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In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a
result, studying temporal dependencies in such data with autoregressive modeling is becoming common
practice. However, standard autoregressive models are often suboptimal as they assume that parameters
are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency
of a process) govern the time series. Often a change in the process, such as emotional well-being during
therapy, is the very reason why it is interesting and important to study psychological dynamics. As a
result, there is a need for an easily applicable method for studying such nonstationary processes that result
from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We
show with a simulation study and an empirical application that the TV-AR model can approximate
nonstationary processes well if there are at least 100 time points available and no unknown abrupt
changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic
structure is necessary. We conclude that the TV-AR model has significant potential for studying changing
dynamics in psychology.
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Humans are complex dynamic systems, whose emotions, cog-
nitions, and behaviors fluctuate constantly over time (Nesselroade
& Ram, 2004; Wang, Hamaker, & Bergeman, 2012). In order to

study these within-person processes, and to determine how, why,
and when individuals change over time, individuals need to be
measured on a relatively large number of occasions (Bolger &
Laurenceau, 2013; Ferrer & Nesselroade, 2003; Molenaar &
Campbell, 2009; Nesselroade & Ram, 2004; Nesselroade & Mo-
lenaar, 2010), resulting in intensive longitudinal data that, if N �
1, are typically designated as time series (Walls & Schafer, 2006).
Currently, a spectacular growth of studies gathering intensive
longitudinal data is taking place (aan het Rot, Hogenelst, & Scho-
evers, 2012; Bolger, Davis, & Rafaeli, 2003; Mehl & Conner,
2012; Scollon, Prieto, & Diener, 2003). With this development, it
has become possible to study dynamical processes of psycholog-
ical phenomena in much greater detail than has hitherto been
possible (Trull & Ebner-Priemer, 2013).

There are various aspects of within-person processes that one
can choose to study in order to gather insights into psychological
dynamics, of which temporal dependence is one particularly in-
formative aspect (Boker, Molenaar, & Nesselroade, 2009; Ha-
maker, Ceulemans, Grasman, & Tuerlinckx, in press; McArdle,
2009). Temporal dependence concerns the degree to which current
observations can be predicted by previous observations, for exam-
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ple, the degree to which an individual’s emotional state at a given
time point is predictive of her emotional state at subsequent time
points (Jahng, Wood, & Trull, 2008; Kuppens, Allen, & Sheeber,
2010).

A popular approach to handling such temporal dependency is
autoregressive (AR) modeling, a family of statistical models in
which the structure of the time-dependency in the data is explicitly
modeled through regression equations. Some autoregressive mod-
els are suited to study time dependence within a single individual
(e.g., Hertzog & Nesselroade, 2003; Molenaar, 1985; Rosmalen,
Wenting, Roest, de Jonge, & Bos, 2012; Stroe-Kunold et al.,
2012), whereas multilevel techniques can model time dependence
within multiple individuals simultaneously (e.g., Bringmann et al.,
2013; de Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2014;
Song, & Ferrer, 2012; Oravecz, Tuerlinckx, & Vandekerckhove,
2011). In addition, AR techniques can be applied in various
frameworks, such as the Bayesian (e.g., Pole, West, & Harrison,
1994) and the structural equation modeling framework (SEM; e.g.,
Hamaker, Dolan, & Molenaar, 2003; McArdle, 2009; Voelkle,
Oud, Davidov, & Schmidt, 2012).

A drawback of most AR models is that they are based on the
assumption that the average value around which the process is
fluctuating as well as the variance and the temporal dependency of
the process are time-invariant. This is also known as the station-
arity assumption (Chatfield, 2003). However, in the context of
psychology this may not always be a realistic assumption. In fact,
it could be argued that in many psychological time series studies a
form of nonstationarity can be expected to be present (e.g., Bring-
mann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 2014; Mole-
naar, De Gooijer, & Schmitz, 1992; Rosmalen et al., 2012; Tsch-
acher & Ramseyer, 2009). Even more so, often the very reason
why it is interesting and important to study dynamics of psycho-
logical processes lies in their nonstationary nature (Boker, Ro-
tondo, Xu, & King, 2002; van de Leemput et al., 2014). For
example, when an individual receives therapy, the aim is to ac-
complish change, such as a decrease in symptoms. Thus, instead of
considering dynamics, such as temporal dependency, as static
characteristics of an individual, it is more realistic to consider them
as time-varying, which implies that standard AR models are un-
suitable (Boker et al., 2002; Molenaar et al., 1992).

To overcome this limitation, time-varying AR (TV-AR) models
have been developed (Dahlhaus, 1997). In these models, the pa-
rameters (the intercept and autoregressive parameter) of the AR
model (most commonly an AR(1) model) are now allowed to vary
over time, so the models can be applied to both stationary and
nonstationary processes (Chow, Zu, Shifren, & Zhang, 2011).
Most time-varying AR models used in psychology and economet-
rics are based on the state-space modeling framework (Chow et al.,
2011; Koop, 2012; Molenaar, 1987; Molenaar & Newell, 2003;
Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009; Mumtaz &
Surico, 2009; Prado, 2010; Tarvainen, Georgiadis, Ranta-aho, &
Karjalainen, 2006; Tarvainen, Hiltunen, Ranta-aho, & Karjalainen,
2004; West, Prado, & Krystal, 1999). The state-space framework
is very general and encompasses a wide variety of models, such as
dynamic linear models. Hence, the framework is very powerful
due to its generality, but the downside is that it requires learning
(state-space) notation with which most psychologists are unfamil-
iar. In addition, state-space models require the user to specify the
way parameters of the time-varying model vary over time (Belsley

& Kuh, 1973; Tarvainen et al., 2004; for a notable exception see
Molenaar et al., 2009), but in practice the required theories about
the nature of the change are often lacking (Tan, Shiyko, Li, Li, &
Dierker, 2012), or must be handled via explicit incorporation of
spline-based or other nonparametric functions into a (confirma-
tory) state-space framework (Tarvainen et al., 2006). Doing so
may entail high computational demands when the dimension of the
unknown change forms to be explored is high. Thus, there is a
clear need for a time-varying AR method that functions without
prespecification and moreover is easy to apply for researchers in
psychology.

As we will show in this article, one solution is to implement
TV-AR models based on semiparametric statistical modeling us-
ing a well-studied elegant and easily applicable generalized addi-
tive modeling (GAM) framework (Hastie & Tibshirani, 1990;
McKeown & Sneddon, 2014; Sullivan, Shadish, & Steiner, 2015;
Wood, 2006). The crucial advantage of semiparametric TV-AR
models in general is that they are data-driven, and thus the shape
of change need not be specified beforehand (Dahlhaus, 1997; Fan
& Yao, 2003; Giraitis, Kapetanios, & Yates, 2014; Härdle, Lüt-
kepohl, & Chen, 1997; Kitagawa & Gersch, 1985). Furthermore,
no state-space notation is needed, because the TV-AR model is
closely related to and can be specified and estimated within the
familiar regression framework. Software for applying the GAM
framework is freely available in the mgcv package for the statis-
tical software R (Wood, 2006). The package has well-functioning
default settings, making it very user friendly.1 By showing how the
TV-AR model can be applied with existing and easy to use
software, we hope to make the TV-AR method accessible for a
broad audience of psychological researchers.

