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Meditation Increases the Entropy of Brain Oscillatory Activity
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Abstract—We address the hypothesis that the entropy of neural dynamics indexes the intensity and quality of
conscious content. Previous work established that serotonergic psychedelics can have a dysregulating effect
on brain activity, leading to subjective effects that present a considerable overlap with the phenomenology of cer-
tain meditative states. Here we propose that the prolonged practice of meditation results in endogenous
increased entropy of brain oscillatory activity. We estimated the entropy of band-specific oscillations during
the meditative state of traditions classified as ‘focused attention’ (Himalayan Yoga), ‘open monitoring’ (Vipas-
sana), and ‘open awareness’ (Isha Shoonya Yoga). Among all traditions, Vipassana resulted in the highest
entropy increases, predominantly in the alpha and low/high gamma bands. In agreement with previous studies,
all meditation traditions increased the global coherence in the gamma band, but also stabilized gamma-range
dynamics by lowering the metastability. Finally, machine learning classifiers could successfully generalize
between certain pairs of meditation traditions based on the scalp distribution of gamma band entropies. Our
results extend previous findings on the spectral changes observed during meditation, showing how long-term
practice can lead to the capacity for achieving brain states of high entropy. This constitutes an example of an
endogenous, self-induced high entropy state. � 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: meditation, EEG, entropy, alpha oscillations, gamma oscillations.
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INTRODUCTION

The spectrum of human consciousness is rich and varied,

yet the neural underpinnings of such diversity remain

elusive (Koch et al., 2016). Recently, Carhart-Harris and

colleagues introduced the hypothesis that the degree of

entropy of spontaneous brain activity indexes the ‘rich-

ness’ of conscious subjective experience (Carhart-Harris

et al., 2014). Entropy is a dimensionless quantity derived

from the theory of statistical mechanics that can be inter-

preted as the degree of disorder present in a physical sys-

tem (Ben-Naim, 2012). As expressed by the proponents

of the hypothesis: ‘‘The great merit of applying the mea-

sure of entropy in cognitive neuroscience is that it is
uniquely adept at bridging the physical and subjective
divide; mere flip sides of the same coin – but different

sides nonetheless”. According to this proposal, low-
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entropy brain states present a reduced repertoire of

potential configurations, and thus are subjectively experi-

enced as states of diminished conscious awareness

(Schartner et al., 2015; 2017b; Hudetz et al., 2016; Liu

et al., 2018). Conversely, high-entropy brain states are

experienced as content-rich, but at the same time as

unpredictable and therefore uncertain (Tagliazucchi

et al., 2014; Cavanna et al., 2017; Carhart-Harris,

2018), and thus enabling subjective experiences beyond

the scope of everyday awareness. As an example, the

acute effects of serotonergic psychedelics (i.e. serotonin

5-HT2A receptor agonists), glutamatergic dissociatives

(i.e. NMDA receptor antagonists) (Schartner et al.,

2017a; Viol et al., 2017; 2019) and a nonselective adeno-

sine antagonist stimulant (caffeine) (Chang et al., 2018)

have been linked to high-entropy brain oscillations or,

equivalently, to reduced levels of compressibility.

In the information-theoretical sense, entropy

represents the amount of information needed to specify

the microstate of the system or, equivalently, its level of
euroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.01.033
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uncertainty and unpredictability.2 The biological meaning

of brain entropy depends upon the experimental variable

under study. The large-scale oscillations in scalp potential

that are measured using electroencephalography (EEG)

are frequently employed as markers of physiological,

pathological and pharmacologically-induced global brain

states (e.g. sleep, epilepsy, coma, anesthesia). Thus, the

entropy of such global brain oscillations could

approximate the uncertainty of the distribution of potential

brain configurations, yielding an objective marker of the

subjectively felt ‘richness’ of conscious experience.

We propose that the brain state achieved by expert

meditators is associated with increased entropy of brain

oscillatory activity. This hypothesis is supported by the

observation that the extended practice of certain

meditation traditions is associated with an enlarged

repertoire of subjective experiences in comparison to

ordinary conscious wakefulness (Brandmeyer et al.,

2019). In particular, many of these features are common

to the acute effects of serotonergic psychedelics. These

features include a shift towards positive mood and emo-

tions, increased cognitive flexibility and emotional dysreg-

ulation or mood lability, altered self-awareness, a state of

a ‘dreamlike’ quality, and the collapse of the intentional

structure of subject/object (non-dual awareness)

(Carhart-Harris and Nutt 2014; Travis, 2014; Nichols,

2016; Nour and Carhart-Harris, 2017; Millière et al.,

2018). Both meditation and the use of serotonergic psy-

chedelics are frequently associated with the intention of

obtaining ‘insights’ about the nature of ‘objective reality’

and the self (Barrett and Griffiths, 2018). Furthermore,

evidence suggests that certain meditative practices

(Strauss et al., 2014; Haukaas et al., 2018) and seroton-

ergic psychedelics (Griffiths et al., 2016; Carhart-Harris

et al., 2017, 2018; Dos Santos et al., 2018; Garcia-

Romeu and Richards, 2018; Palhano-Fontes et al.,

2018) can lead to prolonged positive effects in patients

suffering from depression and anxiety, raising the possi-

bility of increased brain entropy as a common mechanism

underlying these effects (Carhart-Harris, 2018).

