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Abstract

Tau accumulation affecting white matter tracts is an early neuropathological feature of late-onset 

Alzheimer’s disease (LOAD). There is a need to ascertain methods for the detection of early LOAD 

features to help with disease prevention efforts. The microstructure of these tracts and anatomical 

brain connectivity can be assessed by analyzing diffusion MRI (dMRI) data. Considering that family 

history increases the risk of developing LOAD, we explored the microstructure of white matter 

through dMRI in 23 cognitively normal adults who are offspring of patients with Late-Onset 

Alzheimer’s Disease (O-LOAD) and 22 control subjects (CS) without family history of AD. We also 

evaluated the relation of white matter microstructure metrics with cortical thickness, volumetry, in 

vivo amyloid deposition (with the help of PiB positron emission tomography -PiB-PET) and regional 

brain metabolism (as FDG-PET) measures. Finally we studied the association between cognitive 

performance and white matter microstructure metrics. O-LOAD exhibited lower fiber density and 

fractional anisotropy in the posterior portion of the corpus callosum and right fornix when compared 

to CS. Among O-LOAD, reduced fiber density was associated with lower amyloid deposition in the 

right hippocampus, and greater cortical thickness in the left precuneus, while higher mean 

diffusivity was related with greater cortical thickness of the right superior temporal gyrus. 

Additionally, compromised white matter microstructure was associated with poorer semantic 

fluency. In conclusion, white matter microstructure metrics may reveal early differences in O-LOAD 

by virtue of parental history of the disorder, when compared to CS without a family history of 

LOAD. We demonstrate that these differences are associated with lower fiber density in the 

posterior portion of the corpus callosum and the right fornix.
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1. Introduction
Alzheimer´s disease (AD) is neuropathologically defined in post mortem brain tissue by 

aggregation of abnormal β-amyloid and hyperphosphorylated Tau proteins. However, extracellular 

β-amyloid accumulation occurs in up to 80% of elderly people with normal cognition (Aizenstein et 

al., 2008; Ferrer, 2012), and is not consistently associated with cognitive impairment severity 

across populations (Boyle et al., 2019; Loewenstein et al., 2018; Rodrigue et al., 2012; Rowe et al., 

2010). In contrast, another initiatory pathological process more closely associated with the 

cognitive deterioration that is characteristic of AD, is believed to be intracellular 

hyperphosphorylated tau accumulation that primarily affects dendrites and axons (Braak and Del 

Tredici, 2015). This causes disconnection between different brain regions. In late-onset AD 

(LOAD), representing approximately 99% of all AD cases, most studies of connectivity using 

functional (Buckner et al., 2009; Greicius et al., 2004) or structural (Mito et al., 2018) imaging 

methodology, involve patients with moderate to severe forms of the disorder. To the extent of our 

knowledge, however, structural connectivity has not been studied in detail in middle-aged, 

cognitively normal persons at risk for LOAD by virtue of their family history.

Family history increases the risk of developing LOAD (Bertram et al., 2010; Mosconi et al., 2010), 

and is second only to high age as an epidemiological risk factor. As published previously, persons 

who are at risk of developing LOAD because of their family history, which can be in part 

demonstrated by possession of the apolipoprotein E (APOE) ε4 allele, show altered functional and 

anatomical connectivities (Bendlin et al., 2010; Sánchez et al., 2017; Sheline and Raichle, 2013; 

Sheng et al., 2017), changes in cognitive variables (Abulafia et al., 2018; Ballard and O’Sullivan, 

2013; Loewenstein et al., 2016; Rapp and Reischies, 2005; Reinvang et al., 2012), and abnormal 

brain structure (Duarte-Abritta et al., 2018; During et al., 2011; Mosconi et al., 2014, 2013; Reiman 

et al., 2005). In particular, we observed in a sample of offspring of LOAD patients (O-LOAD) that 

functional connectivity was related to subtle cognitive alterations in episodic memory and the 

capacity to recover from semantic interference effects during learning when compared to healthy 

control subjects (CS) (Sánchez et al., 2017). This latter capacity also correlated with brain 

structure, involving brain regions responsible for autonomic, motor, and motivational control in CS, 

and regions traditionally implicated in AD in O-LOAD (Abulafia et al., 2018). We also identified 

isocortical thinning in AD-relevant areas including posterior cingulate, precuneus, and areas of the 

prefrontal and temporoparietal cortex (Duarte-Abritta et al., 2018). 
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Anatomical connectivity can be explored through diffusion MRI (dMRI), which is a noninvasive in 

vivo brain imaging method that allows study of white matter (WM) microstructure and 

reconstruction of fiber trajectories. Classic tensor-derived metrics, such as fractional anisotropy 