The structure of the article is as follows. In the first section, a
detailed explanation of the standard time-invariant AR is given.
In the second section, we describe the general structure of the
TV-AR model, and in the third section we explain in detail how
the time-varying parameters are estimated, and also introduce
the mgcv package in R, with which the TV-AR is estimated
(McKeown & Sneddon, 2014; Wood, 2006). In the fourth
section, we provide a simulation study and give guidelines on
how to use the TV-AR model with the mgcv package. In the
fifth section, we give an example from emotion dynamics
research to illustrate the TV-AR method by applying it to two
different subjects whose affect was measured over circa 500 days
in the context of an isolation study, the MARS500 project (Basner
et al., 2013; Tafforin, 2013; Vigo et al., 2013; Wang et al., 2014).
This section is followed by concluding remarks and the Appendix
with a description of the R-code used throughout the article.
Additional details of the simulation study can be found in the
online supplemental material.

Standard Time-Invariant AR

In this section, the standard time-invariant autoregressive (AR)
model is explained in more detail. Code for the equations and

1 Note that a time-varying effect model that also allows fitting a semipa-
rametric TV-AR model has recently been developed in SAS (Tan et al.,
2012). However, it is less general and has fewer options for fitting a
TV-AR model (e.g., at the moment it is only suitable for normally distrib-
uted time-varying models).
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figures in this section can be found in the R-code in the Appendix
under the heading II. Standard Time-Invariant AR.

Time series data consist of repeated measurements on one or
more variable(s) taken from the same system (e.g., an individual,
dyad, family, or organization). Typically, such data are statistically
dependent, since all measures are taken from the same participant
(e.g., answers on a questionnaire are likely to be related over time,
Brandt & Williams, 2007; Velicer & Fava, 2003). This statistical
dependence or autocorrelation that occurs in repeated measure-
ment data is a central aspect that has to be accounted for when
studying the underlying process. Furthermore, when this autocor-
relation is not taken into account invalid estimates can occur.

In psychology, the standard model used to deal with this statis-
tical dependency is a Gaussian discrete time AR model.2 An AR
model accounts for the statistical dependency by modeling it
explicitly, or in other words, the time series is regressed on itself
(Hamaker & Dolan, 2009). The most basic form is an AR model
of lag order 1 or AR(1):

yt � �0 � �1yt�1 � εt. (1)

This amounts to a linear regression model with an intercept �0,
and the autoregressive coefficient �1, representing the degree and
direction of the relation between a measurement at a previous
(lagged) time point (t – 1) and current time point (t) of a single
variable y (Velicer & Fava, 2003) and can be estimated with
ordinary least squares (OLS). The part of observation yt that cannot
be explained by the previous observation yt–1 is referred to as the
innovation εt (Chatfield, 2003). Other terms for the innovation are
random shock, perturbation, or dynamic error.3 The innovations
are assumed to be normally distributed with a mean of zero and
variance �ε

2 (Hamilton, 1994).
The autoregressive coefficient �1 can also be interpreted as the

extent to which a current observation is predictable by the preced-
ing observation (Hamaker & Dolan, 2009). A positive relationship
indicates that high values of a variable (e.g., positive affect [PA])
at one time point are likely to be followed by high values in the
next time period (see left panel of Figure 1). In contrast, a negative
relationship would predict the opposite, namely low values of the
variable during the next time period (Chatfield, 2003; Velicer &
Fava, 2003), which typically results in a jigsaw pattern (see right
panel of Figure 1).

An important assumption for an AR(1) model is stationarity. A
distinction is made between strictly stationary and covariance-
stationary (also known as weakly or second-order stationary) pro-
cesses. If a process is strictly stationary, the distribution of yt and
all joint distributions of y random variables are the same at all time
points, and are thus time-invariant. Covariance-stationarity is a
less strong assumption, as in this case only the first two moments
of a distribution, the mean and the variance, and thus the param-
eters �0 and �1, have to be time-invariant.4 Furthermore, station-
arity also requires that the autoregressive coefficient must lie
between �1 and 1 (boundaries not included). In this case, the
mean � and variance �2 of the process in Equation 1 can be
expressed as

� �
�0

1 � �1
(2)

�2 �
�ε
2

1 � �1
2 , (3)

showing that both are time-invariant (Chatfield, 2003; Hamilton,
1994).

Figure 1 shows two examples of a stationary process. Although
the process fluctuates (changes) in both the left and right panel, the
intercept, mean, autocorrelation and variance do not change over
time. In an AR model, the intercept term �0 only has a substantial
interpretation if a score of 0 is a possible value in the sample.5

Therefore, we prefer to work with the mean �, which can be
interpreted as the value around which the process fluctuates.

Time-Varying AR

Psychological data are often nonstationary, rendering a standard
AR model inapplicable. In this section, we will therefore describe
an alternative model, the TV-AR model, which can model nonsta-
tionarity. First, we will discuss nonstationarity, illustrated by two
simulated examples with 150 time points (representing here the
evolution of valence within an individual). Second, we will give a
general overview of the TV-AR model. Information on statistical
inference for the TV-AR model will be given in the next section.
The code to make the figure in this section can be found in the
R-code in the Appendix under the heading III. Time-Varying AR.

There are several sources that can give rise to a nonstationary
process in which the intercept, mean, autocorrelation and (or)
variance change over time. In psychological research, the focus
has mainly been on detecting a type of nonstationarity that is due
to a (gradual) change in the mean of a process, which is visible as
a trend in the data. Consider for example the left panel of Figure
2, in which a simulated process of hypothetical valence scores for
an individual is shown. Here the autoregressive parameter does not
change over time (�1 � 0.2), but the intercept does, as represented
by the dashed line, and therefore the mean also changes. Thus, a
trend in the data is present.

To deal with a trend, common approaches in psychology have
been detrending and modeling the trend. In the first method, data
are made stationary by subtracting the values of a fitted trend from

2 In discrete time AR models the measurements of the process are
assumed to be equally spaced, meaning that the distance between the
measurements is the same through the whole study. If time points were not
equally spaced, the autoregressive coefficient would have a different mean-
ing across occasions. This is in contrast to continuous time AR models,
where the intervals between time points do not have to be equal (see for
more information: Bisconti, Bergeman, & Boker, 2004; Deboeck, 2013;
Oravecz et al., 2011; Voelkle & Oud, 2013; Voelkle et al., 2012).

3 The term dynamic error is used to pit this error against the well-known
measurement error. The difference between the two error terms is that
while measurement error is occasion-specific, affecting the scores only at
a single occasion, dynamic error tends to affect subsequent occasions as
well due to the underlying temporal dependency in the process (Schuurman
et al., 2015). In the current study we restrict our focus to processes without
measurement error.