It is now widely recognized that, by itself, the term

‘meditation’ is non-specific, and that it has been

frequently applied to heterogeneous practices, both in

terms of cultural background and the instructions

followed to meditate (Braboszcz et al., 2017). To evaluate

our hypothesis while also accounting for this heterogene-

ity, we investigated EEG data acquired from three groups

of expert meditators following different traditions: Hima-

laya Yoga (HT), Vipassana (VIP) and Isha Yoga (SNY).

These traditions can be placed along a continuum ranging

from ‘focused attention’ (FA) to ‘open monitoring’ (OM)

meditation (Lutz et al., 2008; Lippelt et al., 2014). HT uses

a mantra to maintain attentional focus and can be classi-

fied as FA. SNY meditators practiced Shoonya medita-

tion, consisting of a process of conscious ‘non-doing’

while remaining unresponsive to internal or external stim-

uli, which can be classified as OM. In between these two
2 More precisely, information is proportional to Gibbs entropy,
G / P

ipilogðpiÞ, where pi represents the probability of the system
residing in its i-th microstate. The original definition (given by
Boltzmann) is recovered when all pi are equal.

Please cite this article in press as: Vivot RM et al. Meditation Increases the Entropy of Brain Oscillatory Activity.
extremes, VIP requires practitioners to sustain their focus

(‘samatha’) in the process of mentally scanning bodily

sensations; however, a key component of this meditation

is the insight (or meta-awareness, ‘vipasyana’) of distract-

ing elements, which must be identified and then released

to continue with the process of FA (Lutz et al., 2007).

The local entropy of band-specific oscillatory activity

at each scalp electrode was complemented with the

analysis of two global metrics: the long-range coherence

of oscillations, and its fluctuations over time (i.e.

metastability). Both metrics are motivated by theoretical

accounts of consciousness and have been empirically

shown to depend on the level of awareness (Carhart-

Harris et al., 2014; Schartner et al., 2015, 2017a,b).
EXPERIMENTAL PROCEDURES

We investigated a publicly available EEG dataset. Further

information on the experimental procedures can be found

in a previous publication (Braboszcz et al., 2017). All

codes used in this manuscript can be found in https://

github.com/enzotagliazucchi/meditation-entropy.
Participants

Thirty controls (CTR), 27HTmeditators, 20 VIPmeditators

and 27 SNY meditators were recruited based on age,

gender and years of practice. The control subjects were

chosen for inclusion in this study based on age, gender,

and the absence of meditation practice. The experiment

was approved by the local ethics committee and by the

ethics committee of the University California San Diego.

The experiments were carried out at the Meditation

Research Institute (MRI) in Rishikesh, India. Groups

were matched by age and gender, resulting in 16

controls (45� 10 years, five females), 16 HT meditators

(43� 12 years, 2 females), 16 SNY meditators

(40� 10 years, 2 females) and 16 VIP meditators

(47� 15 years, five females). A single group of subjects

acted as control for all three meditation traditions.
155
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Experimental design

All participants were instructed to keep their eyes open

and choose between sitting on a blanket on the floor or

on a chair. The experiment was divided into two

sessions lasting 20 min each, one labeled as

‘Meditation’ and the other as ‘Instructed Mind

Wandering’. The order of the sessions was

counterbalanced between participants to prevent order

effects. In the ‘Meditation’ condition, participants

prepared for their meditation practice (focusing on

breath or on exhalation/inhalation) during 10 min and

were subsequently instructed to engage in meditation

during the last 10 min. Controls performed the same

instruction given to the meditators throughout the 20 min

of the condition. In the ‘Instructed Mind Wandering’

condition, participants were instructed to remember

autobiographical events from childhood up until the

recent past. The present analysis is based on

comparing the second half of the ‘Meditation’ condition

between meditators and controls. As additional checks,
Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.01.033
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we also compared the ‘Instructed Mind Wandering’

condition of the controls vs. the ‘Meditation’ condition of

the meditators, and the baseline condition (preparation

for meditation) between both groups.

EEG data acquisition

EEG data was recorded using a 64 + 8 channels Biosemi

Active-Two amplifier system with a 10–20 Headcap

standard 64-channel cap. Right and left mastoid

electrodes as well as vertical and horizontal

electrooculogram (EOG) were recorded. The

experimental room was soundproof and the floor was

electrically shielded and grounded. All electrodes were

kept within 50 mV offset of the Biosemi system metric

for measuring impedance.

EEG data processing

Using EEGLAB (version 12) data were first referenced to

the right mastoid and down-sampled from 1024 Hz to

256 Hz. A high-pass filter with 1 Hz cutoff (infinite

response filter), a transition bandwidth of 0.3 Hz, and an

order of six was applied to the EEG time series. EEGLAB

automated artifact rejections routines were also applied.

A manual procedure described with detail in a previous

publication (Braboszcz et al., 2017) was followed to reject

8 s. epochs with very high/low frequency content. Bad

electrodes (0–18 bad electrodes per subject, average of

five electrodes per subject) were identified visually and

removed from the analysis. The Infomax independent

component analysis algorithm was applied to reject arti-

facts related to eye movement and muscle activity.

Bandpass filtering and the Hilbert transform

We focused our analyses on the following canonical

frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (12–20 Hz), low gamma (20–60 Hz) and

high gamma (60–100 Hz). Our choice of computing the

entropy of the envelope of band-specific oscillations is

based on the following two considerations. First, narrow

frequency bands have been linked to specific brain

functions, cognitive domains and, in particular, to the

meditative state (Buzsaki, 2006; Braboszcz et al., 2017).

Second, it is unclear how the spectral content of broad-

band signal fluctuations biases entropy estimates or,

equivalently, to which extent the entropy of broadband

signals provides information complementary to spectral

analysis.