(FA) and mean diffusivity (MD) (Pierpaoli and Basser, 1996) have been applied in AD patients 

(Bozzali et al., 2002; Kantarci, 2014; Mayo et al., 2017; Ouyang et al., 2015), as well as in 

preclinical samples including carriers of the APOE ε4 allele and O-LOAD, to study WM integrity 

(Bendlin et al., 2010; Racine et al., 2014; Ringman et al., 2007). However, these voxel-based 

metrics are not specific enough for evaluating multiple fiber orientations (i.e., “crossing fibers”) and 

do not identify more subtle anomalies (Pierpaoli et al., 2001). Moreover, crossing fibers are present 

in approximately 90% of the brain (Jeurissen et al., 2013), where these popular metrics are difficult 

to interpret and provide no information regarding  fiber bundles within a voxel (Douaud et al., 2011; 

Jones, 2010; Jones et al., 2013). A novel method called fixel-based analysis (FBA) was developed 

by Raffelt and colleagues (2015) and resolves WM integrity in greater detail, exhibiting within-voxel 

microstructure, and allowing statistical analysis in complex fiber scenarios. 

In the present study, we hypothesized that our sample of 23 cognitively normal, middle-aged (40-

60 years) O-LOAD have decreased WM microstructure compared to CS (n=22) without a family 

history of LOAD. In addition, we tested the hypothesis that FBA could reveal changes of WM 

integrity in O-LOAD and that such changes would be associated with alterations in gray matter 

(GM) and clinical cognitive performance (Abulafia et al., 2018; Duarte-Abritta et al., 2018). 

Regarding the latter point, and based upon prior neuropathological studies across the lifespan 

(Braak & Braak 1991; Braak and Del Tredici 2015) we predicted that WM integrity would not be 

topographically related to brain amyloid deposition (as measured by PET-PiB) or 

neurodegeneration, as evidenced by decreased gray matter volume and cortical thickness.

2. Materials and Methods
2.1. Participants

Participants were recruited at Fleni Foundation in Buenos Aires, Argentina. The sample included 

23 O-LOAD and 22 CS with no known family history of LOAD. All participants provided written 

informed consent to participate in the study as approved by the local bioethics committee and in 

accordance with the Declaration of Helsinki. Briefly, the inclusion criterion for O-LOAD was having 

at least one parent diagnosed with probable LOAD according to DSM-5 criteria. The CS group had 

no family history of LOAD and neither parent had developed LOAD before age 70. Inclusion criteria 

for both groups were as follows: (1) 40–60 years of age at the time of enrollment, (2) >7 years of 

formal education, (3) Mini Mental State Examination score >26, (4) no evidence of neurologic 
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disease or medical conditions likely to impair cognitive function, (5) no history of substance abuse 

(alcohol, marijuana, stimulants, benzodiazepines, or other drugs), and (6) Hachinski score <4 to 

screen out vascular cognitive disorders. 

All participants were asked to provide names, date of birth, age at death, cause of death, and 

known clinical information for all LOAD-affected family members. The information was confirmed 

by other family members or by interview with the examining physician, discussing the parents’ 

symptoms and disease progression. Among O-LOAD, at least one parent had been diagnosed with 

LOAD at age >65 years. Details of this sample are described elsewhere (Duarte-Abritta et al., 

2018; Abulafia et al., 2019).

2.2. MRI data acquisition
MRI data was acquired using a 3T GE Signa HDxt MRI scanner with an eight-channel head coil. 

Diffusion-weighted images (DWI) was performed using the following parameters: 45 axial slices, 

256x256 acquisition matrix, and 0.93x0.93x2.50 mm3 voxel size (TR=12000 ms, TE=88.5 ms), 35 

diffusion-weighted images (b=1000 s/mm2) and one volume without diffusion weighting (b0). In 

addition, conventional high resolution T1 3D fast SPGR-IR images with 166 slices in the sagittal 

plane, 1.2 mm slice thickness, TR=7.256 ms, TE=2.988 ms, flip angle 8°, FOV=26 cm were 

acquired.