4 As we study normally distributed processes here, it is interesting to
note that in this case covariance-stationarity implies strict stationarity,
because a normal distribution is completely defined by its first two mo-
ments (Chatfield, 2003, p. 36).

5 The intercept �0 is the expected score when the observation at the
previous occasion was zero (i.e., yt–1 � 0). When the scale that is used does
not include the score zero, the intercept is typically not interesting.
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the individual data-points, thus removing the trend from the data
(Hamaker & Dolan, 2009). A drawback associated with this way
of dealing with nonstationarity is that it may remove important
information from the data (Molenaar et al., 1992). In the second
approach, stationarity is obtained through modeling the trend with,
for example, linear growth curve modeling (Tschacher & Ram-
seyer, 2009). Both modeling the trend as well as detrending require
specifying the functional form of the trend, which can be difficult,
especially when convenient parametric forms are not applicable
(Adolph, Robinson, Young, & Gill-Alvarez, 2008; Faraway, 2006;
Tan et al., 2012). The TV-AR model that we will present has the
advantage that it can detect trends in a data-driven way, and thus
no prespecifications are needed to account for a trend in the data.

Detrending or modeling the trend makes the process trend-
stationary. However, when detrending, often only the trend due to
a changing intercept is removed, and what is overlooked is that
nonstationarity and trends can also occur due to changes in the
autocorrelation.6 For example, Figure 2 (right panel) shows a
process that is nonstationary due to a change in the autocorrelation.
The autoregressive function changes linearly over time, from a
high value (�1 � 0.65) to a lower one (�1 � 0.2). At first, the data
are characterized by a high autocorrelation, which disappears
toward the end of the time series. This is evident in the figure: First
there are large oscillations (a signature of a high autocorrelation),
which then become smaller toward the end of the time series
(indicating low autocorrelation). Removing or modeling a trend as
described above will not deal with this source of nonstationarity,
leaving the process covertly nonstationary. This is an important
reason why TV-AR models, which can detect and model both
changes in the intercept and autocorrelation simultaneously, are
important.

Another reason why TV-AR models are useful is that they can
test for nonstationarity. There are several tests to check for sta-
tionarity, such as the Dickey Fuller test (which can be used to test
whether a unit root is present in the time series; Dickey & Fuller,
1979), and the KPSS test (which can be used to test whether the

mean is stable over time, or whether it follows a linear trend;
Kwiatkowski, Phillips, Schmidt, & Shin, 1992). However, there is
no specific test that checks for nonstationarity due to changing
autoregression or a changing mean that follows a different trajec-
tory than a linear trend. With the TV-AR model, we present a
method that can test the time invariance of the autoregressive
parameter, and simultaneously check whether a trend is due to a
time-varying intercept and/or a time-varying autoregressive pa-
rameter (see Figure 2). Moreover, this method allows for instantly
modeling such nonstationarity.

The defining feature of a TV-AR model is that the coefficients
of the model are allowed to vary over time, following an unspec-
ified function of time (Dahlhaus, 1997; Giraitis et al., 2014). To
this end, we specify

yt � �0,t � �1,tyt�1 � εt (4)

where the intercept �0,t and the autoregressive �1,t coefficients are
now functions that can change over time.7 The innovations still
form a white noise process so that the values of εt are indepen-
dently and identically distributed, which implies that their variance
is constant over time.

An important assumption of the TV-AR model is that, even
though the functional form of �0,t and �1,t can be any function,
change in the parameter values is restricted to be gradual, that is,
there should be no sudden transitions. This assumption implies that
the TV-AR model, as defined here, is not appropriate for time
series with abrupt changes or sudden jumps. Thus, researchers
should decide whether or not continuous change in parameters is
plausible on the basis of the substantive knowledge of the problem
at hand. If sudden, qualitative transitions are expected (e.g., as

6 Note that a trend can be also caused by a unit root process, such as a
random walk. In this case, the process has to be differenced in order to
become stationary (see, e.g., Hamilton, 1994).

7 Note that in Giraitis et al. (2014) �1,t is specified as �1,t–1. Here we use
the standard notation used in Dahlhaus (1997).

Figure 1. Simulated time series with a positive (left) and a negative (right) autocorrelation for a valence
process of a single individual. The valence process ranged from 0 to 10, with 0 indicating feeling very unhappy
and 10 indicating very happy. The process was simulated for 150 time points with an intercept (�0) of 3 (left)
and 6 (right; see dashed line in both graphs) and an autoregressive coefficient (�1) of 0.5 (left) and �0.5 (right),
meaning that there was a positive (left) or negative (right) dependency in the data. Notice that here the intercept
as such has no further meaning and is different from the mean. In the left graph, the mean (�; shown by the solid
black line) is 3/(1 – 0.5) � 6, indicating that on average this individual felt quite happy. In the right graph, the
mean is 6/(1 � 0.5) � 4, indicating that on average this individual felt slightly unhappy.
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would be the case in some areas of cognitive development or in
mental disorders with a sudden onset) then the current methodol-
ogy would not be advisable. However, if the point at which an
abrupt change takes place is known, one can model the change
with a TV-AR model. One could specify, for example, a TV-AR
model before and after an intervention. Additionally, although a
TV-AR model is designed for handling nonstationary processes,
the process is still required to be locally stationary, meaning
that �1 � �1t � 1, for all t (Dahlhaus, 1997).

Assuming that the change is restricted to be gradual and the
process is locally stationary, the model implied mean is (Giraitis et
al., 2014):8

�t �
�0,t

1 � �1,t
. (5)

Similarly, due to the fact that the autoregressive coefficient is
allowed to vary over time, the variance of the time series is now
also time-varying, that is,

�t
2 �

�ε
2

1 � �1,t
2 . (6)

Note that because �t can vary over time, in the literature �t is
often interpreted as the attractor (also known as baseline or
equilibrium) rather than the mean of the process (Giraitis et al.,
2014; Hamaker, 2012; Oravecz et al., 2011). As is the case in a
time-invariant AR model, the intercept and the changing mean
(attractor or trend) are distinct features of a process. The intercept
typically does not have a direct psychological interpretation,
whereas the attractor represents the underlying trend in the time
series (see Figure 2).

Inference of the TV-AR Model: Splines and
Generalized Additive Models

In this section, we discuss how to estimate the time-varying
parameters in the TV-AR model using the generalized additive
model (GAM) framework. GAM models are expanded general

linear models (GLMs), such that one or more terms are replaced
with a nonparametric (smooth) function (Keele, 2008; Wood,
2006). This makes GAM models semiparametric models, since
predictor variables (i.e., in our case yt–1) can either be modeled as
in standard regression (e.g., �1) or in a nonparametric way (e.g.,
�1,t). We focus in this section on the nonparametric representation.
Code for the figures can be found in the R-code in the Appendix
under the heading IV. Inference of the TV-AR model.