For each EEG channel, we applied a 4th order

Butterworth bandpass filter to obtain the narrow band

signals in the above-mentioned ranges. We then

obtained the analytical representation of the filtered time

series using the Hilbert transform. As illustrated in

Fig. 1A, given a real-valued signal x tð Þ, the Hilbert

transform yields a complex representation (analytic

signal) given by z tð Þ ¼ u tð Þ þ iv tð Þ ¼ x tð Þ þ iH x tð Þð Þ, with

H x tð Þð Þ indicating the Hilbert transform of the real-valued

signal x tð Þ. From this representation, the instantaneous

amplitude can be computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u tð Þ2 þ v tð Þ2

q
, and the

instantaneous phase as tan�1 v tð Þ
u tð Þ

� �
.
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Sample entropy (SE)

The SE is an estimate of the complexity (or, equivalently,

of the regularity or predictability) of a time series that is

based on counting repetitions of patterns in the data

(Richman and Moorman, 2000). SE measures the proba-

bility of observing similar (within a certain tolerance bound

[r]) patterns of a fixed length in the time series, compared

to the result obtained from the same computation based

on patterns of length increased by one sample. The length

of the patterns is determined by the embedding dimension

(m). In contrast to recent publications, we chose SE

instead of the Lempel-Ziv (LZ) complexity, since LZ esti-

mates information in the algorithmic sense (i.e. compress-

ibility) and requires arbitrary binarization of the data

(Schartner et al., 2015), while SE can be applied to con-

tinuous signals and yields entropy estimates more directly

related to the statistical mechanical (Gibbs’) and informa-

tion theoretical (Shannon’s) definitions of entropy.

The detailed procedure followed to compute SE is

explained in the Appendix. The key computation is

SE ¼ log
#Smþ1 rð Þ
#Sm rð Þ

� �
, where #Sm and #Sm+1 represent the

number of template vectors of embedding dimension m

and m+ 1, respectively, within tolerance r. Following

previous publications (e.g. Al-Angari and Sahakian,

2007; Bruce et al., 2009; Song et al., 2012; Zhang and

Zhou, 2012; Yentes et al., 2013), we set the value of

the embedding dimension to m ¼ 2. It is also customary

to express the tolerance r as proportional to the standard

deviation (SD) of the time series; here we set

r ¼ 0:2� SD (see the Appendix for further details).

Finally, to reduce the impact of autocorrelations in the

data, we considered s ¼ 32 ms.

Metastability and coherence

Consider N coupled oscillators (in this case, each of the

64 bandpass-filtered EEG channels can be

conceptualized as an oscillator), each with its own

characteristic oscillation frequency xi. The

instantaneous amount of synchrony between the

ensemble of oscillators can be measured with the

Kuramoto order parameter. The order parameter R tð Þ
ranges between 0 and 1, indicating minimum and

maximum synchrony, respectively (Shanahan, 2010).

The metastability (K) is computed as the temporal vari-

ance of R tð Þ, and indicates the amplitude of the dynamical

repertoire of the oscillators (i.e. the occurrence of tran-

sient synchronization and de-synchronization over time).

The coherence C is computed as the mean of R tð Þ, and
indicates the average level of synchronization between

all oscillators. The procedure followed to compute K and

C is outlined in Fig. 1C, and explained with further detail

in the Appendix.

Random forest (RF) classifiers

To evaluate whether changes in SE represent signatures

specific to each of the meditative traditions, we used this

data to train and evaluate a class of machine learning

classifiers known as RF (Breiman, 2001). RF are built

on the simpler decision tree classifier, in which thresholds
euroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.01.033
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Fig. 1. Overview of the methods. (A) Bandpass filtering and the application of the Hilbert transform to

obtain the instantaneous amplitude and phase of the EEG signal. (B) Example of the SE algorithm

with embedding dimension m= 2. Two template vectors of length m are shown, X2ði ¼ 2Þ and

X2ði ¼ 6Þ, together with the associated template vectors of embedding dimension m+ 1. The sample

entropy is obtained by counting the number of pairs of template vectors (for m and m+ 1) whose

distance is below the tolerance r, i.e.#Sm rð Þ and#Smþ1ðrÞ, and then applying Eq. (1). (C) Definition of

the instantaneous synchronization RðtÞ of a set of N oscillators with phases hiðtÞ. A representative time

course of RðtÞ is shown, providing an example of the definition of the coherence C and the

metastability K as the mean and variance of RðtÞ, respectively. (D) Diagram of the RF algorithm. For

each training sample, a random subset of features is selected and then a decision tree is trained using

these features. The class of a new sample is predicted by evaluating the decision trees trained with

the chosen subset of features, and subsequently applying a voting or majority rule (in this example the

voting predicts class A).
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are introduced for each feature so that the training set is

split in two at every node of the tree. The thresholds are

selected to maximize a measure of sample purity result-

ing from the division; the highest possible purity value is

obtained when all samples belonging to one class are

assigned to one side of the division, and vice versa. If this

is not the case, the next feature is evaluated and the

threshold is recursively determined until the highest purity

value is obtained or all features are exhausted.