2.3. Positron Emission Tomography (PET) data acquisition
PET image acquisition was performed on a PET/CT General Electric 690. First, 370MBq of 11C-PiB 

was administered and, after 50 min, dynamic tomographic images 3D mode were taken in 20 

minutes. After 40 min, 18FDG was administrated and after 30-40 min a new set of dynamic 

tomographic images in 3D mode were taken during 30 min. Both radiopharmaceuticals were 

synthesized at Fleni, complying with the pharmaceutical Good Manufacturing Practice standards, 

and administered doses are those established by the international radiological protection and 

safety standards. 11C-PIB and 18FDG solutions were used to detect the A42 amyloid at extracelular 

cortical level and to measure neuronal metabolic activity, respectively. Each participant must have 

been fasting for 6 hours, have a blood glucose level under 130 mg/dl and the procedure is 

conducted in a quiet dim-lit room.

2.4. MRI data preprocessing
The preprocessing of DWI consisted of de-noising the data (Veraart et al., 2016), applying eddy-

current and motion correction (Andersson and Sotiropoulos, 2016), and performing bias field 

correction (Zhang et al., 2001). Subsequently, an intensity normalization across all subjects was 
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performed by deriving scale factors from the median intensity of selected voxels of WM, GM, and 

cerebrospinal fluid (CSF) in b0 images. All of these preprocessing steps were performed using 

MRtrix3 software package. In addition, maps of canonical diffusion metrics, such as FA and MD, 

were computed using the FSL software package.

T1 image preprocessing consisted of co-registering them to corresponding DWI data using the 

SPM8 toolbox, extracting the skull using the Brain Extraction Tool (Smith, 2002) as part of FSL 

software, and generating the tissue-segmented image appropriate for the following processing 

steps (Patenaude et al., 2011; Smith, 2002; Smith et al., 2004; Zhang et al., 2001). Additionally, 

co-registered T1 images were parcellated according to Desikan-Killiany atlas (Desikan et al., 2006) 

implemented in FreeSurfer software as described (Duarte-Abritta et al., 2018).

2.5. Diffusion MRI data processing
On DWI preprocessed data, we performed the Constrained Spherical Deconvolution (CSD) model 

(Tournier et al., 2007) to extract the contribution of WM fiber orientations per voxel (i.e., the fiber 

orientation distribution FOD) obtaining an image per subject. All FOD images were reached by 

using a group average response function, applying the multi-shell multi-tissue CSD algorithm 

(Jeurissen et al., 2014) and, according to the number of diffusion gradients, each FOD was 

represented by a set of spherical harmonics with a maximum order of 6. Subsequently, a FOD 

template was performed with twenty subjects of each group, and through non-linear registration 

each subject’s FOD image was taken to the template space.

In the next step, we executed on the FOD template a probabilistic tractography algorithm, where 

each local WM orientation was connected with the next one delineating the fiber pathways, taking 

into account the uncertainty derived from errors in the followed trajectory and generating a large 

distribution of possible pathways from each seed point (Jeurissen et al., 2011; Tournier et al., 

2012). We applied the probabilistic iFOD2 algorithm in a whole-brain tractography approach 

generating 20 million streamlines with seed dynamic option to improve the distribution of 

reconstructed streamlines density (Smith et al., 2015). In order to reduce reconstruction biases and 

to provide a more biologically meaningful structural connection density, these streamlines were 

filtered to 5 million using the spherical deconvolution informed filtering of tractograms (SIFT) (Smith 

et al., 2013). All processing steps were performed using MRtrix3 package.

2.6. Fixel-Based Analysis
WM microstructure was studied mainly using FBA. According to its definition (Raffelt et al., 2015), 

a fixel refers to a fiber bundle within a voxel and reveals information in a smaller scale than an 

entire voxel. Three metrics that describe the architecture of WM are derived from FBA: i) fiber 

 

 

 

Journal Pre-proof



8

density (FD), the intra-axonal volume of a fiber bundle; ii) fiber-bundle cross-section, number of 

voxels the fiber bundle occupies by its intra-axonal volume; and iii) fiber density & cross-section 

that combines both measurements. Performing this method, statistical inference is increased using 

a General Linear Model and by applying non-parametric permutation testing with 5000 

permutations, where family-wise error corrected P-values were assigned to each fixel. All 

strategies implemented in FBA increase its statistical power and its anatomical interpretation. 