The nonparametric smooth functions used here are based on
regression splines. Regression splines are piecewise polynomial
functions that are joined (smoothly) at breakpoints called knots
(Hastie & Tibshirani, 1990). In order to clarify the concept further,
we will give a simulated example (based on Wood, 2006). Spe-
cifically, data are simulated for n � 20 time points according to a
sine wave: yt � sin�2�t

20 � � 	t, where 	t ~ N�0, 0.32�. We denote the
time points in the data as ti with i � 1, . . . 20. The data are
represented as the small black dots in the first and last panel of
Figure 3. To fit these data, we start with a simplified TV-AR
model

yt � �0,t � εt (7)

with only a time-varying intercept and no autoregressive parame-
ter.

8 To derive a model-implied mean of the TV-AR, we can write:

�t � E[�0,t � �1,tyt�1 � εt]
� E[�0,t] � E[�1,tyt�1] � E[εt]
� �0,t � �1,t�t�1

� �0,t � �1,t�t
(14)

where the latter approximation results from the fact that, in contrast to a
standard AR model where we have E�yt� � E�yt�1� � �, the expectations
of yt and yt–1 are not exactly equal for a TV-AR model. However, because
the parameters �0,t and �1,t are only allowed to change gradually, we can
assume that �t–1 is reasonably well approximated by �t, so that we have
Equation 5. The derivation of the time-varying variance is similar to the
derivation of the time-varying mean.

Figure 2. Simulated data of a valence process (with 0 indicating feeling very unhappy and 10 indicating very
happy) with time-varying parameters. In the left panel, the autoregressive coefficient is time-invariant (�1 �
0.2), while the intercept is time-varying (�0,t; ranging from 3 to 5); in the right panel, the autoregressive
coefficient is time-varying (�1,t; gradually changing from 0.65 to 0.2), while the intercept is time-invariant (�0 �
2). The attractor in the left panel (�t; shown by the solid black line) changes from 4 to 7, indicating that this
individual felt a bit unhappy at first, but at the end of the time series felt happy, whereas the attractor in the right
panel changes from circa 6 to 2.5, indicating that this individual felt happy at first, but at the end felt unhappy.
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The goal is to find the function �0,t that tracks the general
relation between y and t (which for this example is the sine wave
underlying the data) as well as possible. In order to find the
optimal smooth function estimating �0,t, the following penalized
least squares loss function is minimized:

�
i�1

n

[yi � �0,ti
]2 � 
���

��
[�0,t

� ]2dt. (8)

In the first part of Equation 8 one can recognize the ordinary
least squares minimization �i�1

n �yi � �0,ti
�2, which measures the

distance between the function and data points. The last part is the
roughness penalty 
���

����0,t
� �2dt. This is an integrated squared

second derivative that defines wiggliness, because the second
derivative is a measure of curvature of the function whereas the
integral sums up this measure along the entire domain of the
function (Keele, 2008). Note that the square is needed to treat
negative and positive curvature identically. The 	 is a tuning
parameter that controls the smoothness of the function. Small
values of 	 practically eliminate the penalty, thereby not penaliz-
ing for wiggliness and opening the possibility for wiggly functions.
Large values of 	 give a lot of weight to the penalty, thereby
penalizing for wiggliness and restricting the possibility for wiggly

functions. Minimizing the whole function leads to an optimal
trade-off between goodness of fit and smoothness.9

The solution to the problem in Equation 8, denoted �̂0,t, can be
expressed as a finite weighted sum of a set of predefined functions,
known as basis functions. This can be written as follows:

�̂0,t � �̂1R1(t) � �̂2R2(t) � �̂3R3(t) � . . . ��̂KRK(t), (9)

where we have expressed the solution in terms of K basis functions
R1�t�, . . . , RK�t� and t represents the predictor variable (time, in
our case). The basis functions can be evaluated at every time ti in
the data and therefore the values R1�ti�, . . . , RK�ti� can be collected
in a n 
 K design matrix X so that the optimal regression weights
can be determined by linear regression methods (see below).

Various options exist for choosing the smoothing basis, that is,
the set of basis functions R1 to RK. Commonly used smoothing
bases are cubic regression splines and thin plate regression splines
(the latter being the default setting in the package mgcv), which
represent alternative strategies with different properties of how the

9 Note that the least squares criterion can be used here because we
assume continuous normally distributed data. In the more general case, the
least squares criterion is replaced by minus the likelihood.
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Figure 3. The six basis functions for the curve �0,t using a cubic regression spline basis. Just as in standard
regression, all basis functions Ri(t) are weighed by multiplying them with their corresponding �i coefficients.
The contribution of each basis function to the solution is estimated using penalized regression and the �̂0,t (the
thick black dashed line in the bottom right panel) is a weighted sum.
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basis functions are chosen (Wood, 2006). Cubic regression splines
are segmented cubic polynomials joined at the knots, and are
constrained to be continuous at the knot points as well as to have
a continuous first and second derivative (Wood, 2006). With cubic
regression splines the locations of knots have to be chosen, the
default setting in the mgcv package being that the knot points are
automatically placed (equally spaced) over the entire range of data.

In contrast, the thin plate regression splines approach automat-
ically starts with one knot per observation and then uses an
eigen-decomposition to find the basis coefficients that maximally
account for the variances in the data. Thus, thin plate regression
splines circumvent the choice of knot locations, reducing subjec-
tivity brought into the model fit (Wood, 2006). Furthermore,
unlike cubic regression splines, thin plate regression splines can
handle smoothing in high-dimensional problems (e.g., when mul-
tiple independent variables occur). However, in one-dimensional
problems, such as the one considered here, cubic and thin plate
regression splines will lead to very similar solutions.

For our example, we have chosen a thin plate regression spline
smoothing basis with K � 6 basis functions. The six basis func-
tions are plotted in the panels 2–7 of Figure 3. The first two basis
function are defined as R1(t) � 1 and R2(t) � t. Here one can
recognize the constant and the first predictor variable of a standard
linear regression model. The other four basis functions (R3 � R6)
have a more complicated shape (for examples of such functions,
see Gu, 2002; Keele, 2008; Wood, 2006). Additionally, in thin
plate regression every basis function that is added is wigglier than
the previous basis function. For example, basis function R6 is
wigglier than R5. Note that in contrast to cubic splines, where the
basis functions depend on the knot location, in thin plate splines a
basis function cannot be associated with a knot location. Further-
more, the basis functions are evaluated at every value of t (also
with the cubic spline smoothing basis). This is important to point
out, as regression splines are defined as segmented polynomials
that are joined at the knot points, so evaluations of the basis
functions may prima facie seem to be restricted to particular
segments.

After choosing the smoothing basis and the number of basis
functions, estimating the time-varying function �0,t simply boils
down to the estimation of the weights (denoted as �i above) of the
linear combination in a penalized regression sense (see below). In
Figure 3, the final panel shows the weighted basis functions as well
as the sine wave that is the final smooth function (i.e., �̂0,t, the
thick dashed line).