The RF algorithm is based on training a relatively

large number of decision trees (in this case 1.000 trees)

so that the impact of noise at a particular feature is

attenuated. Furthermore, to reduce the influence of

noisy or unreliable features, each individual decision
Please cite this article in press as: Vivot RM et al. Meditation Increases the Entropy of Brain Oscillatory Activity. Neuroscience (2020), https://doi.org/10.
tree is based on a random

selection of features from the

original data. Here we follow the

rule of thumb of considering
ffiffiffi
p

p
features, where p is the original

number of features. For less than

100 features, this choice

approximates very well the

original value of b1þ log2ðpÞc
proposed by L. Breiman in his

original publication of the

algorithm (Breiman, 2001). Once

trained, to predict the class for a

new sample a probability is esti-

mated by counting how many trees

predict each class, divided by the

total number of trees. The final

class is decided by a majority vote.

This procedure is illustrated in

Fig. 1D.

For each frequency band we

considered 64 features

corresponding to the SE entropy

values at each EEG electrode

location, and trained 200

independent RF classifiers to

distinguish CTR from HT, VIP and

SNY (Abraham et al., 2014). As a

measure of classifier accuracy,

we obtained the area under the

ROC curve (AUC). For each classi-

fier, we applied a stratified split into

two equally sized sets (training and

testing). We also applied the same

procedure after randomly shuffling

the labels of the samples to evalu-

ate the statistical significance of

the AUC. An empirical p-value

was constructed by counting how

many times the AUC obtained from

data with shuffled labels exceeded

the AUC obtained from the unshuf-

fled data.

Finally, we investigated the

generalization accuracy by

training the RF classifiers using

data from one binary decision

problem (e.g. CTR vs. VIP) and
then evaluating the AUC obtained from applying them to

a different binary decision problem (e.g. CTR vs. HT).

Statistical analysis

We applied the Kruskal-Wallis (KW) test, a non-

parametric version of analysis of variance (ANOVA), to

assess the effects of the experimental group (CTR, HT,

VIP and SNY) on SE (averaged across all channels), C,

and K. Whenever a significant effect of group was

detected, we conducted post-hoc non-parametric two-

sample Wilcoxon signed-rank tests between data from

CTR and from each meditative tradition. Effect sizes of

the Wilcoxon tests were computed as r ¼ Zffiffiffiffiffiffiffiffiffi
n1þn2

p , where
1016/j.neuroscience.2020.01.033
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347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

Fig. 2. Effect of meditation on the entropy of brain oscillations. The

meditative state changes the entropy of brain oscillations in the alpha

(panel A), low gamma (panel B) and high gamma (panel C) bands.
The violin plots display the distribution of SE values (averaged for all

electrodes) across individual participants. Statistics are reported in

the Results section.
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n1 = n2 = 16 (the sizes of the samples being compared)

(Rosenthal et al., 1994). Effect sizes of Kruskal-Wallis

tests were measured in terms of g2 (Lakens, 2013). Mul-

tiple comparisons (e.g. scalp distributions in Fig. 3, or

RF classifier generalizability in Fig. 4) were controlled

using Benjamini-Hochberg’s method for false discovery
Fig. 3. Localization of entropy changes. Topographic distribution of higher SE

CTR for the alpha (panel A), low gamma (panel B) and high gamma (panel
white represent significantly higher SE (p � 0.05, Wilcoxon test, FDR-corr

indicates the effect size in terms of the area under the receiving operator cha

Please cite this article in press as: Vivot RM et al. Meditation Increases the Entropy of Brain Oscillatory Activity. N
rate (FDR) allowing a rate of false positives of 0.05. Only

the frequency bands surviving multiple comparisons cor-

rection (FDR-corrected Kruskal-Wallis tests) are shown

in Figs. 2 and 5, with the exception of the metastability

(K) in the low gamma band, which showed a trend

towards significance.
RESULTS

SE of narrow band signal envelopes

We first computed the SE of narrow band EEG signal

envelopes for all subjects, electrodes and frequency

bands. For the first analysis we used the second 10 min

of the ‘Meditation’ condition, which corresponded to the

instruction of focusing on breath (exhalation/inhalation)

for the controls, and to engage in their practice for the

meditators. We c of group on the average SE (H[3]

= 8.86, p � 0.05, g2 = 0.42, FDR-corrected) for the

alpha (8–12 Hz), low gamma (20–60 Hz) (H[3] = 9.56,

p � 0.05, g2 = 0.44, FDR-corrected) and high gamma

(60–100 Hz) (H[3] = 8.5, p � 0.05, g2 = 0.41, FDR-

corrected) frequency bands. Post-hoc non-parametric

Wilcoxon tests established that, at p � 0.05, FDR-

corrected, only the comparison Vipassana > controls

(VIP > CTR) was significant (Z= 2.65, r= 0.46,

p � 0.005), except for the high gamma band, for which

we observed that Himalaya Yoga > controls

(HT > CTR) (Z= 2.12, r= 0.38, p � 0.05) and

VIP > CTR (Z= 2.28, r= 0.40, p � 0.05) were

significant. The average SE values are shown in Fig. 2.

Next, we compared the ‘Instructed Mind Wandering’

condition for the controls vs. the ‘Meditation’ condition

for the meditators. We observed a significant effect of

group on the average SE (H[3] = 11.71, p � 0.05,

g2 = 0.49, FDR-corrected) for the alpha (8–12 Hz), the

low gamma (20–60 Hz) (H[3] = 10.5, p � 0.05,

g2 = 0.47, FDR-corrected) and high gamma (60–

100 Hz) (H[3] = 9.94, p � 0.05, g2 = 0.45, FDR-

corrected) frequency bands. Post-hoc non-parametric

Wilcoxon tests established that, at p � 0.05 FDR-

corrected, the comparison VIP > CTR was significant

for the alpha (Z= 2.92, r= 0.51, p � 0.005), low

gamma (Z= 2.77, r= 0.48, p � 0.01) and high gamma

(Z= 2.65, r= 0.46, p � 0.01) frequency bands.
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C) bands. Electrodes in

ected). The color scale

racteristic curve (AUC).

euroscience (2020), https://doi.org/10.10
We did not observe a

significant effect of group on SE

values for any frequency band

when comparing the SE values

obtained at the baseline condition

(i.e. preparation for meditation).