In this work, default parameters were used (height increment used in the cfe integration, 0.1; E=2; 

H=3; c=0.5; Gaussian kernel with the supplied FWHM used to smooth the fixel value along the 

fiber tracts, 10mm), and using 5 million streamlines tractogram template. This analysis was 

performed using a computing cluster of the Centro de Cómputos de Alto Rendimiento (CeCAR; 

https://cecar.fcen.uba.ar/). We selected streamlines from the tractogram template, that were 

associated to significant fixels (corrected p<0.05), and a “significant tract” was obtained. Scripts 

and commands necessaries for this analysis are part of MRtrix3 package and complete description 

are published (Raffelt et al., 2017). 

2.7.  Assessment of canonical diffusion tensor-derived metrics
As was described in Section 1, usually diffusion tensor-derived metrics are not specific enough to 

reveal subtle differences when they are applied in a whole-brain approach, especially in samples 

with similar characteristics as our O-LOAD and CS groups. We thus decided to use the output of 

FBA to study FA and MD values only in the area determined by the significant tract. To compare 

WM integrity between groups through these canonical metrics, we made a mask of this tract and 

extracted the values corresponding to voxels associated with both metrics. Thus, one score was 

obtained per subject per metric. 

2.8. Anatomical connectome 
An anatomical connectome was performed, which involves only connections belonging to the 

significant tract and their associated GM areas. 

2.9. Neuropsychological assessments
The neuropsychological assessments included semantic fluency ("animals" category) and phonetic 

fluency (words starting with letter P), both of which assess verbal productivity (Benton and Spreen, 

1969); Trail Making Tests (TMT) A and B from which we derived TMT (A-B), which is the difference 

between Part B and Part A and provides a purer indicator of cognitive flexibility (Reitan and 

Wolfson, 1985); and the Stroop Test (inhibition) (Golden and Freshwater, 1978). In addition, the 

Beck Depression Inventory-II (BDI-II) (Beck et al., 1996) was administered to screen for presence 
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and severity of depressive symptoms. To estimate premorbid intelligence the Word Accentuation 

Test Buenos Aires version (WAT-BA) was administered (Burin et al., 2000) and IQ was estimated 

based upon its results (Sanjurjo et al., 2015). All tests were administered and scored by a trained 

neuropsychologist (CA) blind to participant group.

We studied the association between cognitive test scores vs. WM integrity metrics (FD, FA and 

MD) of the tract of interest performing Spearman’s correlation analysis.

2.10. Structural T1 MRI and Amyloid PET analysis
Entire cortex analyses were performed to explore cortical thickness and volumetry in O-LOAD and 

CS groups. Statistical maps were generated using the command-line group analysis stream in 

FreeSurfer software. For subcortical regions, only volumetry measures were calculated. PET 

images were processed along with MRI volumetric T1 images. Once T1 images were processed, 

an analysis was performed using PETSurfer scripts obtaining the corresponding PET-PiB and 

PET-FDG intensity maps. Both analyses have been described in detail (Duarte-Abritta et al., 

2018). 

Spearman’s correlation analysis was applied to study rank-ordered associations between WM 

metrics of the significant tract and: i) structural GM (thickness and volumetry) metrics and ii) PET 

metrics (PiB and FDG), in both cases we used brain regions involved in the anatomical 

connectome. This analysis was performed in MATLAB-R2014a. Results of all statistical analysis 

were considered significant at p<0.05.

3. Results
Our sample included 23 O-LOAD and 22 CS with no known family history of LOAD. As shown in 

Table 1, O-LOAD and CS were similar in terms of age, sex, educational attainment, estimated IQ, 

and cognitive test scores such as semantic and phonetic fluencies, TMT (A-B), and Stroop. All 

participants were cognitively asymptomatic, neuropsychological performance was within normal 

limits, and none met clinical criteria for mild cognitive impairment or AD or related dementias. 