Using a regression spline based method to estimate a smooth
function raises the question of how many basis functions are
needed to get a good fit. The usual approach is to place more basis
functions than can reasonably be expected to be necessary, after
which the function’s smoothness is controlled by the roughness or
wiggliness penalty as described earlier (
���

����0,t
� �2dt; see Wood,

2006). An attractive feature of spline regression methods is that the
penalized loss function eventually boils down to a relatively sim-
ple penalized regression problem (see Wood, 2006). Thus, one can
choose a reasonably large number of basis functions (so that in
principle even very wiggly functions can be handled by the
model), but then too wiggly components of the basis functions that
are unnecessary are downplayed based on the value of the penal-
ization tuning parameter 	. For instance, in our example the

wiggliest basis function R6 (panel 7 in Figure 3) is clearly penal-
ized, as it appears as an almost flat horizontal line in the last panel
of Figure 3.

Of course, the next question is then: What is a good value for the
penalty parameter 	? If the value of 	 is too small, the estimated
function is not smooth enough, but if 	 is set too high, the function
may oversmooth the data. Commonly, the optimal value of 	 is
determined using the generalized cross-validation method (GCV;
Golub, Heath, & Wahba, 1979). The idea of (ordinary) cross-
validation is that first a model, in this case a regression spline with
a certain value of 	, is fitted on part of the data, for example
leaving one datum out. In a second step, it is measured how well
the estimated model can predict the other part of the data, for
example the datum that was left out. However, with splines this
process is computationally intensive and sensitive to transforma-
tions of the data (Wood, 2006). Therefore, the generalized cross-
validation score is used instead, which follows the same principle,
but is invariant to transformations (Keele, 2008). The lowest GCV
score indicates the optimal 	 value and thus optimal smoothness of
the estimated smooth function.

All of the above steps are implemented in the mgcv package
in R (Wood, 2006). Using this software, one only has to define
sufficiently many basis functions. The default for all splines is
10 basis functions. For the current example, detecting the
relation between y and t, the command in R would be
gam(y~s(t,bs=‘tp’,k=6)), where the function s indi-
cates the use of a smooth function for its argument (the predic-
tor t in this case), bs indicates which smoothing basis is used
(thin plate in this case), and k indicates the number of basis
functions (see also the R-code in the Appendix). In addition to
the GCV score and the estimated smooth function, the mgcv
package also provides (a) p values; (b) a measure of nonlinearity
(edf and ref.df); (c) 95% confidence intervals (CIs); and (d) model fit
indices, all of which we elaborate on below.

1. The p values for the smooth function result from a test of
the null hypothesis that the smooth time-varying function
is actually zero over the whole time range (Wood, 2013).

2. As nonparametric smooth functions (such as �0,t) are
difficult to represent in a formulaic way, a graphical
representation is usually needed to get insight into the
form of the function (see for instance Figure 3; Faraway,
2006). However, besides a plot of the smooth function,
the mgcv package also provides a measure of nonlinearity
in the form of the effective degrees of freedom (edf).
Basically, the edf refers to the number of parameters
needed to represent the smooth functions. At first sight,
one may think that this is equal to the number of basis
functions, but because of the penalization that is not the
case. The reason why the penalization decreases the
effective degrees of freedom is that the parameters are
not free to vary because of the penalizations (Wood,
2006). The higher the edf, the more wiggly the estimated
smooth function is, and an edf of 1 indicates a linear
effect (Shadish, Zuur, & Sullivan, 2014). Furthermore,
the edf also gives an indication of how much penalization
took place and thus may serve as a diagnostic: The closer
the edf is to the number of basis functions, the lower the
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penalization. Usually, an edf close to the number of basis
functions means that additional basis functions should be
added to capture the shape of the function. The ref.df is
the reference degree of freedom used for hypothesis
testing (Wood, 2013).

3. The 95% confidence intervals (CIs) around the smooth
curve reflect the uncertainty of the smooth function. As
the confidence intervals are obtained through a Bayesian
approach, they are strictly speaking credible intervals, or
Bayesian confidence intervals as referred to by Wood
(see Wood, 2006).

4. Finally, model selection criteria can be retrieved with the
package (such as BIC and AIC), where the lowest fit
indices indicate the best model fit. When using the BIC
and AIC for penalized models, note that the degrees of
freedom are determined by the edf number and not by the
number of parameters (see for more information Hastie &
Tibshirani, 1990).

We have assumed a simple model with only a time-varying
intercept to explain the fundamentals of splines. For the more
realistic general TV-AR model, the time-varying autoregressive
function is estimated in a similar way (see for further information
Wood, 2006).

Guidelines Regarding the TV-AR Model:
A Simulation Study

To evaluate how the TV-AR model performs under different
circumstances using the default settings, we carried out a simula-
tion study. In addition, we investigated the robustness of our
method against violations of the assumption of gradual change, by
considering also functions that change nongradually. Here, we will
give a general overview of the simulation conditions. In the sup-
plementary material the simulation setup is described in detail. In
addition, there is R-code in the Appendix exemplifying some of the
simulation results under the heading V. Guidelines TV-AR Model.

In the simulation study, we varied three factors: the generating
function, low or high values for the model parameters, and the
sample size. First, we had five generating functions for the inter-
cept �0,t and the autoregressive parameter �1,t: (a) both are invari-
ant over time, (b) both increase linearly over time, (c) both follow
a cosine function over time, (d) both follow a random walk, and (d)
both follow a stepwise function (see also Figure 4). Note that the
random walk and the stepwise function are nongradually changing
functions. Strictly, the TV-AR model is thus not expected to
recover these functions. Instead, we consider these functions to
investigate the robustness of TV-AR in nongradual conditions. The
second factor we varied was the maximum absolute values of the
parameters (low or high maximum value). The third factor was
sample size (30, 60, 100, 200, 400, 1,000).

Estimation was executed using five models: (a) a TV-AR model
using the default settings (a thin plate regression spline basis using
10 basis functions); (b) a TV-AR model with only a time-varying
intercept and a time-invariant autoregressive parameter using the
default settings; (c) a TV-AR model with only a time-varying
autoregressive parameter using the default settings; (d) a standard

time-invariant AR model; and E) a thin plate regression spline
basis using 30 basis functions.

We evaluated the estimates of all models with mean squared
errors (MSE) and coverage probabilities (CP; see the Appendix for
a detailed explanation of these measures). Furthermore, we ana-
lyzed how well the BIC, AIC, and GCV could distinguish between
time-varying and time-invariant processes. Last, we looked at the
significance of the parameters and the effective degrees of freedom
(edf) if applicable.

Results and Guidelines

The results show that the time-varying AR model was able to
estimate all gradually changing generating functions (invariant,
linear, cosine) very well using the default settings of the mgcv
package in R (i.e., using 10 basis functions and thin plate regres-
sion splines; see Figures 4 and 5). Around 200 time points were
needed for detecting a small change, such as a small linear increase
over time, but large changes could already be detected with 60
time points.