The topographic distribution of

electrodes where SE increased in

VIP vs. CTR is shown in Fig. 3.

Significant electrodes (Wilcoxon

test, FDR-corrected, p � 0.05) are

represented in white. The color

scale indicates the effect size in

terms of the area under the

receiving operator characteristic

curve (AUC). We found

widespread SE increases in the
16/j.neuroscience.2020.01.033
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Fig. 4. Generalization of entropy changes between meditation traditions. Multivariate analysis based on training and testing RF classifiers using the

SE values from the 64 EEG channels in the alpha (panel A), low gamma (panel B) and high gamma (panel C) bands. Upper panel: RF classifiers

were trained to distinguish the meditation tradition (row) from the CTR group. Afterwards, they were evaluated in the problem of distinguishing the

meditation tradition in the columns from CTR. Entries in the diagonal correspond to training and evaluating the classifiers using a train/test split of

the same dataset. The entries show the distribution (violin plots) of AUC values obtained from unshuffled (blue) shuffled (red) data. Opaque entries

indicate that the empirical p-value (obtained from comparing both AUC distributions) is �0.05 (FDR-corrected). Bottom panel: each node represents

a meditation tradition and arrows indicate that the RF classifier trained to distinguish the tradition at the source node from CTR successfully

distinguished the tradition at the target node from CTR. E.g. the arrows from VIP to the other nodes indicate that RF classifiers trained to distinguish

VIP from CTR successfully generalized to the other two meditation traditions. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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alpha band, predominantly frontal SE increases in the low

gamma band, and central and frontal SE increases in the

high gamma band.
422
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Multivariate classifiers applied to SE topographies

We then investigated whether a multivariate analysis

based on RF classifiers could distinguish the meditative

state from the control condition for all groups of
Fig. 5. Effect of meditation on the dynamics of the Kuramoto order paramet

changes the coherence (C) and metastability (K) of low gamma (panel A) and
band oscillations. The violin plots display K and C distributions across individu

are reported in the Results section.
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meditators. RF classifiers were based on the combined

SE values from all 64 EEG channels at the frequency

bands for which we observed a significant effect of

group (alpha, low and high gamma). We also evaluated

whether a classifier trained to distinguish a certain

meditative state (e.g. HT) from CTR could successfully

generalize to the problem of distinguishing the

meditative state of another group (e.g. VIP) from the

CTR. This analysis is relevant to identify potential ‘core’
428
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er. The meditative state

high gamma (panel B)
al participants. Statistics

Neuroscience (2020), https://doi.org/10.
features that are common to

different meditation traditions.

The results of this analysis are

shown in Fig. 4. In the upper

panel the rows correspond to the

group used for training the RF

classifiers, and columns

correspond to the group used to

evaluate their performance.

Diagonal entries correspond to

training and evaluating RF

classifiers using the same group

(i.e. half of the data used for

training and half for evaluation).

Within each entry, the blue/red

violin plots represent the results

obtained using unshuffled/shuffled

class labels. Shaded entries

indicate that the corresponding
1016/j.neuroscience.2020.01.033
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AUC was greater than chance (p< 0.05, FDR-

corrected). The lower panel in Fig. 4 shows all training/

evaluation pairs yielding AUC significantly greater than

chance.

In all cases, it was possible to distinguish with high

accuracy the VIP from CTR groups. This was not the

case for other meditative traditions, except for HT in the

low gamma band; however, we note that the RF

classifiers trained to distinguish VIP from CTR

successfully generalized to the other two meditation

traditions for all three frequency bands. These results

are consistent with those presented in Figs. 2 and 3,

and suggest that, even though increased SE is

characteristic of VIP, the topographic distribution of SE

can be informative of features that are common to other

meditative traditions.
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Coherence and metastability

Finally, we investigated the coherence C across all EEG

electrodes, computed as the temporal average of the

synchrony R tð Þ. We also obtained the metastability K

from the variance of R tð Þ. The upper/lower panels of

Fig. 5 show K/C, respectively, for all the experimental

groups. We assessed the effect of the group on K in the

low (H[3] = 5.97, p � 0.1, g2 = 0.33) and high gamma

bands (H[3] = 9.95, p � 0.05, g2 = 0.45), as well as the

effect of the group on C in the low (H[3] = 12.03,

p � 0.01, g2 = 0.50) and high gamma bands (H[3]

= 11.2, p � 0.01, g2 = 0.48).

Post-hoc non-parametric Wilcoxon tests revealed that

in the low gamma band K decreased during meditation for

the comparisons HT < CTR (Z= 2.24, p � 0.01,

r= 0.39) and Isha Yoga > controls (SNY< CTR)

(Z= 1.16, p � 0.05, r= 0.29); in the high gamma band

for comparisons HT < CTR (Z= 2.27, p � 0.005,

r= 0.39), VIP < CTR (Z= 2.35, p � 0.01, r= 0.41)

and SNY< CTR (Z= 2.31, p � 0.01, r= 0.40).