The intergroup comparison of FBA is shown in Figure 1. The tract that displays significant 

differences in fiber density (FD, the intra-axonal volume of a fiber bundle) at fixel scale involves the 

splenium of the corpus callosum and the right fornix. It is shown in three ways. In panel A), the 

color bar indicates 40% higher FD in the CS group versus the O-LOAD group. Panel B) shows the 

same tract colored by streamline orientations; and panel C) shows it on a sagittal slice of the right 

hemisphere. The other two metrics of FBA were not different between O-LOAD and CS groups.
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Differences in derived-tensor metrics between O-LOAD and CS were assessed via 2-sample t-

tests. Figure 2 shows significant differences between groups in FA and MD for the tract obtained 

from FBA. FA was greater and MD smaller in CS compared with O-LOAD. In addition, regarding 

the relationship between DTI-based and FBA measures, FA was positively correlated with FD 

(Spearman’s r=0.6906, p=5.3x10-4) while MD was inversely correlated with FD (Spearman’s r=-

0.7007, p=4.1x10-4) in CS group only. In O-LOAD the correlation between FA and FD values 

approached significance (Spearman’s r=0.3972, p=0.06).

Figure 3 displays the anatomical connectome that includes GM structures contributing fibers to the 

tract of interest defined in Figure 1. Most of the structures involve posterior neocortex and a series 

of cortical and subcortical structures participating of limbic circuits, namely, left medial orbitofrontal 

and middle temporal gyri; right insular cortex, thalamus, and hippocampus; and bilateral superior 

temporal gyri, precunei and superior parietal gyri (Figure 3).

Regarding the relationship between WM integrity measures and cognitive scores, we obtained that 

FA in the significant tract was inversely related to performance on the semantic fluency test among 

O-LOAD (r=-0.4251, p=0.0432). Similarly, there was a marginally significant correlation between 

FD and semantic fluency (r=-0.4097, p=0.0522). No significant correlations were found between 

measures of WM integrity and phonetic fluency, Stroop, and TMT (B-A). 

Finally, Figures 4 and 5 display correlation matrices and linear fit by O-LOAD and CS for all 

significant Spearman’s correlations among WM integrity metrics (FA, MD, and FD) of the tract of 

interest shown in Figure 1, GM measures (cortical thickness and GM volume), and PET measures 

(PiB and FDG). Among CS, greater FD was associated with higher amyloid deposition as shown 

by PET-PiB intensity signal (Figure 4, panel A) and larger volume (Figure 4, panel B) in the right 

thalamus and bilateral superior parietal gyri. Amyloid deposition in the right thalamus was also 

associated with more FA (Figure 5, panel B, left plot) and less MD (Figure 5, panel A, middle plot) 

in the tract of interest. The latter was directly related to metabolism in the right thalamus as well 

(Figure 5, panel A, left plot). In CS, FA was associated with right superior parietal gyrus volume 

(Figure 5, panel B, right plot). Among O-LOAD, greater FD was associated with greater amyloid 

deposition in the right hippocampus (Figure 4, panel A, right plot) and left precuneus thinning 

(Figure 4, panel C, right plot). MD in the tract of interest was related to right superior temporal 

gyrus thinning in O-LOAD (Figure 5, panel A, right plot).

4.  Discussion
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Middle aged O-LOAD display decreased anatomical connectivity involving the splenium of the 

corpus callosum and the right fornix, as assessed with FBA method, which can reveal more 

detailed information than a voxel-based approach when compared with CS. Our study highlights 

two important aspects of applying FBA. First, we improved statistical power by performing the 

entire fixel statistical analysis implemented in FBA. Second the method allowed us to obtain a 

voxel-associated tract with different fiber-bundle orientations otherwise not possible to assess with 

more conventional methods such as TBSS (Raffelt et al., 2015).

We assessed canonical tensor-derived metrics only in the area of the significant tract to avoid 

noisy data of whole-brain maps. O-LOAD show decreased FA and increased MD. These results 

are consistent with previous reports, describing areas such as the corpus callosum, cingulum 

(Bendlin et al., 2010), and fornix (Ringman et al., 2007) evidencing lower FA in preclinical AD 

subjects compared to CS. These abnormalities and decreased FD could be due to a lesser number 

of axons, less myelinated axons, or disrupted microstructure favoring the free diffusion of water 

across the membranes of such fibers.

