyst) approximately 24 h later than embryos 447 

from non-vitrified controls, possibly indicating compromised viability [9]. In the present study, 448 

although the same dispersion in developmental rate was noticed, the large number of oocytes 449 

available for injection allowed a better selection of embryos at more advanced stages on day 7 450 

post-injection, thus resulting in potentially better quality embryos (with more organized 451 

trophectoderm and incipient blastocoel cavity) being transferred to day 5 recipients. In this regard, 452 

we hypothesize quality selection may be a fundamental aspect to the success in establishing 453 

pregnancies from vitrified oocytes, as their darker color (particularly around the morula stage) 454 

makes morphological evaluation difficult. Noteworthy, some of early developing embryos from 455 

vitrified oocytes were kept in culture and were observed to hatch by day 10. 456 

Our study resulted in two pregnancies from vitrified oocytes, one each from melatonin (-) 457 

and melatonin (+) groups and the birth of the second and third live foals reported in the scientific 458 

literature for vitrified oocytes followed by ICSI, IVC and transfer. This represents an advancement 459 

since, prior to our present study, a total of three live births had been informed [5,6] and only one 460 

[6] was the result of vitrification / ICSI procedure of immature oocytes similar to the present work. 461 

 462 
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5. Conclusion 463 

We demonstrated intracellular reactive oxygen species are increased by the vitrification 464 

process of immature oocytes. Melatonin supplementation reduced mitochondrial-related ROS, 465 

improved ICSI embryo development and resulted in the establishment of an ongoing pregnancy 466 

from immature, vitrified oocytes. To our knowledge this is the first report of use of melatonin in 467 

an equine ICSI/in vitro culture system and a first attempt to improve embryo development from 468 

vitrified oocytes, resulting in live foals.  469 
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Tables and figures 730 
 731 

Table 1. Composition of solutions and exposure times to cryoprotectants. 732 

 733 

Vitrification  DMSO EG Trehalose Volume 
Exposure 

time 

 VS1 (23ºC) 5% (0.7 M) 5% (0.9 M) --- 100 µL 45” 

 VS2  (23ºC) 10% (1.4 M) 10% (1.8 M) --- 100 µL 45” 

 VS3  (23ºC) 20% (2.8 M) 20% (3.6 M) 0.65 M 100 µL 30” 

Warming       

 WS1 (38ºC) --- --- 0.25 M 1800 µL 1’ 

 WS2 (38ºC) --- --- 0.19 M 100 µL 1’ 

 WS3 (38ºC) --- --- 0.125 M 100 µL 1’ 

The same base medium was used for all the solutions: Medium 199 (Hank’s salts) with 20% FBS; VS: vitrification 734 
solution; WS: warming solution; DMSO: dimethyl sulfoxide; EG: ethylene glycol. In VS3 the exposure time includes 735 
the loading onto the vitrification device. Exposure time of WS1 starts when the last oocyte is realeased from the device 736 
in the warming solution. 737 
 738 

 739 

 740 

 741 

 742 
Figure 1. Oxidative status of vitrified and non-vitrified immature equine oocytes indicated by fluorescence intensity 743 
of total reactive oxygen species after DCHF-DA staining (Experiment 1). Total ROS production was higher in 744 
vitrified/warmed oocytes (P < 0.05). Bars in the diagram represent Mean fluorescence intensity + SEM. Different 745 
superscripts indicate significant differences. Pictures show representative oocytes after staining with DCHF-DA of 746 
non-vitrified (a) and vitrified (b) groups, including the corresponding bright field image (c and d respectively). 747 
 748 
 749 
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 750 

 751 
Figure 2. MitoSOX™ fluorescence indicating mitochondrial-specific reactive oxygen superoxide of non-vitrified and 752 
vitrified equine oocytes matured with or without melatonin supplementation. Melatonin supplementation significantly 753 
decreased mROS in both non-vitrified and vitrified groups. Each bar represents Mean fluorescence intensity + SEM. 754 
Different superscripts indicate significant differences. Pictures show representative images of MitoSOX™ staining and 755 
its corresponding bright field caption in a,e) non-vitrified melatonin (–) group; b,f) non-vitrified melatonin (+) group; 756 
c,g) vitrified melatonin (-) group; d,h) vitrified melatonin (+) group.   757 
 758 

 759 

 760 

 761 
Table 2. ICSI development, embryo transfer and pregnancies of non-vitrified and vitrified oocytes, 762 

with or without melatonin supplementation.  763 
 764 

 

Oocyte group 
 

N 

 

Maturation 

rate 

 

Cleavage 

rate 

Blastocyst 

rate 

No. 

Embryos 

grade 1-2 

No. 

Embryos 

grade 3-4 

No. 

Transf. 

Pregnancy 

rate 
♂:♀ 

Non-vitrified 

melatonin + 
100 

65±4.8 

(65/100) 

75±5.3 

(49/65)a 

29±5.7 

(19/65)a 
17 2 5* 50% (2/4) 1 : 1 

Non-vitrified 

melatonin - 
137 

53±4.2 

(73/137) 

77±5.0 

(56/73)a 

26±5.1 

(19/73)a 
16 3 7* 83% (5/6) 2 : 3 

Vitrified 

melatonin + 
110 

54±4.8 

(59/110) 

61±6.3 

(36/59)ab 

15±4.9 

(9/59)ab 
6 3 8** 17% (1/6) 1 : 0 

Vitrified 

melatonin - 
106 

54±4.7 

(57/106) 

46±6.6 

(26/57)b 

9±3.8 

(5/57)b 
4 1 3 33% (1/3) 0 : 1 

 765 
Data are presented as Mean % ± SEM. Cleavage and Blastocyst rate was calculated from matured oocytes. No 766 
differences were observed in embryo grading or pregnancy rate between treatments.  767 
* Two of the blastocysts were transferred together to the same recipient. 768 
** Two of the embryos were classified as grade 3 due to an enlarged periviteline space (although a distinctive 769 
trophectoderm was observed) and transferred in pairs with two, grade 1 blastocysts to the same recipients.    770 
a,b Different superscripts within a column indicate significant differences, generalized linear model, P<0.05. 771 
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Figure 3. Day 7 ICSI blastocysts from vitrified oocytes transferred to recipients, resulting in the establishment of 815 
pregnancies. a, b). Vitrified, melatonin (+), grade 2 blastocyst and ultrasound confirmation of pregnancy after transfer 816 
of the same embryo to a synchronized recipient.  c, d) Vitrified, melatonin (-), grade 2 blastocyst and confirmation of 817 
pregnancy. e) Recipient mare, day 270 of pregnancy, melatonin (+) embryo from vitrified oocyte. 818 
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Figure 4. Day 10, non-transferred ICSI blastocysts. a) Vitrified, melatonin (+), grade 1 blastocyst. b) Vitrified, 858 
melatonin (-), grade 2 blastocyst. c) Non-vitrified, melatonin (+) grade 1 blastocyst. a-c) 40X magnification. d) Zona-859 
thinned vitrified, melatonin (+) blastocyst (20X magnification).  860 
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Figure 5. Live foals produced from vitrified/warmed oocytes. a. A healthy colt born from melatonin (+) treatment and 909 
b. A healthy filly from melatonin (-) treatment. Gestation lengths (considering day 0 = day of ICSI) were 338 days for 910 
the colt and 329 days for the filly, respectively.   911 
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