Conversely, in the low gamma band C increased for

HT > CTR (Z= 3.10, p � 0.001, r= 0.54), VIP > CTR

(Z= 1.90, p � 0.05, r= 0.33), SNT > CTR (Z= 3.03,

p � 0.001, r= 0.53); and in the high gamma band C

increased for HT > CTR (Z= 2.80, p � 0.005,

r= 0.49), VIP > CTR (Z= 2.35, p � 0.01, r= 0.41),

SNY > CTR (Z= 2.88, p � 0.005, r= 0.51).
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3 These traditions differ from Vipassana in their instructions and
objectives, and are described as ‘loving-kindness’ and ‘compassion’
meditation, with the objective of achieving a state of ‘unconditional
loving-kindness and compassion, resulting in unrestricted readiness
and availability to help living beings’.
DISCUSSION

Previous studies reported changes in local oscillatory

power and long-range coherence in different meditative

practices that were neuroanatomically consistent with

the reported subjective experience, e.g. increased

occipital gamma has been consistently linked to

changes in visual imagery (Lutz et al., 2004, 2007;

Braboszcz et al., 2017; van Lutterveld et al., 2017;

Kakumanu et al., 2018; Luft et al., 2019). The heterogene-

ity found in these reports highlights the ambiguous nature

of the term ‘meditation’ (Brandmeyer et al., 2019;

Schoenberg and Vago, 2019). Our analyses extended

previous findings by showing how meditation can

increase signal complexity in the alpha and gamma

bands, as indexed by SE. In particular, SE changes in
Please cite this article in press as: Vivot RM et al. Meditation Increases the Entropy of Brain Oscillatory Activity. N
VIP appeared as stereotypical, in the sense that they

allowed machine learning classifiers to correctly general-

ize to the problem of detecting other meditative states

from EEG signal entropy. Increased alpha and gamma

power envelope entropy was observed for Vipassana

meditation vs. controls, both when comparing meditation

vs. focus on breathing and instructed mind wandering in

the group of matched controls. However, we did not

observe differences when comparing the ‘focus on

breathing’ condition between meditators and controls,

suggesting that our results are an active manifestation

of engagement in meditation and do not reflect a trait

effect.

The analyses conducted in the present work have

relatively few antecedents. A previous study reported

decreased permutation entropy (a method closely

related to SE) during the practice of insight meditation

(Vipassana) (Venugopala et al., 2017), which was also

associated with increased levels of synchronization

between the signals registered at the EEG electrodes.

Increased gamma synchronization during the meditative

state is consistent with our findings (Lutz et al., 2004).

However, we found the opposite result for entropy (i.e.

increased) when compared to the result reported by

Venugopala and colleagues (i.e. decreased). We note

that this discrepancy could be attributed to the fact that

we did not investigate the entropy of the broadband

EEG signal, but of the envelopes of narrow band oscilla-

tions. As mentioned earlier, in contrast to previous stud-

ies, our method allows to disentangle changes in the

entropy of the envelope (possibly related to the size of cell

assemblies whose activity oscillates at the carrier fre-

quency) from the spectral content of the broadband sig-

nal, which contains unspecific contributions of cell

assemblies oscillating at very different frequencies (i.e.

1/f spectrum).

The frequency bands where we found the most salient

increases in entropy during meditation are consistent with

the previous report by Braboszcz and colleagues

comparing EEG spectral power between meditators and

controls (Braboszcz et al., 2017) using the same dataset

we analyzed. They reported increased occipital (Oz) EEG

power for all meditation traditions vs. controls in the alpha

(7–11 Hz) and gamma (60–110 Hz) ranges; see Fig. 3 in

Braboszcz et al. (2017). Gamma band increases were

located in occipito-parietal scalp positions, while alpha

band increases were seen across all electrodes; see

Figs. 4 and 6 in Braboszcz et al. (2017), respectively.

These results are consistent with the topographic localiza-

tion of increased alpha and gamma oscillation envelope

entropies shown in Fig. 3.

Our results are also consistent with the observation of

increased long-range coherence in the gamma (25–

56 Hz) band during the meditative state of Buddhist

practitioners of the Nyingmapa and Kagyupa traditions.3

Vipassana meditation was reported to increase local
euroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.01.033
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gamma (35–45 Hz) power in parieto-occipital scalp regions

(Cahn et al., 2010), overlapping with those reported in

Fig. 3. Gamma band oscillations are implicated in several

high-order cognitive processes such as attention, working

memory, learning, and consciousness (Fries et al., 2007;

Fries, 2009). They have also been postulated as a plausi-

ble neurobiological mechanism to solve the ‘binding prob-

lem’ (i.e. the integration of information between spatially

distributed cortical regions) (Nikolić et al., 2013). In contrast

with our results, Lutz et al. discuss a number of reports

implicating slow oscillations with the meditative state

(Lutz et al., 2007). However, and as also noted by the

authors, these results could be biased by two fundamental

factors: (1) fast oscillations were not investigated and (2)

the studies were based on FA meditation, which could

engage top-down control mechanisms related to the onset

of slower brain oscillations.

Because the neurophysiological correlates of

meditation have been historically confounded by several

factors, the comparison of our results with the previous

literature is difficult, especially so given that there are

virtually no antecedents of articles investigating the

entropy of band-specific oscillations. A major source of

confusion is the nature of the meditative traditions that

are investigated. Our unidimensional classification of

meditation traditions from FA to OA is only one among

other characterizations. As stated by Lutz et al. (2004),

the EEG gamma band has not been measured in most

electrophysiological studies of the meditative state. This

is supported by a recent review and meta-analysis article

by Thomas and Cohen (2014) (see Tables 2, 3, and 4 for

FA, OA and transcendental meditation, respectively). It is

apparent that FA studies generally reveal increases in the

theta and alpha bands, while the results are less homoge-

neous for OM meditation.