Axon fibers in the splenium of the corpus callosum convey interhemispheric information between 

neocortical areas including posterior parietal cortices and precunei, whereas the right fornix is the 

main WM tract originating in the ipsilateral hippocampal archicortex (Martin, 2003). These regions 

have been uniformly considered among the earliest affected structures in LOAD, specifically those 

involving neurofibrillary tangles (amyloid deposition occurs initially in association with the 

neocortex; (Dubois et al., 2014; Montine et al., 2012)). That semantic fluency, a performance 

measure involving bihemispheric posterior temporal/parietal regions (Fama et al., 2000), is the only 

clinical feature associated with the tracts displaying intergroup differences, suggests that these 

changes in anatomical connectivity, although subtle, may bear clinical implications in early LOAD 

(Laatu et al., 2003). 

To our knowledge, this is a first report describing detection of WM structural differences at fixel 

scale in middle-aged at-risk adults without cognitive symptoms or neuropsychological impairments 

detectable using common tests of neuropsychological performance. The average age of our 

participants (i.e., over one decade younger on average than the expected age at onset of clinical 

LOAD symptoms) precludes us from knowing if and how the detected WM differences are 

predictive of LOAD. However, if confirmed in larger samples followed over several years, these 

may represent very early biomarkers of the disease. As reported recently by our group (Duarte-

Abritta et al., 2018), these O-LOAD do not exhibit significant mesial temporal atrophy, usually 
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considered the earliest structural brain imaging biomarker of LOAD (Dubois et al., 2014). This 

suggests that anatomical connectivity might reveal intracellular neurofibrillary differences ultimately 

affecting axons (Braak and Del Tredici, 2015; Montine et al., 2012), prior to the appearance of 

detectable neurodegeneration in the GM. This has been explored in clinical samples of LOAD 

patients through FBA (Mito et al., 2018) and the results are in line with our observations. 

To obtain clues about the possible pathophysiological origins of observed differences, we 

correlated the magnitude of WM microstructure in O-LOAD and CS, and observed the presence of 

both regional amyloid deposition and neurodegeneration as assessed by GM volume, cortical 

thickness or regional cerebral metabolism. Resulting associations were different for O-LOAD vs 

CS. Among the latter, most correlations were observed for the right thalamus and bilateral superior 

parietal gyri. Indicators of greater WM abnormalities in the splenium and right fornix were related to 

decreased amyloid, decreased volume, and increased cerebral metabolism in the right thalamus, 

along with similar findings in either superior parietal gyrus.  Our CS are comparable to post-mortem 

studies (Braak and Braak, 1991; Braak and Del Tredici, 2015), since we observe an association of 

integrity of fibers of the splenium with the right thalamus. By contrast, in O-LOAD, greater 

compromise of WM integrity (decreased FD) in the aforementioned tracts were associated with 

lower amyloid deposition in the right hippocampus and greater thickness in the left precuneus. 

These findings suggest a differential relationship between GM and WM integrity in both groups. 

Among O-LOAD, in contrast, the relationship involves GM structures traditionally associated with 

LOAD (Montine et al., 2012), lending further support to the idea that early WM differences in O-

LOAD as described heremight be related to risk of AD.

One interpretation of our results may be that O-LOAD display an accelerated pathophysiological 

process involving AD-specific structures such as medial temporal lobes (including hippocampi) and 

precunei (Dubois et al., 2014; Montine et al., 2012), instead of thalamus. In light of these 

observations, the age-dependent progression from brainstem to limbic to neocortical involvement 

seen in neuropathological studies (Braak and Braak, 1991; Braak and Del Tredici, 2015) might not 

specifically precede LOAD, but reflect normal aging. In contrast, among O-LOAD, we see specific 

involvement of the right hippocampus and precunei, suggesting that intergroup differences are 

related to LOAD predisposition instead of “accelerated aging”. This is in line with very early 

observations of precuneus compromise in infants at risk for AD by virtue of their genetic risk (Dean 

et al., 2014), and in whom neurodegeneration would be unlikely at such an early age.