In general, none of the model selection methods (BIC, AIC, and
GCV) performed well in selecting the correct model out of Models
A, B, C,and D (e.g., with 100 time points in the high condition of
the linear increase, the BIC selects the correct model (Model A) in
only 60% of the cases). However, the BIC does relatively well in
distinguishing between the time-invariant Model D and the time-
varying models (the three variants A, B, and C combined). For
example, with 100 time points in the high condition of the linear
increase, the BIC selects the correct class (invariant vs. time-
varying) in circa 97% of the cases.10

As the BIC cannot be used for selecting the exact time-varying
model (Model A, B, or C), additional criteria are needed. One
possibility is to fit a TV-AR model and check the significance of
the parameters (intercept and autoregressive parameter). If the
intercept is significant, one can be confident that the intercept is
time-varying, especially with at least circa 100 time points. This is
because the TV-AR model automatically includes an (standard
time-invariant) intercept, and significance implies that another,
time-varying, intercept is needed. In contrast, in the case of the
autoregressive parameter, significance entails that the parame-
ter is valuable for the model, and thus should be kept, but it
does not give information about whether it is a time-varying
parameter or not. Additionally, a high edf is an indication that
the parameter is time-varying, but note that the edf cannot be
used to discriminate between time-invariant parameters and
linearly increasing time-varying parameters, as they will often
both have an edf of circa 2.

Even when the assumption of gradual change was violated, the
TV-AR model was still able to estimate the general pattern of
change (i.e., the trend-like fluctuations in the random walk), but
not abrupt changes (such as in the stepwise function) or fast
changes (i.e., the small-magnitude fluctuations in the random walk

10 Note that the AIC and GCV were not as accurate as the BIC. For
example, with 100 time points in the high condition of the linear increase,
the AIC and GCV selected the correct class (invariant vs. time-varying) in
only 73% and 76% of the cases, respectively.
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process). An exception was the condition with 1,000 time points of
the stepwise function, where the large jump could be detected quite
well (see Figure 5). To get satisfying estimations in these cases,
more time points are needed, and the amount of basis functions
should be large enough. In general, it is advisable to always check
whether you have enough basis functions. A good indication that
you do not have enough basis functions and should increase their
number is that the effective degrees of freedom (edf) come
close to the number of basis functions (Wood, 2006). The
simulation study showed that the average coverage probabilities
of especially the nongradually changing functions are clearly
improved by increasing the number of basis functions (in this
case from 10 to 30 basis functions; see Table 1). This lines up
well with the advice given in general to have a high enough
number of basis functions to allow for enough wiggliness in the
estimated function (Wood, 2006).

An Empirical Example

We applied the TV-AR model to data of two individuals who
took part in a long isolation study, the MARS500 project, in which
psychological and physiological data have been collected to study
the effects of living in an enclosed environment for the duration of
a real potential mission to Mars (i.e., 520 days; for more informa-
tion see http://www.esa.int/Mars500). We focus here on emotional
inertia, which is studied in the context of affective research.
Emotional inertia is defined as the temporal dependency of indi-
vidual emotions, or the self-predictability of emotions, and is
typically modeled with an AR model (Kuppens et al., 2010; Suls,
Green, & Hillis, 1998). However, a study by Koval and Kuppens
(2012) showed that emotional inertia is not a trait-like character-
istic, but is itself prone to change, causing the data to be nonsta-
tionary (see also de Haan-Rietdijk et al., 2014; Koval et al., in
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Figure 4. Graphical representations of the generating functions of the autoregressive parameter for the low
condition. The different true underlying functions �1,t are represented as thick black solid lines and the estimated
�̂1,t as gray solid lines, the gray dashed lines being the 95% CIs. The estimations are based on the median of the
MSE values of the 1,000 replications.
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press). They showed, among other things, that individuals who an-
ticipated a social stressor had a significant decrease in their emotional
inertia, which means that to model the process of inertia correctly, the
autoregressive parameter should be allowed to vary over time. In the
MARS500 example, being isolated can be seen as a social stressor.
Furthermore, it is plausible that the longer one is isolated, the more
social stress there is. To study if and how inertia changed due to social
isolation, we analyzed time series data from two persons involved in
the MARS500 study using the TV-AR model.

Method

Data Description
The MARS500 study consisted of six healthy male participants

(average age was 34 years), who all signed a written informed
consent before participating in this experiment. In accordance with

the Declaration of Helsinki, the protocol was approved by The
Ethics Committee of the University Hospital Gasthuisberg of
Leuven (Belgium) and the ESA Medical Board before the research
was conducted. We focus here on the dynamics of the variable
“valence” of two participants. Each morning, the participants
indicated on a 21 
 21 grid how they were feeling at that moment.
The horizontal axis of the grid referred to valence and the vertical
axis to arousal. Only the valence score (on 21-point scale) will be
analyzed here. A high score indicates experience of highly positive
feelings, and a low score experience of highly negative feelings.11

11 Although the measurement was done on a daily basis, on some days
there were multiple measures, which was due to extra physiological tests
that required additional measurements of valence and arousal. In these
cases, we only used the first measure of the day.
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Figure 5. Graphical representations of the generating functions of the autoregressive parameter for the high
condition. The different true underlying functions �1,t are represented as thick black solid lines and the estimated
�̂1,t as gray solid lines, the gray dashed lines being the 95% CIs. The estimations are based on the median of the
MSE values of the 1,000 replications.

T
hi
s
do

cu
m
en

t
is

co
py

ri
gh

te
d
by

th
e
A
m
er
ic
an

Ps
yc

ho
lo
gi
ca

l
A
ss
oc

ia
tio

n
or

on
e
of

its
al
lie

d
pu

bl
is
he

rs
.

T
hi
s
ar
tic

le
is

in
te
nd

ed
so

le
ly

fo
r
th
e
pe

rs
on

al
us

e
of

th
e
in
di
vi
du

al
us

er
an

d
is

no
t
to

be
di
ss
em

in
at
ed

br
oa

dl
y.

10 BRINGMANN ET AL.

Fn11

tapraid5/met-met/met-met/met00416/met2367d16z xppws S�1 6/2/16 6:21 Art: 2015-0303
APA NLM



There was 29% and 18% missingness in the data of Participant 1
and 2, respectively (see Figure 6 for the raw data).12

Analyses

We consider the following four models.
Model 1. In Model 1, both the intercept and the autoregressive

parameter are allowed to vary over time. The time-varying autore-
gressive parameter implies that the temporal dependency or emo-
tional inertia (i.e., how self-predictable the emotion is) changes
over time. Since the mean (or the attractor of the process) is a
function of the intercept and the autoregressive parameter, it most
likely also changes over time in this model:13

Valencet � �0,t � �1,tValencet�1 � εt. (10)

Model 2. In Model 2, the intercept is allowed to fluctuate over
time, but the autoregressive parameter is fixed over time, meaning
that the temporal dependency (or emotional inertia) is time-
invariant. Due to the changing intercept, the person’s attractor also
changes over time:

Valencet � �0,t � �1Valencet�1 � εt. (11)

Model 3. In Model 3, the intercept is fixed over time, while
the autoregressive parameter is allowed to vary over time. As
indicated in the description of Model 1, a time-varying autoregres-
sive parameter means that the temporal dependency (or emotional
inertia) of the process changes over time. However, fixing the
intercept implies that the attractor changes over time, but this is
fully accounted for by changes in the temporal dependency (i.e.,
the autoregressive parameter):