Beyond the similarities in their phenomenology, both

psychedelics and the meditative state have been

investigated using fMRI to reveal decreased activity in

the posterior cingulate cortex (PCC), a posterior ‘hub’ of

the default mode network (DMN) (Carhart-Harris et al.,

2012; Berkovich-Ohana et al., 2016; Smigielski et al.,

2019). Such inactivation has been compared to the disen-

gagement of a ‘reducing valve’, leading to less constraints

on the potential repertoire of brain activity configurations

(Carhart-Harris et al., 2012; Carhart-Harris et al., 2014).

We measured the entropy of narrow band EEG power

fluctuations as a quantitative metric of such dysregulation.

However, we note that entropy should not be used as an

absolute proxy for the level of consciousness, since a

very high level of entropy implies that the constituents of

the system (e.g. neurons) behave independently in the

statistical sense, preventing information integration. Giulio

Tononi postulated that measuring the balance between

the enhanced repertoire of states and the level of informa-

tion integration could result in a more adequate metric for

consciousness than entropy alone (Oizumi et al., 2014).

The proposed metric (h) is difficult to compute, but can

be approximated empirically by measuring EEG after a

transcranial magnetic stimulation (TMS) pulse, a tech-

nique that could be used in future studies to investigate

the meditative state (Casali et al., 2013).
Please cite this article in press as: Vivot RM et al. Meditation Increases the Entropy of Brain Oscillatory Activity.
Both long-term meditation (Sahdra et al., 2011;

Strauss et al., 2014; Haukaas et al., 2018; Pokorski and

Suchorzynska, 2018) and the acute effects of serotoner-

gic psychedelics (Griffiths et al., 2016; Carhart-Harris

et al., 2017; Carhart-Harris et al., 2018; Dos Santos

et al., 2018; Garcia-Romeu and Richards, 2018;

Palhano-Fontes et al., 2018) have been reported to

enhance mood and well-being. Increased brain entropy

has been reported during the acute effects of psychede-

lics, and was shown to predict changes in personality

traits (Lebedev et al., 2016). Recently, Carhart-Harris

and Nutt suggested that 5-HT2A signaling mediates ‘active

coping’, a process characterized by enhanced plasticity

(Carhart-Harris and Nutt, 2017). According to this pro-

posal, 5-HT2A agonism increases the excitability of the

brain or, figuratively, its ‘temperature’, drawing an analogy

with a metal heated and subsequently cooled in order to

increase its malleability (a process known as ‘annealing’).

Thus, the potential long-term benefits of 5-HT2A agonism

could relate to the increased flexibility induced by a tran-

sient state of higher entropy, potentiating brain plasticity

(Carhart-Harris et al., 2014; Carhart-Harris and Nutt,

2017). The process of Vipassana meditation, which

resulted in most of the EEG entropy increases observed

in our study, can be compared to the process proposed

by Carhart-Harris and Nutt. FA alone can lead to a state

of ‘dullness’; therefore, the excitation brought upon by dis-

traction and the meta-awareness of such distraction is

needed in equal measure. In other words, a balance

between excitation and FA is required. Vipassana medita-

tion can be conceptualized as a process of continuously

increasing brain excitability and then reducing it after the

distractor is examined and excluded from consciousness

by the meditator. Future studies of gene expression (epi-

genetics) and positron emission tomography (PET) in

expert Vipassana meditators should be conducted to

identify whether this ‘annealing’ process is only useful

as an analogy, or is indeed mediated by increased

expression of the genes that encode 5-HT2A receptors,

as well as by higher levels of 5-HT2A receptor density.

Advances in the development of 5-HT2A agonist PET radi-

oligands, such as Cimbi-36 (Ettrup et al., 2016), represent

a promising avenue of research to evaluate this

hypothesis.

We note that while increased entropy has been

reported for the acute effects of different compounds

(e.g. 5-HT2A agonists and NMDA antagonists)

(Schartner et al., 2017a), our results provide evidence

of ‘endogenous’ increases, i.e. increased EEG entropy

that is not mediated by pharmacological agents but by

the mental processes executed by long-term meditators.

Furthermore, our analyses identified the spectral bands

that become more disorganized, matching those predom-

inantly affected by 5-HT2A agonists (alpha rhythm)

(Muthukumaraswamy et al., 2013; Carhart-Harris et al.,

2016) and by meditation in expert practitioners (gamma

rhythm) (Lutz et al., 2004). While most of the studies to

date investigated the entropic brain hypothesis from the

perspective of broadband oscillations, our work puts for-

ward novel results that should lead to a re-examination
Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.01.033
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of brain states of higher entropy in terms of the affected

frequency bands.

The observed changes in coherence and metastability

suggest that the repertoire of cells recruited for band-

specific oscillations was locally increased during

meditation while, at a more global scale, increased

gamma band binding reduced such repertoire. This

conflict between local and global changes in the

potential repertoire of brain states is consistent with

findings obtained under the acute effects of LSD,

suggesting increased global functional integration at the

expense of locally segregated activity (Tagliazucchi

et al., 2016). Further electrophysiological studies using

5-HT2A agonists and NMDA antagonists could be con-

ducted to allow a direct comparison of local entropy and

global metastability/coherence with those quantified dur-

ing the meditative state.