 

 

 

Journal Pre-proof



13

In contrast to our prediction, CS displayed a regional relationship between WM abnormalities and 

amyloid deposition, again in the right thalamus and left superior parietal gyrus. This may point to a 

general phenomenon of an amyloid-Tau protein relationship that is not necessarily related to risk of 

LOAD, but reflects normal aging. Further, beta-amyloid on PET imaging was inversely related to 

WM integrity in the studied tracts. As previously reported (Braak and Braak, 1991), amyloid 

deposition in structures initially affected by neurofibrillary changes (e.g., medial temporal lobes) is 

a late occurrence in LOAD. These observations are clearly contrary to a LOAD-related regional 

phenomenon whereby extracellular amyloid deposition and intercellular phosphorylated Tau 

accumulation coincide to produce neurodegeneration (Jack et al., 2010). Whereas long-term follow 

up of middle-aged adults would provide the best evidence on how our findings are related to 

development of LOAD, comparison between O-LOAD and CS comprised of a similar 

sociodemographic background factors, will likely provide significant insight into how anatomical 

connectivity constitutes an early biomarker of LOAD.

The present investigation has several limitations. Our sample was homogeneous regarding 

ethnicity, geographical area, culture, and years of education, perhaps limiting generalizability of the 

results. As per the acquisition protocol, the non-isotropic voxel size could introduce a bias during 

the tractography process, especially in the largest direction. Nonetheless, FBA implements 

techniques that increase statistical inference, and according to our analysis, the significant tract is 

not oversampled in the largest direction and therefore might not be influenced by this issue. Hence, 

the current results have significant implications for understanding the earliest pathogenesis of 

LOAD and is worthy of further research.
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Figure 1 White matter tract with significant differences in fiber density Panel A) shows 

streamlines colored by percentage effect decrease in O-LOAD group respect of CS group. Panel 

B) depicts the same tract colored according the streamline orientations: left-right in red, anterior-

posterior in green, and superior-inferior in blue. Panel C) shows the tract on a sagittal slice of the 

right hemisphere. In all panels the tract is displayed on a population template image.

Figure 2 Significant differences in FA and MD FA and MD calculated in the tract defined in 

Figure 1, present statistically differences between CS and O-LOAD groups. * p<0.05.

Figure 3 Gray matter areas involved in connections of the tract This connectome displayed 

gray matter regions connected through the tract defined in Figure 1. Each white matter connection 

is represented by a single link.

Figure 4 Scatter plots of MRI and PET data vs FD Each scatter plot shows the distribution of PIB 

data (panel A), and gray matter volume (panel B) or thickness (panel C) for specific regions vs. FD 

of CS (blue empty markers) and O-LOAD (orange empty markers) groups. When a Spearman’s 

correlation is statistically significant (p<0.05), its linear fit is added for this group and the empty 

markers are filled. Statistically significant p-values and correlation coefficients are reported.

Figure 5 Scatter plots of MRI and PET data vs tensor-derived metrics Each scatter plot 

displays the data distribution of MRI and PET metrics versus MD (panel A) and FA (panel B) of CS 

(blue empty markers) and O-LOAD (orange empty markers) group. When a Spearman’s 

correlation is statistically significant (p<0.05), its linear fit is added for this group and the empty 

markers are filled. Statistically significant p-values and correlation coefficients are reported.
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Highlights

 Healthy offspring of late-onset AD (O-LOAD) patients show decreased connectivity

 Gray matter anomalies are associated to altered white matter integrity among O-LOAD

 White matter dysconnectivity involves right fornix and splenium of corpus callosum

 

 

 

Journal Pre-proof



 

 

 

Journal Pre-proof



 

 

 

Journal Pre-proof



 

 

 

Journal Pre-proof



 

 

 

Journal Pre-proof



 

 

 

Journal Pre-proof



Table 1. Demographic and clinical data

Group
CS (n=22) O-LOAD (n=23) Statistic p

Mean or 
Frequency SD or % Mean or 

Frequency SD or %

Female 18.0 81.8 15.0 65.2 X2= 1.585 .208
Age 51.91 6.46 54.91 5.37 T= -1.693 .100
Education 17.68 2.44 17.70 3.34 T= -.016 .987
BDI II 8.60 7.85 7.00 5.70 T= .744 .462
Estimated IQ 107.80 5.91 106.72 5.43 T= .633 .530
Semantic Fluency 22.05 4.85 20.74 3.79 T= .990 .328
Phonetic Fluency 18.10 4.01 18.17 4.04 T= -.065 .949
TMT B-A 34.90 13.94 37.24 14.22 T= -.537 .594
Stroop 2.86 8.14 3.38 6.39 T= -.214 .832

BDI II: Beck Depression Inventory, second version; TMT B-A: Trail Making Test A and B. T test was used for 

numeric variables and chi square test for categorical variables.
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