Valencet � �0 � �1,tValencet�1 � εt. (12)

Model 4. Finally, Model 4 is the standard AR(1) model, in
which both the intercept and the autoregressive parameter are
time-invariant; as a result the mean (i.e., a time-invariant attractor)
is also fixed over time. This means that the temporal dependency
(or emotional inertia) is completely constant over time, that is,
both the temporal dependency (or emotional inertia) and the at-
tractor value of the process remain the same over time:

Valencet � �0 � �1Valencet�1 � εt. (13)

Following the guidelines presented in the previous section, we
first checked if the process was time-varying or not. For this
purpose, we used the BIC: If the BIC selects Model 1, 2, or 3 the
process is probably changing over time, and otherwise (i.e., if
Model 4 is selected) the process is probably time-invariant. In the
latter case, a standard AR model should be used; otherwise a
TV-AR model is appropriate. Second, to check which parameters
are time-varying, we considered whether the smooth parameters
were significantly different from zero and thus were needed in the
model. As noted before, a significant intercept indicates that this
parameter is time-varying, whereas a significant autoregressive
parameter does not entail that it is time-varying. Therefore, in a
third step, when the autoregressive parameter was significant we
checked if the edf was higher than 1. Additionally, we checked
whether the residuals (estimated innovations ε̂t) indicated autocor-
relation over time, satisfied the equal variance assumption and
were normally distributed.

The analyses reported here were based on the default settings,
that is, a thin plate regression spline basis with 10 basis functions
(i.e., K � 10). We also ran all of the analyses with a cubic
regression spline basis and thin plate regression splines with 30
basis functions (i.e., K � 30), but all results were highly similar
and led to the same conclusions.

Results

As can be seen in Figure 6 (left panel), in the data of Participant
1, a clear trend is apparent, whereas the data for Participant 2 do
not contain any clear time trend (Figure 6 right panel). For both

12 Note that the TV-AR model can also be used with missing data,
although the more missingness the less power one has to detect the
underlying process. Additionally, one has to assume that the missingness is
(completely) at random.

13 Of course it is possible, though unlikely, that the changes in the
autoregressive parameter are exactly countered by the changes in the
intercept (see Equation 5). In this case, the attractor would be time-
invariant, while the temporal dependency would fluctuate over time.

Table 1
Coverage Probabilities (CP) of the Autoregressive Function in % Using Thin Plate
Regression Splines

True underlying function

Invariant Linear Cosine Random Step

N Low High Low High Low High Low High Low High

30 86 67 89 83 89 83 92 87 89 78
60 92 84 93 91 91 84 94 88 91 83
100 93 90 93 91 92 85 93 86 92 83
200 95 92 95 94 89 92 92 84 90 79
400 95 93 95 94 87 94 91 81 86 80
1,000 95 95 95 95 89 96 86 78 82 82
1,000 K � 30 95 94 94 95 91 96 87 83 84 87

Note. Here the average CP of every simulation condition is given. Low and high stand for low and high
value conditions for the maximum absolute values of the time-varying parameters. Note that the last line
in the table uses the same settings as the previous line, except now 30 instead of 10 basis functions (K) are
used.
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participants the assumptions held for the selected models: The
residuals for both participants did not indicate any autocorrelation
over time, did not violate the equal variance assumption and were
normally distributed.

For Participant 1, the BIC indicated that the underlying process
was varying over time and thus nonstationary (Model 2 was
selected as the best model, although the differences between
Model 1 and 2 were fairly small, see Table 2). Consequently,
fitting the TV-AR model showed that the function of the intercept
was significantly different from zero (F � 3.42, p � .0046, edf �
4.50, ref.df � 5.20), while the function of the autoregressive
parameter was not (F � 0.87, p � .51, edf � 5.01, ref.df � 5.62).
Thus, only a time-varying intercept was needed in the TV-AR
model. Based on visually inspecting Figure 7, the function of the
intercept process (upper panel) is clearly varying over time,
whereas the CIs of the function of the autoregressive parameter
(middle panel) always include zero (the zero is represented by the
dashed gray line) and the function does not clearly go up or down
at any point in time. Taking all of these considerations into
account, Model 2, with a time-varying intercept and a time-
invariant autoregressive parameter of zero, seems to be the best
fitting model.

For Participant 2, the BIC indicated that Model 3 had the best
model fit and thus a TV-AR model was estimated. In line with this
result, Model 1 (Equation 10) implied that the function of the
autoregressive parameter was significant and should be kept in
the model (F � 8.32, p � .0001, edf � 5.17, ref.df � 6.15), while
the function of the intercept was not significant and thus time-
invariant (F � 0.15, p � .70, edf � 1.00, ref.df � 1.00). Although
significance does not imply that the autoregressive parameter is
time-varying, the edf was clearly higher than 1. In addition, visual

inspection of Figure 8 also clearly indicates that the autoregressive
function (middle panel) of Participant 2 changes over time. Thus,
Model 3, with a time-invariant intercept and a time-varying au-
toregressive parameter, seems to be the best model.

In sum, in the data for Participant 1, no inertia or autocorrelation
of valence in the data is apparent, but rather it is the intercept that
changes (see Figure 7, panel 3). In this specific case, the attractor
is equal to the intercept as the autoregressive parameter equals
zero. Participant 1 simply feels less happy as the isolation exper-
iment proceeds, as represented by the changing intercept and
attractor. This is not necessarily in contradiction with the results
found by Koval and Kuppens (2012) as we do not know how much
emotional inertia Participant 1 had before the isolation experiment.
It is possible, for example, that this participant had some level of
emotional inertia before going into isolation, but as soon as the
experiment started, his emotional inertia decreased to zero, which
would be in line with the previous findings of Koval and Kuppens
(2012). In contrast, Participant 2 starts the isolation experiment
relatively happy and with a high spill-over of valence (high iner-
tia), but already after a few days, his inertia decreases until it gets
to zero around 100 days, and also his valence becomes more
negative (see the attractor in the last panel of Figure 8). Toward the
end of the experiment, there is again a light increase in his feeling
of happiness and his inertia. This result is in line with research of
Koval and colleagues, which suggests that as stress increases (the
longer one is isolated) inertia decreases, and thus affect becomes
less predictable (Koval & Kuppens, 2012).

Note that if one had ignored this nonstationarity in the data, a
standard autoregressive model (thus, Model 4) would have led to
inaccurate conclusions about these two participants. For Partici-
pant 1, ignoring nonstationarity would have led to inferring a
highly significant autoregressive coefficient (�1 � 0.85,
t�325� � 27.43, p � .0001), that is, an extremely high inertia or a
high predictability of his valence. For Participant 2, ignoring
nonstationarity would have led to the conclusion that there was a
positive inertia (�1 � 0.20, t�420� � 4.29, p � .0001), and the fact
that his inertia was actually varying over time would have gone
unnoticed.