Our study represents a step towards establishing an

intuitive relationship between the enhancement of

phenomenological space and increases in the entropy of

brain activity, as proposed by Carhart-Harris et al.

(2014). However, our study also presents limitations

intrinsic to the use of EEG to infer the location of changes

in entropy, since EEG electrode signals reaching the

scalp from different cortical sources are ‘mixed’ due to vol-

ume conduction effects. Furthermore, while a psychome-

tric assessment of the participants was available, it was

not suitable for the comparison of phenomenological fea-

tures with those of the psychedelic state. For this pur-

pose, other questionnaires -such as the Altered States

of Consciousness (ASC) questionnaire (Dittrich, 1998)-

should be employed. Due to this limitation, we can only

provide indirect evidence of increased entropy as a mech-

anism underlying the phenomenological similarity

between the meditative and the psychedelic states.

In summary, Vipassana meditation, a practice that can

be classified as midway between OA and FA, resulted in

increased entropy of the envelope of brain oscillations in

the alpha and low/high gamma bands. This suggested

that the increased repertoire of local neural

configurations was mediated by higher levels of local

segregation alongside increased global coherence in the

low/high gamma bands. Our study provides an example

of a non-pharmacologically-induced brain state of high

entropy. Future research should address whether these

‘endogenous’ increases in EEG entropy are related to

changes in the expression of 5-HT2A receptors in expert

meditators, and study the relationship between entropy,

flexibility, and the long-term positive effects that certain

meditative traditions can have on physical and mental

health.
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APPENDIX

Computation of the SE

The SE was developed to quantify the regularity or

reproducibility in a time series by estimating the

likelihood of observing patterns of length m+ 1 in the

data within tolerance r of each other, given that patterns

of length m are within tolerance r of each other. In this

definition, the parameter m is called the embedding

dimension, a name inherited from the process of

reconstructing an attractor from a time series by means

of a discrete sequence of observations (Takens, 1981).

The procedure followed to compute SE is illustrated in

Fig. 1B. We consider a time series of length N, given by

x1; x2; x3; � � � ; xNf g, with homogeneous spacing between

samples (s), i.e. xi � xj
�� ��= s. For the purposes of this

analysis, the time series represents the instantaneous

amplitude of the narrow band frequency envelopes

obtained from the Hilbert transform. The template

vectors of length m are defined as

Xm ið Þ ¼ xi; xiþ1; xiþ2; � � � ; xiþm�1f g. Given a suitable

distance function d (in this implementation, the

Chebyshev distance), the distance between two

template vectors of equal length is defined as

d Xm ið Þ;Xm jð Þð Þ. Then, for a given embedding dimension

m and tolerance r, we define the set

Sm rð Þ ¼ i; j : d Xm ið Þ;Xm jð Þð Þ � r and i–jf g; i.e. all the

pairs of different indices such that the associated

template vectors are considered similar within a certain

tolerance. Finally, we compute the SE as,

SE ¼ �log
#Smþ1 rð Þ
#Sm rð Þ

� �
ð1Þ
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(# denotes set cardinality). We observe that, by

construction, Smþ1 rð Þ � Sm rð Þ, therefore SE is equal or

larger than zero. Also, we note that self-matches are not

included in the computation of SE. Due to the exclusion

of self-matches, SE results in a less biased estimate of

entropy relative to other metrics (e.g. approximate

entropy). Also, instead of matching the patterns against

a fixed template, all possible segments of length m are

considered as templates, which increases the statistical

power in Eq. (1). SE can be conceptualized as

measuring the amount of self-similarity in the data: a

highly regular and periodical time series will present a

high SE, while a noisier and less predictable time series

will present a lower SE.

In spite of its name, the embedding dimension is not

estimated to guarantee the reconstruction of an attractor

underlying the time series, but from practical

considerations concerning the computation of the

logarithmic likelihood in Eq. (1). As discussed by both

Kaffashi et al. (2008), and Pincus and Goldberger

(1994), the preferred choice m= 2 allows a better esti-

mate of the logarithmic likelihood, since #Sm rð Þ is a

decreasing function of m. Concerning the tolerance, pre-

vious numerical studies showed that r � 0:1� SD leads

to poor logarithmic likelihood estimates, while for

r � 0:25� SD relevant information is lost. Therefore, we

followed the recommendation of adopting an intermediate

value (r ¼ 0:2� SD).
Metastability and coherence

Consider N coupled oscillators, each with its own

characteristic oscillation frequency xi. These

frequencies represent those of the narrow-band filtered

64 EEG channel signals. The instantaneous amount of

synchrony between the ensemble of oscillators can be

measured with the Kuramoto order parameter,

R tð Þ ¼ 1

N

XN

j¼1
eihj

��� ��� ð2Þ

The order parameter R tð Þ ranges between 0 and 1,

indicating minimum and maximum synchrony,

respectively. From Eq. (2) we derive the metastability K

as the variance of R tð Þ, indicating the amplitude of the

dynamical repertoire of the oscillators (i.e. the

occurrence of transient synchronization and de-

synchronization over time), and the coherence C as the

mean of R tð Þ, indicating the average level of

synchronization between the oscillators.

As outlined in Fig. 1C of the main manuscript, Eq. (2)

can be used to investigate the collective behavior of the

64 EEG channels recorded from the different groups of

subjects. In this case, the characteristic oscillation

frequencies xi are determined by the bandpass filtering,

and the instantaneous phases hj are obtained from the

Hilbert transform.
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