In general, even though inertia is already well known to vary in
strength greatly across individuals, it is still often studied as a trait
of an individual. With the TV-AR model we can study inertia
throughout the whole study period, creating an inertia value for

Table 2
Model Selection for Participants 1 and 2 Using the BIC Indices

Model BIC Participant 1 BIC Participant 2

Model 1 688 1, 896
Model 2 684 1, 894
Model 3 696 1, 890
Model 4 868 1, 899

Note. Lowest fit indices are in bold.

Figure 6. The raw data of the variable valence for Participant 1 (left) and Participant 2 (right).
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every single time point. In future studies, it would be fruitful to
take into account that inertia can change over time, even from day
to day or faster, and of course, also in other contexts than social
stress.

Furthermore, these two applications show how important it is in
general to use a TV-AR model, as different conclusions would
have been drawn with a standard AR model. In addition, with the
TV-AR model trends as well as (time-varying) autoregressive
parameters can be detected in one step: Even though the first
example above (Participant 1) involves a trend-stationary process
and prespecifying the exact (nonlinear as the edf of 4.50 indicates)

trend would have led to the same conclusions, this would have
been much more difficult than with the TV-AR model. Psycho-
logical data can be nonstationary for various reasons, and the
TV-AR model offers a simple exploratory tool for detecting such
changing dynamic processes.

Discussion

In this article, we have introduced a new way to study changing
dynamics: the semiparametric TV-AR model. This model fills a
gap in the literature, because most standard autoregressive models

Figure 7. Estimation results for the TV-AR model for Participant 1. Every panel represents a different
parameter of the TV-AR model: the upper panel the intercept, the middle the autoregressive and the lowest the
attractor. Note that the attractor process is plotted over the actual valence scores (represented in gray).
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do not take into account nonstationarity, even though many psy-
chological processes are likely to be nonstationary. Therefore,
there is a need for an easily applicable method for studying such
nonstationarity or changing dynamics. The semiparametric TV-AR
model presented in this article is exactly such a tool.

As shown by the simulations and application in this article, the
TV-AR model can estimate nonstationary processes well and has
significant potential for studying changing dynamics in psychol-
ogy. For example, the TV-AR model can help to detect and specify
different kinds of nonstationarity in the data. Currently, it is
common practice to focus on the trend that is apparent in the data,

and to transform the time series so that it becomes trend stationary.
However, even if the trend could be perfectly specified, which is
often difficult, nonstationarity may not be fully accounted for,
because the autocorrelation structure of the data can also change
over time. Furthermore, a changing autocorrelation is not easy to
detect visually, nor is there a test to detect such nonstationarity.
With the semiparametric TV-AR model, all such problems can be
dealt with in one single step: Trends in the data and changes in the
autoregressive process can be detected at once, and even more
importantly, no prespecifications are necessary, as has been shown
in the real data application.

Figure 8. Estimation results for the TV-AR model for Participant 2. Every panel represents a different
parameter of the TV-AR model: the upper panel the intercept, the middle the autoregressive, and the lowest the
attractor. Note that the attractor process is plotted over the actual valence scores (represented in gray).
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It is therefore clear that the semiparametric TV-AR model is
important in the case of nonstationary data. However, its potential
range of application is much broader. As little is known about how
and when psychological dynamics change, we would recommend
to always run a TV-AR model next to a standard AR model as part
of regular analysis if enough time points (circa 100) are available.
In this way, the model can be used as a diagnostic tool for probing
whether there is nonstationarity in the time series, and for detecting
and specifying changing dynamics, such as the trend. For example,
if the time series turns out to have a trend that is linear instead of
nonparametric, a simpler parametric model can be specified based
on the TV-AR analyses.

We have considered the simplest form of a TV-AR model, and
will now elaborate on some of the extensions that are possible. We
studied temporal dependency with a lag order 1 TV-AR model, but
one can imagine that the temporal dependency is not only apparent
between the two closest occasions, but also between occasions
further apart, in which case a TV-AR model with lag order 2 or
larger is necessary. Such extra lags can be easily added into a
TV-AR model in the same manner as they are added into standard
AR models through the inclusion of more lagged predictors.

Another sensible extension involves generalization of the model
to multivariate data. The TV-AR model is currently only applica-
ble to the univariate case, while it is often more realistic that a
variable is not only predicted by itself, but also by other variables,
which evokes the need to analyze psychological dynamics as a
multivariate system. Such an extension would lead to a time
varying vector AR (TV-VAR) model, and comes with new chal-
lenges, as both auto-correlations and cross-correlations would have
to be modeled in this case. Yet another natural, but even more
challenging, extension would be a TV-AR multilevel extension
based on current multilevel (V)AR models (Bringmann et al.,
2013; de Haan-Rietdijk et al., 2014; Jongerling, Laurenceau, &
Hamaker, 2015). To the best of our knowledge, this is currently not
possible, as the mgcv software cannot be used to estimate a flexible
smooth function for the population (i.e., the population average)
and to allow for flexible interindividual variation for that smooth
function. An additional extension could be time-varying error
variance, so that also the time-varying variance of a process could
be fully accounted for. However, with current software, only the
intercept and the autoregressive parameter (and not the error
variance) can be modeled as time-varying parameters. Further
research should also consider the combination of gradual and
abrupt changes, so that when the point of an abrupt change is
known, it could be easily adjusted in the TV-AR model.

Even though the TV-AR model is easily applicable, the number
of time points needed is a potential limitation. While 100 time
points per participant would be preferable, currently most longi-
tudinal studies in psychology gather around 60 time points or less
(aan het Rot et al., 2012). Another limitation of the TV-AR is the
assumption of gradual change. Although we have shown in the
simulation study that with many time points and a large abrupt
change the TV-AR model is quite robust and still gives an indi-
cation of the sudden jump, other models are probably more suit-
able for studying sudden change. Such models include the thresh-
old autoregressive model (TAR; e.g., Hamaker, 2009; Hamaker,
Grasman, & Kamphuis, 2010), its multilevel extension, multilevel
TAR (de Haan-Rietdijk et al., 2014), or the regime-switching

state-space model (cf. Hamaker & Grasman, 2012; Kim & Nelson,
1999).

Furthermore, as the semiparametric TV-AR model is an explor-
atory tool, the standard errors of the time-varying parameters are
likely to be less satisfactory compared with confirmatory, raw-data
maximum likelihood approaches, such as the state-space approach.
Additionally, estimating a TV-AR model in a state-space modeling
framework has the advantage that measurement error can be taken
into account, which is not possible with the semiparametric
TV-AR model (Schuurman, Houtveen, & Hamaker, 2015). Thus,
future research should aim at comparing the exploratory semipa-
rametric TV-AR model with confirmatory approaches.

In sum, the semiparametric TV-AR model presented here is an
easy to use tool for detecting and modeling nonstationarity. Many
extensions are possible, and future research is needed to uncover
all the possibilities and limitations of this innovative framework.
By introducing the model and explaining its application in stan-
dard software, we hope to have made it available to a broad range
of psychologists studying human dynamics.
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